JPS61101429A - Production of glass tube - Google Patents

Production of glass tube

Info

Publication number
JPS61101429A
JPS61101429A JP22059984A JP22059984A JPS61101429A JP S61101429 A JPS61101429 A JP S61101429A JP 22059984 A JP22059984 A JP 22059984A JP 22059984 A JP22059984 A JP 22059984A JP S61101429 A JPS61101429 A JP S61101429A
Authority
JP
Japan
Prior art keywords
mandrel
soot
glass
glass tube
bulk density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22059984A
Other languages
Japanese (ja)
Inventor
Gotaro Tanaka
豪太郎 田中
Hiroo Kanamori
弘雄 金森
Futoshi Mizutani
太 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22059984A priority Critical patent/JPS61101429A/en
Publication of JPS61101429A publication Critical patent/JPS61101429A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • C03B37/01493Deposition substrates, e.g. targets, mandrels, start rods or tubes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:In depositing glass fine particles on a mandrel, to produce a quartz glass tube having low water content and a smooth inner wall face, by using the mandrel made of ZrO2, and specifying bulk density of the deposited material. CONSTITUTION:As the mandrel 3 is rotated, the glass fine particles 8 in a soot state are jetted to the mandrel by the oxyhydrogen flame 6, to form the deposited material 9. In the operation, the mandrel 3 is made of ZrO2, and the bulk density of the deposited material is adjusted to =0.2g/cm<3>-=0.7g/cm<3>. Then, the deposited material 9 is extracted from the mandrel 3, dehydrated, and calcined. Consequently, a high-quality quartz glass tube having a smooth inner face and low water content is obtained and it is used as a clad material for optical fiber.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高品質なガラス管の製造方法に関し、詳しくは
含有水分量が少なく、管内壁の平滑カ石英系ガラス管の
製造方法に係わる。本発明の方法によるガラスは、光フ
ァイバのクラッド用ガラスとして好適に用いることがで
き、さらには極めて低い含・有水分量が要求されるシン
グルモードファイバのクラッド用ガラスとして好適に用
いることができる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a high-quality glass tube, and more particularly to a method for manufacturing a silica-based glass tube that contains a small amount of water and has a smooth inner wall. The glass produced by the method of the present invention can be suitably used as a cladding glass for an optical fiber, and further can be suitably used as a cladding glass for a single mode fiber which requires an extremely low water content/water content.

(従来の技術) 従来、石英系ガラス管或いは光フアイバ用母材の製造法
としては、特開昭48−75522号公報に示されるよ
うないわゆる外付法がある。
(Prior Art) Conventionally, as a method for manufacturing a base material for a quartz-based glass tube or an optical fiber, there is a so-called external method as shown in Japanese Patent Application Laid-Open No. 48-75522.

この方法は、回転するカーボン、石英ガラス或いはアル
ミナ等の耐火性出発材料(マンドレルと称す)の外側に
、5ICt4等のガラス原料の火炎加水分解反応により
生成させたsto、等の微粒子状ガラス(スートと称す
る)を堆積させてゆき、所定量堆積させた後、堆積を止
め、マンドレルを引き抜く。得られたパイプ状スート体
を、高温電気炉中で焼結して溶融ガラス化し、パイプ状
ガラスを得る。
In this method, particulate glass (soot) such as sto produced by a flame hydrolysis reaction of a glass raw material such as 5ICt4 is placed on the outside of a rotating refractory starting material such as carbon, quartz glass, or alumina (referred to as a mandrel). After a predetermined amount has been deposited, the deposition is stopped and the mandrel is pulled out. The obtained pipe-shaped soot body is sintered in a high-temperature electric furnace to melt and vitrify it to obtain pipe-shaped glass.

(発明が解決しようとする問題点) とζろで上記の外付法の難点としては、マンドレルを引
き抜いた後のスート内壁がキズつき易く、このため焼結
された後のガラス管内壁として平滑な面を持つものが得
られにくいことがある。
(Problems to be Solved by the Invention) A drawback of the above-mentioned external mounting method is that the inner wall of the soot is easily scratched after the mandrel is pulled out, and therefore the inner wall of the glass tube after sintering is smooth. Sometimes it is difficult to obtain something with a positive aspect.

また、スートパイプ内壁をキズつきにくくするために、
スートを堆積させる過程で、火炎の温度を高く設定し、
スート体のカサ密度を上げて堆積すると、マンドレルが
抜けにくくなるに加え、その後の焼結工程において脱水
を十分に行うことが難かしくなる。
In addition, in order to prevent the inner wall of the soot pipe from being scratched,
In the process of depositing soot, the flame temperature is set high,
If the bulk density of the soot body is increased and the soot body is deposited, it becomes difficult to remove the mandrel, and it also becomes difficult to perform sufficient dehydration in the subsequent sintering process.

本発明の目的は、このような従来の外付は法の改良に係
わり、上記の欠点を解消して、ガラス管内壁が平滑でマ
ンドレル引抜きが容易であり、かつ水分含有量の極めて
少ない高品質なガラス管を製造する方法を提供すること
にある。
The purpose of the present invention is to improve the conventional external fitting method, eliminate the above-mentioned drawbacks, and create a high-quality glass tube with a smooth inner wall, easy mandrel drawing, and extremely low moisture content. The object of the present invention is to provide a method for manufacturing a glass tube.

(問題点を解決するための手段) 本発明者等は、マンドレルとして従来知られていなかっ
たジルコニア(酸化ジルコニウムZr01 )を用い、
かつ、特定のカサ密度となるようスートを堆積させるこ
とによシ、上記の目的を達成できることを見出した。
(Means for solving the problem) The present inventors used zirconia (zirconium oxide Zr01), which was not previously known as a mandrel, and
Moreover, it has been found that the above object can be achieved by depositing soot to have a specific bulk density.

すなわち本発明は、気相ガラス形成原料の火炎加水分解
反応によシ生成させた微粒子状ガラスを出発材料上に堆
積させて堆積体を得、次いで該堆積体よシ上記出発材料
を引き抜いた後に、該堆積体を脱水−焼結する方法にお
いて、上記出発材料としてジルコニアを用い、かつ堆積
体のカサ密度が0.2f/aw”以上α71/as”以
下にて堆積することを特徴とするガラス管の製造方法を
提供する。
That is, in the present invention, fine particulate glass produced by a flame hydrolysis reaction of a raw material for forming a vapor phase glass is deposited on a starting material to obtain a deposited body, and then, after the starting material is extracted from the deposited body, , a method of dehydrating and sintering the deposit, using zirconia as the starting material, and depositing the deposit at a bulk density of 0.2 f/aw" or more and α71/as" or less. A method for manufacturing a tube is provided.

以下本発明の製造方法を図面によシ説明する。The manufacturing method of the present invention will be explained below with reference to the drawings.

第1図は、本発明の1実施態様を概略説明する図であっ
て、図中1は引き上げ機のチャック、2はダミー棒、5
はマンドレル、4はダミー棒2とマンドレル3を機械的
に接続するための穴であシ、この穴4内にピンを挿入し
てマンドレル5を固定する。4は石英ガラス製スリーブ
、6は酸水素バーナであって、このバーナー6内にガラ
ス合成用気相原料例えば”C4,01、”N等が導入さ
れる。7は火炎であり、この内部にスート8が生成し、
マンドレル3上に、スート8が半焼結状態で堆積されて
行く。9はスートの堆積体である。この時マンドレル3
はチャック1により回転させられ、一定速度で引上げら
れる。
FIG. 1 is a diagram schematically explaining one embodiment of the present invention, in which 1 is a chuck of a pulling machine, 2 is a dummy rod, and 5 is a diagram schematically explaining one embodiment of the present invention.
4 is a hole for mechanically connecting the dummy rod 2 and the mandrel 3. A pin is inserted into this hole 4 to fix the mandrel 5. 4 is a sleeve made of quartz glass, and 6 is an oxyhydrogen burner, into which gas phase raw materials for glass synthesis such as "C4,01", "N", etc. are introduced. 7 is a flame, inside which soot 8 is generated,
Soot 8 is deposited on the mandrel 3 in a semi-sintered state. 9 is a soot deposit. At this time, mandrel 3
is rotated by chuck 1 and pulled up at a constant speed.

本発明の方法の特徴の第1は、マンドレル3としてジル
コニア管を用いる点である。ジルコニアは、ガラスとぬ
れ難く、よシ高温下でも互に反応が生じ難い。またジル
コニアの膨張係数は、アルミナ、カーボン等の他の耐火
物に比べ大きいため、火炎を用いてスートを堆積させた
後の冷却過程において、マンドレルが大きく収縮するた
めに1引き抜き易くなる。さらに、ジルコニアは酸化性
雰囲気或いは還元性雰囲気でも比較的安定であるため、
スートの合成時に材料の劣化が生じない。またジルコニ
アの蒸気圧自体も低いため汚染の原因とならず好ましい
The first feature of the method of the present invention is that a zirconia tube is used as the mandrel 3. Zirconia is difficult to wet with glass, and it is difficult for them to react with each other even at very high temperatures. Furthermore, since the coefficient of expansion of zirconia is larger than that of other refractories such as alumina and carbon, the mandrel contracts greatly during the cooling process after soot is deposited using flame, making it easier to pull out the mandrel. Furthermore, zirconia is relatively stable even in oxidizing or reducing atmospheres, so
No material deterioration occurs during soot synthesis. Furthermore, since the vapor pressure of zirconia itself is low, it does not cause contamination, which is preferable.

マンドレルとして用いるジルコニアの形状は、管形状が
好ましく、この理由は熱履歴上割れにくいととくよる。
The shape of the zirconia used as the mandrel is preferably tubular because it is difficult to crack due to its thermal history.

本発明の第2の特徴は、スート堆積時のカサ密度を一定
範囲に調整する点にあシ、本発明において、ジルコニア
マンドレル上に堆積させるスートのカサ密度は、α7t
/a13以下α2t/国3以上が好ましく、特に好まし
くは0.5t、/ am ”以下α2 f / ax 
”以上である。カサ密度が0.7flα1を越えると、
ジルコニアマンドレルを用いずとも、マンドレル引き抜
き時のスート内壁へのキズつき、或いはひび割れは減少
するが、その後の焼結工程での脱水を十分く行うことが
難かしくなる。なおここでいうカサ密度とは、マンドレ
ル近傍部約11厚さの層における平均的な値をいう。
The second feature of the present invention is that the bulk density during soot deposition is adjusted within a certain range. In the present invention, the bulk density of soot deposited on a zirconia mandrel is α7t.
/a13 or less α2t/country 3 or more is preferable, particularly preferably 0.5t, /am” or less α2 f/ax
"That's all. When the bulk density exceeds 0.7flα1,
Even without using a zirconia mandrel, scratches or cracks on the soot inner wall when the mandrel is pulled out can be reduced, but it becomes difficult to perform sufficient dehydration in the subsequent sintering process. Note that the bulk density herein refers to an average value in a layer having a thickness of about 11 mm in the vicinity of the mandrel.

本発明方法ではスートのカサ密度がαyy/at”以下
という比較的カサ密度を小さくした状態でスート体を形
成させることができるため、上記の脱水を十分に行える
ので、高品質のガラスを得ることができる。
In the method of the present invention, a soot body can be formed with a relatively small soot bulk density of αyy/at" or less, so the above-mentioned dehydration can be carried out sufficiently, so that high quality glass can be obtained. Can be done.

一方、スートのカサ密度がCL 2 f / am ”
にみたない状態でスートを堆積させると、スート体の堆
積過程でのひび割れが発生し易くなるため好1しくない
。なお、スートのカサ密度は、火炎加水分解時の火炎の
温度、あるいは火炎とス−ト体との相対位置の調節によ
シ調整することができる。
On the other hand, the bulk density of soot is CL 2 f / am ”
It is not preferable to deposit soot in an improper manner because cracks are likely to occur in the soot body during the deposition process. The bulk density of the soot can be adjusted by adjusting the temperature of the flame during flame hydrolysis or the relative position between the flame and the soot body.

(実施例) 実施例1 第1図の構成に従い、外径20■φ、肉厚2m!11、
長す500 msのジルコニア製マンドレルをチャック
に把持し、10 rpmにて回転させながら、仁の側方
的5amの位置に酸水素炎バーナの先端がくるように設
定した。酸水素炎バーナには、下記の表1に示す原料を
投入した。
(Example) Example 1 According to the configuration shown in Figure 1, the outer diameter is 20 mm and the wall thickness is 2 m! 11,
A zirconia mandrel with a length of 500 ms was held in a chuck, and while rotating at 10 rpm, the tip of the oxyhydrogen flame burner was set at a position 5 am lateral to the core. The raw materials shown in Table 1 below were charged into the oxyhydrogen flame burner.

表1 火炎内で生成する810.スートを上記iンドレル上に
堆積させながら、55I/時間の一定速度でマンドレル
を引き上げた。スート体の長さが401となったところ
で、原料供給を停止させ、室゛ 温にて1時間以上放置
した後に、マンドレルと石英ガラス製スリーブの間に力
を加えることにより、マンドレルを引き抜いた。このス
ート体のカサ密度を測定したところ、CL5f/ax”
であった。
Table 1 810 generated in the flame. While soot was being deposited onto the indrel, the mandrel was pulled up at a constant rate of 55 I/hr. When the length of the soot body reached 401 mm, the supply of raw materials was stopped, and after being left at room temperature for more than 1 hour, the mandrel was pulled out by applying force between the mandrel and the quartz glass sleeve. When the bulk density of this soot body was measured, it was found that CL5f/ax"
Met.

得られた管状スート体を電気炉中にて、下記の表2に示
す条件にて、弗素の添加、脱水および焼結することで、
弗素添加した透明ガラス管を得た。
By adding fluorine, dehydrating and sintering the obtained tubular soot body in an electric furnace under the conditions shown in Table 2 below,
A fluoridated transparent glass tube was obtained.

表5 以上によシ得られたガラス管について、赤外分光光度計
を用い、波長2.7 pm における吸光度を測定する
ことにより、残留OH基量測定を行ったところ、11 
ppm以下と、装置の検出感度以下のOH基量であるこ
とがわかった。
Table 5 Regarding the glass tube obtained above, the amount of residual OH groups was measured by measuring the absorbance at a wavelength of 2.7 pm using an infrared spectrophotometer.
It was found that the amount of OH groups was less than ppm, which was less than the detection sensitivity of the device.

さらに1得られたガラス管の内壁はキズが少なく、別途
準備した光フアイバ用コア材(高純度石英ガラス)を管
内に挿入して、この組合せ体を加熱溶融して合体させた
ところ、界面でアワの発生がみられず、光ファイバ用ガ
ラ゛ス母材が作成できた。この母材よりシングルモード
ファイバを作成したところ、波長1.38μmにおける
残留水分による光の吸収損失は、10(iB/ kmと
比較的低いものが得られた。
Furthermore, the inner wall of the obtained glass tube had few scratches, and when a separately prepared optical fiber core material (high-purity quartz glass) was inserted into the tube and the combined body was heated and melted to join, the interface A glass base material for optical fiber could be produced without any formation of bubbles. When a single mode fiber was made from this base material, the light absorption loss due to residual moisture at a wavelength of 1.38 μm was relatively low at 10 (iB/km).

実施例2 スート体の堆積時のカサ密度を[L5f/ex”の条件
とした以外は、すべて実施例1と同様に行って、シング
ルモードファイバを作成したところ、得られたファイバ
の波長1.38μmにおける吸収損失ば15 dE/k
mであった。
Example 2 A single mode fiber was produced in the same manner as in Example 1, except that the bulk density during deposition of the soot body was set to [L5f/ex''. The wavelength of the obtained fiber was 1. Absorption loss at 38 μm: 15 dE/k
It was m.

比較例1〜6 マンドレル材質及びスート体の堆積時カサ密度条件を表
3に示すようにした以外は、実施例1と同様に行って、
クラッド用ガラスを合成し、さらに同様にファイバを作
成した。この結果および実施例1.2の結果を表3にま
とめて示す。
Comparative Examples 1 to 6 The same procedure as in Example 1 was carried out, except that the mandrel material and the bulk density conditions during deposition of the soot body were as shown in Table 3.
A glass for cladding was synthesized, and a fiber was also created in the same manner. These results and the results of Example 1.2 are summarized in Table 3.

なお表中−は、ファイバ作成できず、を意味する。Note that - in the table means that the fiber could not be created.

表3 なお上記実施例、比較例では、純石英ガラスをコア材と
する場合について挙げたが、これに限定されるものでは
なく、コアがGo01等添加剤を含有する石英ガラスで
クラッドが石英ガラス或は添加剤含有石英ガラスの場合
にも、本発明方法を用いることができるのは、言うまで
もない。
Table 3 In the above examples and comparative examples, pure silica glass is used as the core material, but the core material is quartz glass containing additives such as Go01 and the cladding is silica glass. It goes without saying that the method of the present invention can also be used in the case of silica glass containing additives.

(発明の効果) 以上の説明および実施例、比較例の結果から明らかなよ
うに、本発明の方法は、マンドレル引き抜きが容′易で
キズ発生が少なく、管内面が平滑であシ、水分含有量も
少ない高品質な石英系ガラス管を得ることができる。さ
らに本発明の方法により得られたガラス管を光ファイバ
・クラツド材として用いて、OH基による吸収損失の低
い光ファイバを得ることができる。
(Effects of the Invention) As is clear from the above explanation and the results of Examples and Comparative Examples, the method of the present invention allows for easy pulling out of the mandrel, less occurrence of scratches, smooth tube inner surface, and water-containing tubes. It is possible to obtain high-quality quartz-based glass tubes in small quantities. Furthermore, by using the glass tube obtained by the method of the present invention as an optical fiber cladding material, an optical fiber with low absorption loss due to OH groups can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のガラス管の製造方法の1実施態様を説
明する図である。
FIG. 1 is a diagram illustrating one embodiment of the method for manufacturing a glass tube of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 気相ガラス形成原料の火炎加水分解反応により生成させ
た微粒子状ガラスを出発材料上に堆積させて堆積体を得
、次いで該堆積体より上記出発材料を引き抜いた後に、
該堆積体を脱水・焼結する方法において、上記出発材料
としてジルコニアを用い、かつ堆積体のカサ密度が0.
2g/cm^3以上0.7g/cm^3以下にて堆積す
ることを特徴とするガラス管の製造方法。
After depositing particulate glass produced by flame hydrolysis reaction of a vapor-phase glass-forming raw material on a starting material to obtain a deposit, and then extracting the starting material from the deposit,
In the method of dehydrating and sintering the deposit, zirconia is used as the starting material, and the bulk density of the deposit is 0.
A method for manufacturing a glass tube, characterized by depositing at 2 g/cm^3 or more and 0.7 g/cm^3 or less.
JP22059984A 1984-10-22 1984-10-22 Production of glass tube Pending JPS61101429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22059984A JPS61101429A (en) 1984-10-22 1984-10-22 Production of glass tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22059984A JPS61101429A (en) 1984-10-22 1984-10-22 Production of glass tube

Publications (1)

Publication Number Publication Date
JPS61101429A true JPS61101429A (en) 1986-05-20

Family

ID=16753503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22059984A Pending JPS61101429A (en) 1984-10-22 1984-10-22 Production of glass tube

Country Status (1)

Country Link
JP (1) JPS61101429A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337119A (en) * 1989-07-03 1991-02-18 Shinetsu Sekiei Kk Production of heat-resistant synthetic quartz glass
JP2013010659A (en) * 2011-06-29 2013-01-17 Sumitomo Electric Ind Ltd Method for producing glass preform
WO2018131499A1 (en) * 2017-01-11 2018-07-19 信越石英株式会社 Method for producing hollow porous quartz glass base material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337119A (en) * 1989-07-03 1991-02-18 Shinetsu Sekiei Kk Production of heat-resistant synthetic quartz glass
JP2013010659A (en) * 2011-06-29 2013-01-17 Sumitomo Electric Ind Ltd Method for producing glass preform
WO2018131499A1 (en) * 2017-01-11 2018-07-19 信越石英株式会社 Method for producing hollow porous quartz glass base material
JPWO2018131499A1 (en) * 2017-01-11 2019-07-11 信越石英株式会社 Method for producing hollow porous quartz glass base material
US11401192B2 (en) 2017-01-11 2022-08-02 Heraeus Deutschland GmbH & Co. KG Method for producing hollow porous quartz glass base material

Similar Documents

Publication Publication Date Title
GB1430682A (en) Method for producing high quality fused silica
JP2007503028A (en) Optical fiber with reduced viscosity mismatch
NO153050B (en) PROCEDURES FOR ESSENTIAL CONTINUOUS AA TO PROVIDE AN OPTICAL EXAMINATION SUBJECT AND AN OPTICAL EXAMINER
US3933453A (en) Flame hydrolysis mandrel and method of using
JPS61227938A (en) Preparation of parent material for optical fiber
RU2236386C2 (en) Method of manufacturing optic fiber intermediate product
WO2010026769A1 (en) Method for manufacturing optical fiber preform
JPH0137338B2 (en)
US4191545A (en) Optical fiber fabrication process
JPS61101429A (en) Production of glass tube
JPH051221B2 (en)
JP2004175663A (en) Optical fiber and its fabrication method
JP4565221B2 (en) Optical fiber preform
JPH0316930A (en) Production of optical fiber having complicate refractive index distribution
JPH0742131B2 (en) Method for manufacturing glass base material for optical fiber
JPH0583500B2 (en)
JPH0324415B2 (en)
JPS6356178B2 (en)
JPS61168544A (en) Production of glass tube mainly composed of quartz
JP2624985B2 (en) Manufacturing method of high refractive index difference micro core base material
JPS58135147A (en) Preparation of base material for optical fiber
JPH0583499B2 (en)
JP2000128558A (en) Production of quartz glass preform for optical fiber
JPH051226B2 (en)
JPS6138137B2 (en)