JP2011230986A - Manufacturing method for glass preform - Google Patents

Manufacturing method for glass preform Download PDF

Info

Publication number
JP2011230986A
JP2011230986A JP2010105542A JP2010105542A JP2011230986A JP 2011230986 A JP2011230986 A JP 2011230986A JP 2010105542 A JP2010105542 A JP 2010105542A JP 2010105542 A JP2010105542 A JP 2010105542A JP 2011230986 A JP2011230986 A JP 2011230986A
Authority
JP
Japan
Prior art keywords
carbon film
glass
rod
starting rod
starting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010105542A
Other languages
Japanese (ja)
Other versions
JP5678467B2 (en
Inventor
Tomohiro Ishihara
朋浩 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010105542A priority Critical patent/JP5678467B2/en
Publication of JP2011230986A publication Critical patent/JP2011230986A/en
Application granted granted Critical
Publication of JP5678467B2 publication Critical patent/JP5678467B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • C03B37/01493Deposition substrates, e.g. targets, mandrels, start rods or tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which can manufacture a glass preform at high yield and high productivity.SOLUTION: In the manufacturing method for glass preform, glass preform is produced through a fixation step, a carbon film formation step, a deposition step, a drawing step, a clarification step, and a solidification step, in that order. In the carbon film formation step, a starter rod and a burner for carbon film formation are relatively reciprocated along the axial direction of a starting rod to form a carbon film at the outer circumference of the starting rod. At this time, the flow rate of a gas around the starter rod is controlled to ≤0.5 m/s.

Description

本発明は、光ファイバ用のガラス母材を製造する方法に関するものである。   The present invention relates to a method for producing a glass preform for an optical fiber.

光ファイバは、略円柱形状であるガラス母材の一端を加熱し軟化させて線引することで製造される。また、光ファイバ用のガラス母材は、OVD法やMCVD法等の製造方法により製造される。特許文献1には、OVD法によるガラス母材製造方法が開示されている。   An optical fiber is manufactured by heating and softening one end of a glass base material having a substantially cylindrical shape and drawing. Moreover, the glass base material for optical fibers is manufactured by manufacturing methods, such as OVD method and MCVD method. Patent Document 1 discloses a glass base material manufacturing method by the OVD method.

特許文献1に開示されたガラス母材製造方法は、水分含有量が低い光ファイバ用のガラス母材を製造することを意図するものであって、出発棒が種棒パイプに挿入されてなる出発ロッドの外周にガラス微粒子を堆積させてガラス微粒子堆積体を作製し、このガラス微粒子堆積体から出発棒を引き抜いて、軸方向に延在し貫通する中心孔を有するガラス微粒子堆積体とする。そして、このガラス微粒子堆積体を加熱して乾燥・固結させ、中心孔を閉塞して透明なガラス母材を製造する。   The glass base material manufacturing method disclosed in Patent Document 1 is intended to manufacture a glass base material for an optical fiber having a low moisture content, and the starting bar is inserted into a seed bar pipe. A glass fine particle deposit is produced by depositing glass fine particles on the outer periphery of the rod, and a starting rod is pulled out from the glass fine particle deposit to obtain a glass fine particle deposit having a central hole extending in the axial direction. Then, the glass fine particle deposit is heated to dry and solidify, and the central hole is closed to produce a transparent glass base material.

特表2002−543026号公報Japanese translation of PCT publication No. 2002-543026

特許文献1に開示されたようなガラス母材製造方法では、出発ロッドの外周にガラス微粒子を堆積させてガラス微粒子堆積体を作製する堆積工程に先立って、出発棒の外周にカーボン皮膜を形成する場合がある。このようにすることにより、堆積工程の後にガラス微粒子堆積体から出発棒を引き抜く際にガラス微粒子堆積体の中心孔の内壁面にキズが付くことが防止されて、高い歩留りでガラス母材が製造され得る。しかし、このカーボン皮膜の形成に必要以上に時間を要すると、ガラス母材の製造時間も長くなることになり、生産性が悪化する。   In the glass base material manufacturing method as disclosed in Patent Document 1, a carbon film is formed on the outer periphery of the starting rod prior to the deposition step in which the glass fine particles are deposited on the outer periphery of the starting rod. There is a case. This prevents the inner wall surface of the central hole of the glass particulate deposit from being scratched when the starting rod is pulled out of the glass particulate deposit after the deposition step, thereby producing a glass base material with a high yield. Can be done. However, if it takes more time than necessary to form this carbon film, the glass base material manufacturing time also becomes longer, and the productivity deteriorates.

本発明は、上記問題点を解消する為になされたものであり、高い歩留り及び高い生産性でガラス母材を製造することができる方法を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a method capable of producing a glass base material with high yield and high productivity.

本発明に係るガラス母材製造方法は、(1) 出発棒の先端部が種棒パイプの一端から突出するように出発棒を種棒パイプに挿入し固定して出発ロッドを作製する固定工程と、(2)固定工程の後に、出発棒の軸方向に沿って出発ロッドとカーボン皮膜形成用バーナとを相対的に往復運動させ、出発棒の外周にカーボン皮膜を形成するカーボン皮膜形成工程と、(3)カーボン皮膜形成工程の後に、出発棒の軸方向に沿って出発ロッドとガラス微粒子合成用バーナとを相対的に往復運動させ、出発棒の先端部から種棒パイプの一部に亘って出発ロッドの外周にガラス微粒子を堆積させてガラス微粒子堆積体を作製する堆積工程と、(4) 堆積工程の後に出発棒を種棒パイプおよびガラス微粒子堆積体から引き抜く引抜工程と、(5)引抜工程の後にガラス微粒子堆積体を加熱して透明ガラス管材を作製する透明化工程と、(6) 透明化工程の後に透明ガラス管材の内部を減圧するとともに透明ガラス管材を加熱して中実のガラス母材を作製する中実化工程と、を備える。そして、本発明に係るガラス母材製造方法は、カーボン皮膜形成工程において、出発ロッドの周辺のガス流速を0.5m/s以下に管理することを特徴とする。   The glass base material manufacturing method according to the present invention includes: (1) a fixing step of making a starting rod by inserting and fixing the starting rod into the seed rod pipe such that the tip of the starting rod protrudes from one end of the seed rod pipe; (2) after the fixing step, the carbon film forming step of relatively reciprocating the starting rod and the carbon film forming burner along the axial direction of the starting bar to form a carbon film on the outer periphery of the starting bar; (3) After the carbon film forming step, the starting rod and the glass particle synthesizing burner are reciprocated relatively along the axial direction of the starting rod, and from the tip of the starting rod to a part of the seed rod pipe. A deposition step of depositing glass particles on the outer periphery of the starting rod to produce a glass particle deposit; (4) a drawing step of drawing the starting rod from the seed rod pipe and the glass particle deposit after the deposition step; and (5) drawing. After the process A transparentization step of heating the body to produce a transparent glass tube, and (6) depressurizing the inside of the transparent glass tube after the transparentization step and heating the transparent glass tube to produce a solid glass base material And a realization step. The glass base material manufacturing method according to the present invention is characterized in that the gas flow velocity around the starting rod is controlled to 0.5 m / s or less in the carbon film forming step.

本発明に係るガラス母材製造方法は、高い歩留りでガラス母材を製造することができる。   The glass base material manufacturing method according to the present invention can manufacture a glass base material with a high yield.

本実施形態に係るガラス母材製造方法のフローチャートである。It is a flowchart of the glass base material manufacturing method which concerns on this embodiment. 本実施形態に係るガラス母材製造方法の固定工程S1およびカーボン皮膜形成工程S2を説明する図である。It is a figure explaining fixing process S1 and carbon membrane formation process S2 of the glass base material manufacturing method concerning this embodiment. 本実施形態に係るガラス母材製造方法の堆積工程S3を説明する図である。It is a figure explaining deposition process S3 of the glass base material manufacturing method concerning this embodiment. 本実施形態に係るガラス母材製造方法の引抜工程S4を説明する図である。It is a figure explaining drawing-out process S4 of the glass base material manufacturing method which concerns on this embodiment. 本実施形態に係るガラス母材製造方法の透明化工程S5を説明する図である。It is a figure explaining transparentization process S5 of the glass base material manufacturing method concerning this embodiment. 本実施形態に係るガラス母材製造方法の中実化工程S6を説明する図である。It is a figure explaining solidification process S6 of the glass base material manufacturing method concerning this embodiment. 実施例および比較例それぞれでのカーボン皮膜形成工程における出発ロッド周辺のガス流速およびカーボン皮膜形成時間を纏めた図表である。It is the table | surface which put together the gas flow rate and carbon film formation time around the starting rod in the carbon film formation process in an Example and each comparative example.

以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態に係るガラス母材製造方法のフローチャートである。この図に示されるように、本実施形態に係るガラス母材製造方法は、固定工程S1,カーボン皮膜形成工程S2,堆積工程S3,引抜工程S4,透明化工程S5および中実化工程S6を順に経て、ガラス母材を製造する。なお、このガラス母材製造方法により製造されるガラス母材は、例えば、線引により光ファイバを製造するための光ファイバ母材であり、或いは、その光ファイバ母材のうちでもコア部となるべきコア母材である。   FIG. 1 is a flowchart of the glass base material manufacturing method according to the present embodiment. As shown in this figure, the glass base material manufacturing method according to this embodiment includes a fixing step S1, a carbon film forming step S2, a deposition step S3, a drawing step S4, a transparentizing step S5, and a solidifying step S6 in order. After that, a glass base material is manufactured. In addition, the glass base material manufactured by this glass base material manufacturing method is an optical fiber base material for manufacturing an optical fiber by drawing, for example, or becomes a core part among the optical fiber base materials. It should be a core base material.

図2は、本実施形態に係るガラス母材製造方法の固定工程S1およびカーボン皮膜形成工程S2を説明する図である。図3は、本実施形態に係るガラス母材製造方法の堆積工程S3を説明する図である。図4は、本実施形態に係るガラス母材製造方法の引抜工程S4を説明する図である。図5は、本実施形態に係るガラス母材製造方法の透明化工程S5を説明する図である。また、図6は、本実施形態に係るガラス母材製造方法の中実化工程S6を説明する図である。   FIG. 2 is a view for explaining a fixing step S1 and a carbon film forming step S2 of the glass base material manufacturing method according to the present embodiment. FIG. 3 is a view for explaining the deposition step S3 of the glass base material manufacturing method according to the present embodiment. FIG. 4 is a view for explaining a drawing step S4 of the glass base material manufacturing method according to the present embodiment. FIG. 5 is a view for explaining the transparency step S5 of the glass base material manufacturing method according to the present embodiment. Moreover, FIG. 6 is a figure explaining solidification process S6 of the glass base material manufacturing method which concerns on this embodiment.

固定工程S1(図2(a),(b))では、出発棒11の先端部11aが種棒パイプ12の一端12aから突出するように、出発棒11が種棒パイプ12に挿入され固定されて、これにより出発ロッド10が作製される。出発棒11は、例えば、アルミナ、ガラス、耐火性セラミクス、カーボンなどの材料からなる。種棒パイプ12は石英ガラスからなる。   In the fixing step S1 (FIGS. 2A and 2B), the starting rod 11 is inserted into the seed rod pipe 12 and fixed so that the tip 11a of the starting rod 11 protrudes from one end 12a of the seed rod pipe 12. Thus, the starting rod 10 is produced. The starting rod 11 is made of a material such as alumina, glass, refractory ceramics, or carbon. The seed rod pipe 12 is made of quartz glass.

固定工程S1の後のカーボン皮膜形成工程S2(図2(c))では、この出発ロッド10において種棒パイプ12の一端12aから突出している出発棒11の部分の外周は、都市ガスバーナやアセチレンバーナなどを用いたカーボン皮膜形成用バーナ20からの火炎によりカーボン皮膜11bが形成される。カーボン皮膜形成中も、出発ロッド10は出発棒11の中心軸を中心として回転し、カーボン皮膜形成用バーナ20は、出発棒11の軸方向に沿って出発ロッド10に対して相対的に往復運動を繰り返す。また、出発ロッド10の周辺のガス流速は0.5m/s以下に管理される。   In the carbon film forming step S2 (FIG. 2C) after the fixing step S1, the outer periphery of the portion of the starting rod 11 protruding from the one end 12a of the seed rod pipe 12 in the starting rod 10 is a city gas burner or an acetylene burner. The carbon film 11b is formed by the flame from the carbon film forming burner 20 using the above. Even during the formation of the carbon film, the starting rod 10 rotates about the central axis of the starting bar 11, and the carbon film forming burner 20 reciprocates relative to the starting rod 10 along the axial direction of the starting bar 11. repeat. Further, the gas flow velocity around the starting rod 10 is controlled to 0.5 m / s or less.

カーボン皮膜形成工程S2の後の堆積工程S3(図3)では、出発棒11が種棒パイプ12に挿入され固定されてなる出発ロッド10は、出発棒11の中心軸を中心として回転される。また、出発ロッド10の側方に配置されて酸水素火炎を形成するガラス微粒子合成用バーナ21は、出発棒11の軸方向に沿って出発ロッド10に対して相対的に往復運動を繰り返す。そして、OVD法により、出発棒11の先端部11aから種棒パイプ12の一部に亘って出発ロッド10の外周にガラス微粒子が堆積されて、これによりガラス微粒子堆積体13が作製される。   In the deposition step S3 (FIG. 3) after the carbon film forming step S2, the starting rod 10 in which the starting rod 11 is inserted and fixed in the seed rod pipe 12 is rotated about the central axis of the starting rod 11. Further, the glass fine particle synthesis burner 21 that is arranged on the side of the starting rod 10 and forms an oxyhydrogen flame repeats reciprocating movement relative to the starting rod 10 along the axial direction of the starting rod 11. Then, by the OVD method, glass fine particles are deposited on the outer periphery of the starting rod 10 from the tip portion 11a of the starting rod 11 to a part of the seed rod pipe 12, whereby the glass fine particle deposit 13 is produced.

堆積工程S3では、ガラス微粒子合成用バーナ21における供給原料流量をトラバース毎に調整する。これにより、出発棒11の外周に堆積されるガラス微粒子は、径方向に所定の組成分布(すなわち、後のガラス母材または光ファイバにおける径方向の屈折率分布)を有することになる。   In the deposition step S3, the feed material flow rate in the glass fine particle synthesis burner 21 is adjusted for each traverse. Thereby, the glass fine particles deposited on the outer periphery of the starting rod 11 have a predetermined composition distribution in the radial direction (that is, a refractive index distribution in the radial direction in the subsequent glass preform or optical fiber).

堆積工程S3の後の引抜工程S4(図4)では、種棒パイプ12およびガラス微粒子堆積体13から出発棒11が引き抜かれる。このとき、種棒パイプ12とガラス微粒子堆積体13とは互いに固定されたままである。なお、カーボン皮膜形成工程S2において種棒パイプ12の一端12aから突出している出発棒11の部分の外周にカーボン皮膜を形成するため、この引抜工程S4で出発棒11が引き抜かれる際にガラス微粒子堆積体13の中心孔の内壁面にキズが付くことが防止される。   In the drawing step S4 (FIG. 4) after the deposition step S3, the starting rod 11 is drawn from the seed rod pipe 12 and the glass particulate deposit 13. At this time, the seed rod pipe 12 and the glass fine particle deposit 13 remain fixed to each other. In addition, in order to form a carbon film on the outer periphery of the portion of the starting rod 11 protruding from the one end 12a of the seed rod pipe 12 in the carbon coating forming step S2, glass particulates are deposited when the starting rod 11 is pulled out in the drawing step S4. The inner wall surface of the center hole of the body 13 is prevented from being scratched.

引抜工程S4の後の透明化工程S5(図5)では、ガラス微粒子堆積体13は、一体となっている種棒パイプ12とともに、HeガスやClガスが導入された加熱炉22の内部に入れられ、ヒータ23により加熱される。これにより、透明ガラス管材14が作製される。 In the clearing step S5 (FIG. 5) after the drawing step S4, the glass fine particle deposit 13 is placed inside the heating furnace 22 into which He gas and Cl 2 gas are introduced, together with the integrated seed rod pipe 12. It is put in and heated by the heater 23. Thereby, the transparent glass tube material 14 is produced.

透明化工程S5の後の中実化工程S6(図6)では、透明ガラス管材14は、加熱炉に設置されて回転され、中心孔にSFが導入されるとともにヒータ24により加熱されて、中心孔の内壁面が気相エッチングされる(同図(a))。次いで、透明ガラス管材14は、内部が減圧されるとともにヒータ24により加熱されて中実化され(同図(b))、これにより中実のガラス母材が作製される。 In the solidification step S6 (FIG. 6) after the transparentization step S5, the transparent glass tube 14 is placed in a heating furnace and rotated, and SF 6 is introduced into the center hole and heated by the heater 24. The inner wall surface of the center hole is vapor-phase etched (FIG. 1A). Next, the transparent glass tube material 14 is decompressed and heated by the heater 24 to be solidified (FIG. 5B), whereby a solid glass base material is produced.

このようにして製造された透明なガラス母材は、さらにその外側にクラッド層形成・透明化処理などされてプリフォーム化された後、先端を加熱・軟化されて線引きされることで、光ファイバが製造される。   The transparent glass preform manufactured in this way is further formed into a clad layer on the outside and subjected to a transparent treatment, and then preformed, and then the tip is heated and softened to draw an optical fiber. Is manufactured.

本実施形態では、カーボン皮膜形成工程S2において出発ロッド10の周辺のガス流速は0.5m/s以下に管理される。これにより、カーボン皮膜の形成が速くなり、カーボン皮膜の形成に要する時間が短くなって、ガラス母材の生産性が向上する。一方、カーボン皮膜形成工程S2において出発ロッド10の周辺のガス流速が0.5m/sを超えると、カーボン皮膜形成用バーナ20から出る火炎が乱れて、カーボン皮膜の形成速度が下がる。   In the present embodiment, the gas flow velocity around the starting rod 10 is controlled to 0.5 m / s or less in the carbon film forming step S2. Thereby, the formation of the carbon film is accelerated, the time required for forming the carbon film is shortened, and the productivity of the glass base material is improved. On the other hand, when the gas flow rate around the starting rod 10 exceeds 0.5 m / s in the carbon film forming step S2, the flame coming out from the carbon film forming burner 20 is disturbed, and the carbon film forming speed is reduced.

なお、カーボン皮膜形成の際の化学反応は、都市ガスの主成分であるメタンガスの燃焼反応であるが、この反応で酸素が不足すると、不完全燃焼となってCHから炭素が遊離し、遊離炭素が生成される。この遊離炭素が出発棒11の周囲に付着することでカーボン皮膜が形成される。 The chemical reaction during the formation of the carbon film is a combustion reaction of methane gas, which is the main component of city gas. If oxygen is insufficient in this reaction, incomplete combustion occurs and carbon is released from CH 4 and released. Carbon is produced. A carbon film is formed by the free carbon adhering around the starting rod 11.

次に、本実施形態に係るガラス母材製造方法の実施例について説明する。本実施例では、グレーデッドインデックス型の光ファイバを線引により製造するためのガラス母材が製造される。   Next, examples of the glass base material manufacturing method according to the present embodiment will be described. In the present embodiment, a glass base material for manufacturing a graded index optical fiber by drawing is manufactured.

堆積工程S3においてOVD装置が用いられてガラス微粒子の堆積が行われる。出発棒11として、外径9〜10mmで長さ1200mmのアルミナ製のものが使用される。種棒パイプ12として、長さ600mm、外径20〜40mm、内径9.8〜21mmの石英ガラス製のものが使用される。   In the deposition step S3, glass particles are deposited using an OVD apparatus. The starting rod 11 is made of alumina having an outer diameter of 9 to 10 mm and a length of 1200 mm. The seed rod pipe 12 is made of quartz glass having a length of 600 mm, an outer diameter of 20 to 40 mm, and an inner diameter of 9.8 to 21 mm.

カーボン皮膜形成工程S2において、出発ロッド10が軸周りに回転速度15rpmで回転され、都市ガス(流量1.5L/分)が供給されたカーボン皮膜形成用バーナ20により火炎が形成され、カーボン皮膜形成用バーナ20に対して出発ロッド10が速度1000mm/分で往復運動されて、種棒パイプ12から突出している出発棒11の外周にカーボン皮膜が形成される。   In the carbon film forming step S2, the starting rod 10 is rotated around the axis at a rotation speed of 15 rpm, and a flame is formed by the carbon film forming burner 20 supplied with city gas (flow rate of 1.5 L / min). The starting rod 10 is reciprocated with respect to the burner 20 at a speed of 1000 mm / min, and a carbon film is formed on the outer periphery of the starting rod 11 protruding from the seed rod pipe 12.

堆積工程S3において酸水素火炎を形成するガラス微粒子合成用バーナ21に投入されるガラス原料ガスは、SiCl(投入量1〜3SLM/本)およびGeCl(投入量0.0〜0.3SLM)である。ガラス微粒子合成用バーナ21に対する出発ロッド10の相対移動速度は3〜1500mm/分とされ、出発ロッド10の回転速度は60rpmとされる。 The glass raw material gases introduced into the glass fine particle synthesis burner 21 that forms an oxyhydrogen flame in the deposition step S3 are SiCl 4 (input amount 1 to 3 SLM / piece) and GeCl 4 (input amount 0.0 to 0.3 SLM). It is. The relative moving speed of the starting rod 10 with respect to the glass fine particle synthesizing burner 21 is 3 to 1500 mm / min, and the rotating speed of the starting rod 10 is 60 rpm.

このような堆積工程S3の後、引抜工程S4および透明化工程S5を経て中実化工程S6が行われる。中実化工程S6では、透明ガラス管材14は、加熱炉に設置されて30rpmで回転され、速度5〜20mm/分で透明ガラス管材14の長手方向に移動する加熱炉により温度1900〜2200℃に加熱される。なお、中実化工程S5における加熱手段は、カーボンヒータや電磁誘導コイル式発熱体などを熱源とする加熱炉の替わりに、酸水素バーナ旋盤を用いても良い。このとき、透明ガラス管材14の中心孔の内部に50〜100sccmのSFガスが流されて、透明ガラス管材14の中心孔の内壁面が気相エッチングされる。 After such a deposition step S3, a solidification step S6 is performed through a drawing step S4 and a transparency step S5. In the solidification step S6, the transparent glass tube 14 is set in a heating furnace, rotated at 30 rpm, and moved to the longitudinal direction of the transparent glass tube 14 at a speed of 5 to 20 mm / min. Heated. The heating means in the solidification step S5 may use an oxyhydrogen burner lathe instead of a heating furnace that uses a carbon heater, an electromagnetic induction coil heating element, or the like as a heat source. At this time, 50 to 100 sccm of SF 6 gas is flowed into the center hole of the transparent glass tube material 14, and the inner wall surface of the center hole of the transparent glass tube material 14 is vapor-phase etched.

次いで、透明ガラス管材14は、中心孔の内部が0.1〜10kPaに減圧され、エッチング時と同じ温度にて中実化されて、ガラス母材が製造される。   Next, the transparent glass tube material 14 is decompressed to 0.1 to 10 kPa in the center hole, and is solidified at the same temperature as during the etching to produce a glass base material.

このようにして製造されるガラス母材は、所望の径に延伸されて、その外周にOVD法でジャケットガラスが合成されて、光ファイバ用ガラス母材が製造される。この光ファイバ用ガラス母材が線引きされて、グレーデッドインデックス型のマルチモードファイバが製造される。   The glass base material manufactured in this way is stretched to a desired diameter, and jacket glass is synthesized on the outer periphery thereof by the OVD method to manufacture a glass base material for an optical fiber. This glass preform for optical fiber is drawn to produce a graded index type multimode fiber.

図7は、実施例および比較例それぞれでのカーボン皮膜形成工程における出発ロッド周辺のガス流速およびカーボン皮膜形成時間を纏めた図表である。ここでは、カーボン皮膜形成工程における出発ロッド周辺のガス流速X(mm/s)が各値とされて、種棒パイプ12から突出している出発棒11へのカーボン皮膜形成時間A(H)が比較評価される。カーボン皮膜形成時間Aは、カーボン堆積重量が所定重量に達するまでの時間とする。この図表に示されるとおり、出発ロッド周辺のガス流速Xが0.5m/s以下であれば、カーボン皮膜形成時間Aは1時間以下となってガラス母材の生産性が向上し、逆に0.5m/sを超えると、カーボン皮膜形成時間Aは急激に長くなり、ガラス母材の生産性は極端に悪化する。なお、図表中の比較例3では、都市ガス火炎が失火したため、カーボン皮膜が形成されなかった。   FIG. 7 is a table summarizing the gas flow rate around the starting rod and the carbon film forming time in the carbon film forming step in each of the example and the comparative example. Here, the gas flow velocity X (mm / s) around the starting rod in the carbon film forming step is set to each value, and the carbon film forming time A (H) on the starting rod 11 protruding from the seed rod pipe 12 is compared. Be evaluated. The carbon film formation time A is a time until the carbon deposition weight reaches a predetermined weight. As shown in this chart, when the gas flow velocity X around the starting rod is 0.5 m / s or less, the carbon film formation time A is 1 hour or less, and the productivity of the glass base material is improved. If it exceeds .5 m / s, the carbon film formation time A increases rapidly, and the productivity of the glass base material is extremely deteriorated. In addition, in the comparative example 3 in a figure, since the city gas flame misfired, the carbon film was not formed.

10…出発ロッド、11…出発棒、12…種棒パイプ、13…ガラス微粒子堆積体、14…透明ガラス管材、20…カーボン皮膜形成用バーナ、21…ガラス微粒子合成用バーナ、22…加熱炉、23,24…ヒータ。   DESCRIPTION OF SYMBOLS 10 ... Departure rod, 11 ... Departure rod, 12 ... Seed rod pipe, 13 ... Glass particulate deposit, 14 ... Transparent glass tube, 20 ... Carbon film formation burner, 21 ... Glass particulate synthesis burner, 22 ... Heating furnace, 23, 24 ... heaters.

Claims (1)

出発棒の先端部が種棒パイプの一端から突出するように前記出発棒を前記種棒パイプに挿入し固定して出発ロッドを作製する固定工程と、
前記固定工程の後に、前記出発棒の軸方向に沿って前記出発ロッドとカーボン皮膜形成用バーナとを相対的に往復運動させ、前記出発棒の外周にカーボン皮膜を形成するカーボン皮膜形成工程と、
前記カーボン皮膜形成工程の後に、前記出発棒の軸方向に沿って前記出発ロッドとガラス微粒子合成用バーナとを相対的に往復運動させ、前記出発棒の先端部から前記種棒パイプの一部に亘って前記出発ロッドの外周にガラス微粒子を堆積させてガラス微粒子堆積体を作製する堆積工程と、
前記堆積工程の後に前記出発棒を前記種棒パイプおよび前記ガラス微粒子堆積体から引き抜く引抜工程と、
前記引抜工程の後に前記ガラス微粒子堆積体を加熱して透明ガラス管材を作製する透明化工程と、
前記透明化工程の後に前記透明ガラス管材の内部を減圧するとともに前記透明ガラス管材を加熱して中実のガラス母材を作製する中実化工程と、
を備え、
前記カーボン皮膜形成工程において、前記出発ロッドの周辺のガス流速を0.5m/s以下に管理する、
ことを特徴とするガラス母材製造方法。
A fixing step of making the starting rod by inserting and fixing the starting rod into the seed rod pipe such that the tip of the starting rod protrudes from one end of the seed rod pipe;
After the fixing step, the starting rod and the carbon film forming burner are relatively reciprocated along the axial direction of the starting bar, and a carbon film forming step of forming a carbon film on the outer periphery of the starting bar;
After the carbon film forming step, the starting rod and the glass fine particle synthesizing burner are relatively reciprocated along the axial direction of the starting rod, and from the tip of the starting rod to a part of the seed rod pipe A deposition step of depositing glass particles on the outer periphery of the starting rod to produce a glass particle deposit;
A drawing step of drawing the starting rod from the seed rod pipe and the glass particulate deposit after the deposition step;
A transparentization step of heating the glass particulate deposit after the drawing step to produce a transparent glass tube,
A solidification step of reducing the inside of the transparent glass tube material after the transparentizing step and heating the transparent glass tube material to produce a solid glass base material,
With
In the carbon film forming step, the gas flow velocity around the starting rod is controlled to 0.5 m / s or less.
The glass base material manufacturing method characterized by the above-mentioned.
JP2010105542A 2010-04-30 2010-04-30 Glass base material manufacturing method Expired - Fee Related JP5678467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010105542A JP5678467B2 (en) 2010-04-30 2010-04-30 Glass base material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010105542A JP5678467B2 (en) 2010-04-30 2010-04-30 Glass base material manufacturing method

Publications (2)

Publication Number Publication Date
JP2011230986A true JP2011230986A (en) 2011-11-17
JP5678467B2 JP5678467B2 (en) 2015-03-04

Family

ID=45320696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010105542A Expired - Fee Related JP5678467B2 (en) 2010-04-30 2010-04-30 Glass base material manufacturing method

Country Status (1)

Country Link
JP (1) JP5678467B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166684A (en) * 2012-01-18 2013-08-29 Sumitomo Electric Ind Ltd Methods for manufacturing glass base material
US9630872B2 (en) 2011-09-29 2017-04-25 Sumitomo Electric Industries, Ltd. Method for manufacturing glass-fine-particle-deposited body and method for manufacturing glass base material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939742A (en) * 1982-07-26 1984-03-05 コ−ニング・グラス・ワ−クス Optical fiber preform and manufacture
JPS60239337A (en) * 1984-05-15 1985-11-28 Sumitomo Electric Ind Ltd Preparation of parent glass material for optical fiber
JPH02127604A (en) * 1988-11-08 1990-05-16 Sumitomo Electric Ind Ltd Manufacture of fiber type coupler
JPH07223832A (en) * 1991-12-16 1995-08-22 Corning Inc Method of producing glass article and fiber optic coupler
JP2005170731A (en) * 2003-12-10 2005-06-30 Sumitomo Electric Ind Ltd Production method of multi-mode optical fiber preform, production method of multi-mode optical fiber, and multi-mode optical fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939742A (en) * 1982-07-26 1984-03-05 コ−ニング・グラス・ワ−クス Optical fiber preform and manufacture
JPS60239337A (en) * 1984-05-15 1985-11-28 Sumitomo Electric Ind Ltd Preparation of parent glass material for optical fiber
JPH02127604A (en) * 1988-11-08 1990-05-16 Sumitomo Electric Ind Ltd Manufacture of fiber type coupler
JPH07223832A (en) * 1991-12-16 1995-08-22 Corning Inc Method of producing glass article and fiber optic coupler
JP2005170731A (en) * 2003-12-10 2005-06-30 Sumitomo Electric Ind Ltd Production method of multi-mode optical fiber preform, production method of multi-mode optical fiber, and multi-mode optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9630872B2 (en) 2011-09-29 2017-04-25 Sumitomo Electric Industries, Ltd. Method for manufacturing glass-fine-particle-deposited body and method for manufacturing glass base material
US10604439B2 (en) 2011-09-29 2020-03-31 Sumitomo Electric Industries, Ltd. Method for manufacturing glass-fine-particle-deposited body and method for manufacturing glass base material
JP2013166684A (en) * 2012-01-18 2013-08-29 Sumitomo Electric Ind Ltd Methods for manufacturing glass base material

Also Published As

Publication number Publication date
JP5678467B2 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
WO2011136325A1 (en) Method for producing glass preform
WO2012008406A1 (en) Method for producing deposit of fine glass particles, and method for producing glass body
RU2236386C2 (en) Method of manufacturing optic fiber intermediate product
WO2011136324A1 (en) Manufacturing method for glass base material
JP5678467B2 (en) Glass base material manufacturing method
JP5533205B2 (en) Glass base material manufacturing method
JP4359183B2 (en) Correction method of ellipticity of optical fiber preform
JP5459241B2 (en) Glass base material manufacturing method
JP5778895B2 (en) Glass base material manufacturing method
JP5671837B2 (en) Glass base material manufacturing method
JP7115095B2 (en) Manufacturing method of preform for optical fiber
WO2007054961A2 (en) Optical fiber preform having large size soot porous body and its method of preparation
JP7195703B2 (en) Burner for synthesizing porous body and method for producing porous body
US6928841B2 (en) Optical fiber preform manufacture using improved VAD
JP3576873B2 (en) Manufacturing method of optical fiber preform
JP2011230985A (en) Manufacturing method for glass preform
JP2011020887A (en) Method for manufacturing glass preform
JP6248517B2 (en) Optical fiber preform manufacturing method, optical fiber preform, optical fiber, and multimode optical fiber
JP2007137718A (en) Method of manufacturing porous preform for optical fiber
JP2011230990A (en) Manufacturing method for glass preform
JP2005089241A (en) Optical fiber preform, optical fiber, method of manufacturing optical fiber, and method of manufacturing optical fiber preform
JP6136164B2 (en) Optical fiber and manufacturing method thereof
JP5843084B2 (en) Glass base material manufacturing method
JP2017226569A (en) Production method of optical fiber preform, and production method of glass fine particle deposit
JP4252871B2 (en) Optical fiber preform manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5678467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees