JPH0327493B2 - - Google Patents

Info

Publication number
JPH0327493B2
JPH0327493B2 JP57194059A JP19405982A JPH0327493B2 JP H0327493 B2 JPH0327493 B2 JP H0327493B2 JP 57194059 A JP57194059 A JP 57194059A JP 19405982 A JP19405982 A JP 19405982A JP H0327493 B2 JPH0327493 B2 JP H0327493B2
Authority
JP
Japan
Prior art keywords
core
optical fiber
cladding
burner
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57194059A
Other languages
Japanese (ja)
Other versions
JPS5983953A (en
Inventor
Toshiro Ikuma
Tetsuya Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP19405982A priority Critical patent/JPS5983953A/en
Publication of JPS5983953A publication Critical patent/JPS5983953A/en
Publication of JPH0327493B2 publication Critical patent/JPH0327493B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/54Multiple burner arrangements combined with means for heating the deposit, e.g. non-deposition burner

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は、光フアイバへ紡糸加工される材料で
ある光フアイバ母材の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber preform, which is a material that is spun into an optical fiber.

光フアイバ母材の製造方法の一つとして気相軸
付法(VAD)が知られているが、このVADは、
酸水素バーナ等の酸素及び水素を含む可燃性ガス
燃焼用バーナに、SiCl4、GeCl4、POCl3及び
BBr3等の揮発性ガラス形成原料を供給し、火炎
中でこれらのガラス形成原料を加水分解反応させ
ることによつてガラス形成微粒子(以下に於いて
は単にスートと呼ぶ)を生成し、出発基材の先端
からその軸方向に前記スートを付着成長させるこ
とによつて略円柱状の光フアイバ母材を得る方法
である。なおこの光フアイバ母材は通常は多孔質
プリフオームのまゝの未完成品であるのでこれを
加熱透明化することによつて光フアイバ母材の完
成品とすればよい。
The vapor deposition method (VAD) is known as one of the manufacturing methods for optical fiber base material.
SiCl 4 , GeCl 4 , POCl 3 and
By supplying volatile glass-forming raw materials such as BBr 3 and subjecting these glass-forming raw materials to a hydrolysis reaction in a flame, glass-forming fine particles (hereinafter simply referred to as soot) are produced, and the starting group is This is a method of obtaining a substantially cylindrical optical fiber base material by depositing and growing the soot in the axial direction from the tip of the material. Since this optical fiber preform is usually an unfinished product in the form of a porous preform, it can be made into a finished optical fiber preform by heating and making it transparent.

このVADを更に進展させた方法として、光フ
アイバ母材のコア部を構成するガラス形成微粒子
を合成する為のコア用バーナを多孔質プリフオー
ムの成長端付近に配置すると共に、クラツド部を
構成するガラス形成微粒子を合成する為のクラツ
ド用バーナを前記コア用バーナの上方に配置し、
コア用多孔質プリフオームの周面にクラツド用ス
ートを付着成長させることによつて、コア部及び
クラツド部を一体に合成する方法が特開昭54−
134133号として提案されている。
As a further development of this VAD, a core burner for synthesizing the glass-forming fine particles constituting the core of the optical fiber base material is placed near the growth end of the porous preform, and the glass forming the cladding is placed near the growth end of the porous preform. A clad burner for synthesizing the forming fine particles is placed above the core burner,
Japanese Patent Application Laid-Open No. 1989-1999 discloses a method of integrally synthesizing the core part and the cladding part by growing soot for the cladding on the circumferential surface of a porous preform for the core.
Proposed as No. 134133.

しかしながら上述の様なコア・クラツド一体合
成法には、 (1) コア用スートとクラツド用スートとが空間中
で混合し、コア部とクラツド部との境界付近に
於ける屈折率分布が所望の形とは異つてしまう
ので、所望の伝送性能を得ることができない。
However, in the above-mentioned core-clad integral synthesis method, (1) the soot for the core and the soot for the clad are mixed in space, and the refractive index distribution near the boundary between the core and the clad is achieved as desired. Since the shape is different, the desired transmission performance cannot be obtained.

(2) コア部の形成に引続いて直ちにクラツド部が
形成され、その途中でコア部が収縮されないの
で、単一モードフアイバの製造等に於ける様に
クラツド径に対するコア径の比を小さくする場
合は、製造後の多孔質プリフオームの径が大き
くなり過ぎる。この為に降温或いは加熱時に於
いて、多孔質プリフオームの軸心付近と周面付
近とで温度差が大きくなり、収縮差或いは膨脹
差によつて多孔質プリフオームが割れたりする
危険性が高くなると共に、反応容器や透明化用
ヒータ等も全体に大きくする必要がある。
(2) The cladding is formed immediately after the core is formed, and the core is not shrunk during the formation, so the ratio of the core diameter to the cladding is made small, as in the production of single mode fibers. In this case, the diameter of the porous preform after manufacture becomes too large. For this reason, when the temperature is lowered or heated, the temperature difference becomes large between the axial center and the peripheral surface of the porous preform, increasing the risk that the porous preform will crack due to the difference in shrinkage or expansion. The overall size of the reaction vessel, heater for transparency, etc. also needs to be increased.

(3) スート同士の混合を防ぐ為にコア用バーナと
クラツド用バーナとを互いに離間させると、そ
れらの間で多孔質プリフオームが冷却してコア
部表面とクラツド用スートとの温度差が大きく
なり、この為にクラツド部の嵩密度が低くなつ
てコア部の嵩密度との間に差が生じる。従つて
クラツド用スート付着後の降温時に於ける収縮
差や透明化の為の加熱時に於ける膨脹差等によ
つて多孔質プリフオームが割れ易い。
(3) If the core burner and cladding burner are separated from each other to prevent the soots from mixing with each other, the porous preform cools between them, increasing the temperature difference between the core surface and the cladding soot. For this reason, the bulk density of the cladding portion becomes low, creating a difference between the bulk density of the core portion and the bulk density of the cladding portion. Therefore, the porous preform is susceptible to cracking due to differences in shrinkage during cooling after the cladding soot is deposited, differences in expansion during heating for transparency, and the like.

という問題点等がある。There are some problems.

これらの問題点を解決する為に、コア用クラツ
ド用との排気管を夫々別個に設けることによつて
スートの混合を防止すると共に、コア用とクラツ
ド用とのバーナを互いに近付けることによつて両
バーナ間に位置する多孔質プリフオームの温度勾
配を小さくする方法が特開昭55−23074号として
提案されている。
In order to solve these problems, we have created separate exhaust pipes for the core and cladding to prevent soot from mixing, and also moved the burners for the core and cladding closer to each other. A method of reducing the temperature gradient of a porous preform located between both burners has been proposed in JP-A-55-23074.

しかしこの方法でも、コア用とクラツド用との
バーナを互いに近付ける為にコア用及びクラツド
用スートの混合防止がまだ不充分であり、更にま
た多孔質プリフオームの径が大きくなり過ぎる為
にクラツド部をあまり厚く付着できないという問
題点が依然として残されている。
However, even with this method, it is still insufficient to prevent the core and cladding soot from mixing because the burners for the core and cladding are placed close to each other, and furthermore, the diameter of the porous preform becomes too large, so the cladding part is There still remains the problem that it cannot be adhered very thickly.

これに対して、コア用バーナとクラツド用バー
ナとの間に電気炉等を配置して、ガラス形成微粒
子を付着成長させた円柱状のコア用多孔質プリフ
オームをこの電気炉等で加熱し、互いに融着して
いるスートを若干融解してスート同士の接着面積
を大きくしスート間の空隙を小さくすることによ
つて前記コア用多孔質プリフオームの径を縮小
し、その後、クラツド用バーナでその外周面にク
ラツド用スートを堆積させ、次いで加熱すること
によつて透明ガラス化する方法が特開昭55−
154336号として提案されている。
On the other hand, an electric furnace or the like is placed between the core burner and the cladding burner, and the cylindrical porous preform for the core on which glass-forming fine particles are attached and grown is heated in the electric furnace or the like, and then they are mutually heated. The diameter of the porous preform for the core is reduced by slightly melting the fused soot to increase the adhesion area between the soots and reduce the gap between the soots, and then the outer periphery is reduced using a burner for the cladding. A method of forming transparent glass by depositing cladding soot on a surface and then heating it was disclosed in JP-A-55-
Proposed as No. 154336.

この方法によれば、一旦コア用多孔質プリフオ
ームを収縮させた後にクラツド部を付着させるの
で、最終的に得られる多孔質プリフオームの径が
大きくなりすぎるという問題点はない。
According to this method, since the cladding portion is attached after the core porous preform is once shrunk, there is no problem that the diameter of the finally obtained porous preform becomes too large.

しかしながらこの方法に於いても、コア用及び
クラツド用スートの混合防止対策がなされていな
い為にコア部とクラツド部との境界が未だ不鮮明
であること、また電気炉が一般に複雑かつ大型で
ある為に製造装置全体も複雑かつ大型になり実用
的でないこと、更にまたこの様に大型の電気炉の
炉材があると加水分解反応で生成された霧状の
HClによつてこの炉材が浸食されその生成物が異
物として多孔質プリフオームに混入するおそれが
多くこの為に光フアイバの伝送性能が低下するこ
と等の問題点がある。
However, even with this method, the boundaries between the core and cladding parts are still unclear because no measures are taken to prevent the soots for the core and the cladding from mixing, and also because electric furnaces are generally complex and large. In addition, the entire manufacturing equipment is complicated and large, making it impractical.Furthermore, the presence of such large electric furnace materials results in the mist produced by the hydrolysis reaction.
This furnace material is eroded by HCl, and there is a high risk that its products may be mixed into the porous preform as foreign matter, resulting in problems such as a decrease in the transmission performance of the optical fiber.

本発明は、上述の問題点に鑑み、比較的小型で
且つ簡単な構成でもあるにも拘らず、コア用スー
トとクラツド用スートとの混合を防止してコアと
クラツドとの境界付近に於ける屈折率分布を所望
の形にできるので所望の伝送性能を得ることが可
能であり、また製造時に於ける光フアイバ母材の
温度勾配を小さくしてその割れを防止でき、また
得られる光フアイバ母材の径をあまり大きくする
ことなくクラツド径に対するコア径の比を小さく
できるので単一モードフアイバの製造等にも適す
ると共にガラス形成微粒子を付着成長させて光フ
アイバ母材を得る為の反応容器や透明化用ヒータ
等も全体に大きくする必要がなく、更にまた光フ
アイバ母材中に異物が混入するおそれが少ないの
で伝送性能が優れており、しかも結晶化してコア
用多孔質プリフオームに付着したガラス形成微粒
子をクラツド部形成前に揮発除去させることがで
きるのでクラツド部を厚くしても伝送性能が優れ
た光フアイバ母材を得ることのできる方法を提供
することを目的としている。
In view of the above-mentioned problems, the present invention prevents the mixing of the soot for the core and the soot for the cladding in the vicinity of the boundary between the core and the cladding, although it is relatively small and has a simple configuration. Since the refractive index distribution can be made into a desired shape, it is possible to obtain the desired transmission performance, and the temperature gradient of the optical fiber base material during manufacturing can be reduced to prevent cracking, and the resulting optical fiber base material can be Since the ratio of the core diameter to the cladding diameter can be made small without increasing the diameter of the material, it is suitable for manufacturing single mode fibers, etc., and is also suitable for use as a reaction vessel for obtaining an optical fiber base material by depositing and growing glass-forming particles. There is no need to increase the overall size of the heater for transparency, and there is less risk of foreign matter getting into the optical fiber base material, so transmission performance is excellent. It is an object of the present invention to provide a method capable of obtaining an optical fiber base material with excellent transmission performance even when the cladding part is thickened, since the formed fine particles can be volatilized and removed before the cladding part is formed.

以下、本発明の一実施例を第1図及び第2図を
参照しながら説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明を実施する為の光フアイバ母材
の製造装置の一例を示している。この第1図に示
す様に、反応容器1は上底面及び下底面が閉塞さ
れた略円筒状をなしており且つ略垂直に配置され
ている。そしてこの反応容器1の上底面の略中心
には回転しながら上下動可能な保持具(図示せ
ず)によつて略円柱状の基材2が保持されてい
る。また下底面の中心付近には夫々径が異なる4
つの円筒が同心状に配され多重円筒状になすコア
用バーナ3が設けられている。即ちこのコア用バ
ーナ3は、中心ノズルと、この中心ノズルを取囲
む第2層ノズルと、この第2層ノズルを取囲む第
3層ノズルと、この第3層ノズルを取囲む最外層
ノズルとを有している。
FIG. 1 shows an example of an optical fiber preform manufacturing apparatus for carrying out the present invention. As shown in FIG. 1, the reaction vessel 1 has a substantially cylindrical shape with a closed upper and lower bottom surface, and is arranged substantially vertically. A substantially cylindrical base material 2 is held approximately at the center of the upper bottom surface of the reaction vessel 1 by a holder (not shown) that can be moved up and down while rotating. Also, near the center of the bottom surface, there are 4 different diameters.
A core burner 3 is provided in which two cylinders are arranged concentrically to form a multi-cylindrical shape. That is, this core burner 3 includes a center nozzle, a second layer nozzle surrounding the center nozzle, a third layer nozzle surrounding the second layer nozzle, and an outermost layer nozzle surrounding the third layer nozzle. have.

また反応容器1の周面でコア用バーナ3の近く
には、円筒状をなす2本の高温ガス吹出し用ノズ
ラ4,5及びコア用バーナ3と同様の構造を有す
るクラツド用バーナ6が、反応容器1の軸心方向
に所定の間隔で順次配設されている。
Further, near the core burner 3 on the circumferential surface of the reaction vessel 1, two cylindrical high-temperature gas blowing nozzles 4 and 5 and a crud burner 6 having the same structure as the core burner 3 are installed. They are sequentially arranged at predetermined intervals in the axial direction of the container 1.

更に反応容器1の周面で高温ガス吹出し用ノズ
ル4及びクラツド用バーナ6に夫々略対向する位
置には、円筒状をなす2本の排気用フード7,8
が設けられている。
Further, two cylindrical exhaust hoods 7 and 8 are provided on the circumferential surface of the reaction vessel 1 at positions substantially facing the high temperature gas blowing nozzle 4 and the cladding burner 6, respectively.
is provided.

上述の様な製造装置で光フアイバ母材の多孔質
プリフオームを製造するには、まず最初に基材2
を反応容器1の下底面近くまで降下させる。次い
でコア用バーナ3に可燃性ガスとSiCl4、GeCl4
のコア用のガラス形成原料ガスとを夫々供給し、
この可燃性ガスが燃焼することによつて生ずる火
炎中で前記ガラス形成原料ガスを加水分解反応さ
せ、これによつて生成されたコア用スート11を
基材2の下端に付着成長させてコア用多孔質プリ
フオーム12を得る。
In order to manufacture a porous preform of an optical fiber base material using the manufacturing equipment described above, first, the base material 2 is
is lowered to near the bottom of the reaction vessel 1. Next, combustible gas and core glass forming raw material gas such as SiCl 4 and GeCl 4 are supplied to the core burner 3, respectively.
The glass-forming raw material gas is subjected to a hydrolysis reaction in the flame generated by the combustion of this combustible gas, and the core soot 11 produced thereby is attached and grown on the lower end of the base material 2. A porous preform 12 is obtained.

なおコア用バーナ3は上述の様に多重円筒状を
なしているが、これは中心ノズルからガラス形成
原料ガスを、第2層ノズルからAr等の不活性ガ
スを、第3層ノズルからH2を、更に最外層ノズ
ルからO2を夫々噴出させる為である。従つて不
活性ガスが障壁となつてガラス形成原料ガスと
H2及びO2とがコア用バーナ3の出口付近で直ち
に反応してこのコア用バーナ3に目詰まりを生ず
るのを防止することができる。
The core burner 3 has a multi-cylindrical shape as described above, and it supplies glass forming raw material gas from the center nozzle, inert gas such as Ar from the second layer nozzle, and H 2 from the third layer nozzle. This is to further jet out O 2 from the outermost layer nozzle. Therefore, the inert gas acts as a barrier between glass forming raw material gas and
It is possible to prevent H 2 and O 2 from immediately reacting near the outlet of the core burner 3 and clogging the core burner 3.

その後、コア用多孔質プリフオーム12を図外
の保持具によつて回転させながら引き上げ、高温
ガス吹出し用ノズル4,5からの噴出ガス13に
よつて加熱収縮させ、径が小さくなつたコア用多
孔質プリフオーム14を得る。
Thereafter, the porous preform 12 for the core is pulled up while being rotated using a holder not shown, and is heated and contracted by the jet gas 13 from the high temperature gas blowing nozzles 4 and 5, so that the porous core preform 12 has a reduced diameter. A quality preform 14 is obtained.

なおこの時、高温ガス吹出し用ノズル4,5に
Cl2、SOCl2等のハロゲンガス或いはハロゲン化
合物ガスを供給することによつて、コア用スート
11の付着時にコア用多孔質プリフオーム12の
低温部に付着した結晶化GeO2をGeCl4として揮
発除去している。
At this time, the hot gas blowing nozzles 4 and 5 are
By supplying halogen gas or halogen compound gas such as Cl 2 or SOCl 2 , the crystallized GeO 2 attached to the low temperature part of the porous core preform 12 when the core soot 11 is attached is removed by volatilization as GeCl 4 . are doing.

即ち、フアイバ用スート11の付着成長面の温
度は、コア用バーナ3の中心軸と交わる面つまり
付着成長面の中心で最も高く、周辺になるにつれ
て低い。そしてガラス形成原料ガスの1つである
GeCl4が加水分解反応して生成されたGeO2は、
高温部では非晶質となり、SiO2との固溶体とし
て付着し、低温部では結晶化GeO2として単独で
付着することが知られている。つまり付着成長面
周辺の低温部には、この結晶化GeO2が多量に付
着している。
That is, the temperature of the adhesion growth surface of the fiber soot 11 is highest at the surface intersecting the central axis of the core burner 3, that is, at the center of the adhesion growth surface, and decreases toward the periphery. And it is one of the raw material gases for glass formation.
GeO 2 produced by the hydrolysis reaction of GeCl 4 is
It is known that in high temperature areas it becomes amorphous and adheres as a solid solution with SiO 2 , and in low temperature areas it adheres alone as crystallized GeO 2 . In other words, a large amount of this crystallized GeO 2 is attached to the low temperature area around the attached growth surface.

この結晶化GeO2は多孔質プリフオームを加熱
透明化しても不透明のままで残り、また紡糸の為
の加熱時に発泡したりして、光フアイバの伝送性
能を著しく低下させる。
This crystallized GeO 2 remains opaque even when the porous preform is heated to make it transparent, and may foam during heating for spinning, significantly reducing the transmission performance of the optical fiber.

結晶化GeO2はSiO2との固溶体として付着した
非晶質GeO2より蒸気圧が高いので、通常は透明
化の為の加熱時に揮発除去されてしまう。しかし
コア用多孔質プリフオームの周面にクラツド用ス
ートを付着成長させる所謂コア・クラツド一体成
長方法では、クラツド部をあまり厚く付着する
と、結晶化GeO2を多孔質プリフオームの加熱透
明化時に完全に揮発除去してしまうことが困難で
ある。従つて、本実施例に於ける様にクラツド部
形成前に結晶化GeO2を揮発除去する必要がある。
Since crystallized GeO 2 has a higher vapor pressure than amorphous GeO 2 attached as a solid solution with SiO 2 , it is usually removed by volatilization during heating for transparency. However, in the so-called core-clad integral growth method in which soot for the cladding is attached and grown on the peripheral surface of the porous preform for the core, if the cladding part is attached too thickly, the crystallized GeO 2 will be completely volatilized when the porous preform is heated and made transparent. It is difficult to remove. Therefore, as in this embodiment, it is necessary to volatilize and remove the crystallized GeO 2 before forming the cladding portion.

この様にして結晶化GeO2が揮発除去され且つ
径が小さくなつたコア用多孔質プリフオーム14
を図外の保持具によつて更に回転させながら引き
上げる。そしてクラツド用バーナ6に可燃性ガス
とSiCl4を主体とするクラツド用のガラス形成原
料ガスとを夫々供給し、この可燃性ガスが燃焼す
ることによつて生ずる火炎中で前記ガラス形成原
料ガスを加水分解反応させ、これによつて生成さ
れたクラツド用スート15をコア用多孔質プリフ
オーム13の周面に付着させてクラツド部とし、
多孔質プリフオーム16を得る。
In this way, the crystallized GeO 2 is removed by volatilization and the diameter of the core porous preform 14 is reduced.
is further rotated and pulled up using a holder (not shown). Then, a flammable gas and a glass-forming raw material gas for the cladding mainly composed of SiCl 4 are supplied to the burner 6 for the cladding, and the glass-forming raw material gas is heated in the flame generated by the combustion of the combustible gas. A hydrolysis reaction is carried out, and the soot 15 for the cladding thus produced is attached to the circumferential surface of the porous preform 13 for the core to form a cladding part,
A porous preform 16 is obtained.

クラツド用バーナ6がコア用バーナ3と同様に
多重円筒状をなしているのは、コア用バーナ3と
同様の理由によるものである。
The reason why the cladding burner 6 has a multi-cylindrical shape like the core burner 3 is due to the same reason as the core burner 3.

以上の様にして基材2を回転させながら次第に
引き上げると、コア部の外周にクラツド部が形成
された多孔質プリフオーム16が基材2の下端か
ら次第に形成されてゆく。
When the base material 2 is gradually pulled up while being rotated in the manner described above, a porous preform 16 having a cladding portion formed around the outer periphery of the core portion is gradually formed from the lower end of the base material 2.

このようにして得られた多孔質プリフオーム1
6を別の加熱工程に於いて加熱すると透明な光フ
アイバ母材となり、更にこの透明な光フアイバ母
材を紡糸すると最終的な光フアイバとなる。
Porous preform 1 thus obtained
6 is heated in a separate heating step to form a transparent optical fiber preform, and this transparent optical fiber preform is further spun to form the final optical fiber.

なお上記多孔質プリフオーム16を得る為の上
述の工程に於いて、基材2或いは多孔質プリフオ
ーム12,13に付着しなかつたコア用スート1
1及びクラツド用スート1は、夫々排気用フード
7,8によつて直ちに排気される。
In addition, in the above-mentioned process for obtaining the porous preform 16, the core soot 1 that did not adhere to the base material 2 or the porous preforms 12, 13
1 and the cladding soot 1 are immediately evacuated by exhaust hoods 7 and 8, respectively.

以下に第1図に示す光フアイバ母材の製造装置
と略同様の装置を用いて行つた本発明の比較例及
び実施例を示す。
Comparative examples and examples of the present invention will be shown below, which were carried out using an apparatus substantially similar to the optical fiber preform manufacturing apparatus shown in FIG.

比較例 1 〔コア用バーナ〕 中心ノズル SiCl4=140c.c./分、 GeCl4=40c.c./分、POCl3 =2c.c./分、Ar=360c.c./分 第2層ノズル Ar=400c.c./分 第3層ノズル H2=3000c.c./分 最外層ノズル O2=6000c.c./分 〔クラツド用バーナ〕 中心ノズル SiCl4=150c.c./分、 POCl3=2c.c./分、Ar= 200c.c./分 第2層ノズル Ar=500c.c./分 第3層ノズル H2=3000c.c./分 最外層ノズル O2=5000c.c./分 位置 l=80mm 〔高温ガス吹出し用ノズル〕 使用せず 〔結果〕 多孔質プリフオーム16に割れが発生した。Comparative example 1 [Core burner] Center nozzle SiCl 4 = 140 c.c./min, GeCl 4 = 40 c.c./min, POCl 3 = 2 c.c./min, Ar = 360 c.c./min 2nd Layer nozzle Ar = 400c.c./min Third layer nozzle H 2 = 3000c.c./min Outermost layer nozzle O 2 = 6000c.c./min [Clad burner] Center nozzle SiCl 4 = 150c.c./min min, POCl 3 = 2c.c./min, Ar = 200c.c./min 2nd layer nozzle Ar = 500c.c./min 3rd layer nozzle H 2 = 3000c.c./min Outermost layer nozzle O 2 =5000c.c./min Position l=80mm [High-temperature gas blowing nozzle] Not used [Result] Cracks occurred in the porous preform 16.

比較例 2 〔コア用バーナ〕 〔クラツド用バーナ〕 〔高温ガス吹出し用ノズル〕比較例1に同じ 但し l=40mm 〔結果〕 直径≒90mm、嵩密度≒0.16g/cm3の多孔質プリ
フオーム16を得た。これを約1550℃の高温で焼
結した後、径方向の屈折率分布を測定したとこ
ろ、第2図Aに示す様にコア部とクラツド部との
境界に於いて屈折率の差異が不明瞭になつてい
た。
Comparative Example 2 [Burner for core] [Burner for cladding] [Nozzle for blowing out high-temperature gas] Same as Comparative Example 1 except l = 40 mm [Results] Porous preform 16 with diameter ≒ 90 mm and bulk density ≒ 0.16 g/cm 3 Obtained. After sintering this at a high temperature of approximately 1550℃, we measured the refractive index distribution in the radial direction, and as shown in Figure 2A, the difference in refractive index was unclear at the boundary between the core and cladding. I was getting used to it.

実施例 1 〔コア用バーナ〕 〔クラツド用バーナ〕 〔高温ガス吹出し用ノズル〕比較例1に同じ 1本使用 Ar=8000c.c./分 ノズル吹出し直後の温度=1000℃ 〔結果〕 直径≒80mm、嵩密度≒0.18g/cm3の多孔質プリ
フオーム16を得た。比較例2と同様に屈折率分
布を測定したところ、第2図Bに示す様にコア部
とクラツド部との境界に於いて屈折率の差異が明
瞭になつていた。
Example 1 [Core burner] [Clad burner] [High-temperature gas blowing nozzle] Same as Comparative Example 1 One piece used Ar = 8000 c.c./min Temperature immediately after nozzle blowing = 1000°C [Results] Diameter ≒ 80 mm A porous preform 16 having a bulk density of ≈0.18 g/cm 3 was obtained. When the refractive index distribution was measured in the same manner as in Comparative Example 2, it was found that the difference in refractive index became clear at the boundary between the core portion and the cladding portion, as shown in FIG. 2B.

実施例 2 〔フアイバ用バーナ〕 〔クラツド用バーナ〕 〔高温ガス吹出し用ノズル〕比較例1に同じ 2本使用 Ar=4000c.c./分、N2=2000c.c./分、 Cl2=200c.c./分 ノズル吹出し直後の温度=1100℃ 〔結果〕 直径≒76mm、嵩密度≒0.19g/cm3の多孔質プリ
フオーム16を得た。比較例2と同様に屈折率分
布を測定したところ、第2図Cに示す結果を得
た。
Example 2 [Burner for fiber] [Burner for cladding] [High-temperature gas blowing nozzle] Same as Comparative Example 1 Two pieces used Ar = 4000 c.c./min, N 2 = 2000 c.c./min, Cl 2 = 200c.c./min Temperature immediately after nozzle blowout = 1100°C [Results] A porous preform 16 having a diameter of 76 mm and a bulk density of 0.19 g/cm 3 was obtained. When the refractive index distribution was measured in the same manner as in Comparative Example 2, the results shown in FIG. 2C were obtained.

以上の様に、本発明の実施列1及び2によれ
ば、コア用多孔質プリフオーム12を加熱収縮す
る為の手段が高温ガス吹出し用ノズル4,5であ
るので、電気炉等に比べて比較的小型で且つ簡単
な構成で済む。
As described above, according to the embodiments 1 and 2 of the present invention, the means for heating and shrinking the core porous preform 12 are the high temperature gas blowing nozzles 4 and 5. It is compact in size and has a simple configuration.

またコア用バーナ3とクラツド用バーナ6との
間に高温ガス吹出し用ノズル4,5を配置するこ
とによつて双方のバーナ3,6を離間させ、しか
も高温ガス吹出し用ノズル4,5からの噴出ガス
13が障壁となるので、コア用スート11とクラ
ツド用スート15との混合が防止される。更にま
た排気用フード7,8が基材2或いはコア用多孔
質プリフオーム12,に付着しなかつたコア用ス
ート11及びクラツド用クラツド用スート15を
直ちに排気することによつてもこれらの混合が防
止される。従つてコア部とクラツド部との境界付
近に於ける屈折率分布を所望の形にできるので、
所望の伝送性能を有する光フアイバの母材を製造
することが可能である。
In addition, by arranging the high temperature gas blowing nozzles 4 and 5 between the core burner 3 and the cladding burner 6, both burners 3 and 6 are separated from each other, and the high temperature gas blowing nozzles 4 and 5 are Since the ejected gas 13 acts as a barrier, mixing of the core soot 11 and the cladding soot 15 is prevented. Furthermore, mixing of these can also be prevented by immediately exhausting the core soot 11 and the clad soot 15 that have not adhered to the base material 2 or the core porous preform 12 through the exhaust hoods 7 and 8. be done. Therefore, the refractive index distribution near the boundary between the core part and the cladding part can be made into a desired shape.
It is possible to produce optical fiber preforms with desired transmission performance.

また上述の様にコア用バーナ3とクラツド用バ
ーナ6とを離間させても、それらの間に配置され
た高温ガス吹出し用ノズル4,5からの噴出ガス
13が高温であるので、双方のバーナ3,6間に
於ける温度勾配が小さい。従つて製造途中の多孔
質プリフオームが温度勾配の為に割れるのを防止
できる。
Furthermore, even if the core burner 3 and the cladding burner 6 are separated as described above, the gas 13 emitted from the high-temperature gas blowing nozzles 4 and 5 disposed between them is high temperature, so both burners The temperature gradient between 3 and 6 is small. Therefore, it is possible to prevent the porous preform during manufacture from cracking due to temperature gradients.

またコア用多孔質プリフオーム12を高温ガス
吹出し用ノズル4,5からの噴出ガス13によつ
て加熱収縮させ、径の小さいコア用多孔質プリフ
オーム14を形成している。従つて得られる光フ
アイバ母材の径をあまり大きくすることなくクラ
ツド径に対するコア径の比を小さくできるので、
単一モードフアイバの製造等にも適すると共に、
反応容器や透明化用ヒータ等も全体に大きくする
必要がない。
Further, the core porous preform 12 is heated and shrunk by the jetting gas 13 from the hot gas blowing nozzles 4 and 5 to form a core porous preform 14 having a small diameter. Therefore, the ratio of the core diameter to the cladding diameter can be made small without increasing the diameter of the resulting optical fiber base material too much.
It is also suitable for manufacturing single mode fibers, etc.
There is no need to increase the overall size of the reaction vessel, the heater for transparency, etc.

また電気炉に於ける様に比較的大型の炉材等が
ないので、加水分解反応で生成された霧状のHCl
による浸食が少ない。従つて浸食による生成物が
異物として多孔質プリフオームに混入するおそれ
が少なく、この為に伝送性能の優れた光フアイバ
の母材を製造することができる。
In addition, unlike electric furnaces, there is no relatively large furnace material, so the mist of HCl generated by the hydrolysis reaction
Less erosion due to Therefore, there is little risk that products of erosion will be mixed into the porous preform as foreign matter, and therefore an optical fiber base material with excellent transmission performance can be manufactured.

更にまた高温ガス吹出し用ノズル4,5にCl2
SOCl2等のハロゲンガス或いはハゲン化合物ガス
を供給しているので、コア用多孔質プリフオーム
12に付着した結晶化GeO2をクラツド部形成前
にGeCl4として揮発除去することができる。従つ
てクラツド部を厚く付着させても結晶化GeO2
残存することはないので、伝送性能の優れた光フ
アイバの母材を製造することができる。
Furthermore, Cl 2 is added to the high temperature gas blowing nozzles 4 and 5.
Since halogen gas or halide compound gas such as SOCl 2 is supplied, crystallized GeO 2 attached to the core porous preform 12 can be removed by volatilization as GeCl 4 before the formation of the cladding portion. Therefore, even if the cladding portion is thickly deposited, no crystallized GeO 2 remains, so it is possible to manufacture an optical fiber base material with excellent transmission performance.

以上、本発明を一実施例に基いて説明したが、
本発明はこの実施例に限定されるものではなく、
各種の変更が可能である。
The present invention has been described above based on one embodiment, but
The present invention is not limited to this example,
Various changes are possible.

例えば、上述の実施例に於いては2本の高温ガ
ス吹出し用ノズル4,5を使用しているが、これ
は3本以上でもよく、また場合によつては1本で
もかまわない。
For example, in the above embodiment, two hot gas blowing nozzles 4 and 5 are used, but the number may be three or more, or may be one in some cases.

また上述の実施例に於いては、第1図に示す光
フアイバ母材の製造装置とは別個にこの製造装置
によつて得られた光フアイバ母材を透明化する為
の加熱手段が必要であるが、第1図に示す構造装
置内に適当な加熱手段を設ければ、この製造装置
だけで透明な光フアイバ母材を得ることができ
る。
In addition, in the above-mentioned embodiment, a heating means for transparentizing the optical fiber preform obtained by the optical fiber preform manufactured by this manufacturing apparatus is required separately from the optical fiber preform manufacturing apparatus shown in FIG. However, if an appropriate heating means is provided in the structural apparatus shown in FIG. 1, a transparent optical fiber preform can be obtained using only this manufacturing apparatus.

本発明は、上述の如き構成であるので、比較的
小型で且つ簡単な構成であるにも拘らず、コア用
スートとクラツド用スートとの混合を防止してコ
アとクラツドとの境界付近に於ける屈折率分布を
所望の形にできるので所望の伝送性能を得ること
が可能であり、また製造時に於ける光フアイバ母
材の温度勾配を小さくしてその割れを防止でき、
また得られた光フアイバ母材の径をあまり大きく
することなくクラツド径に対するコア径の比を小
さくできるので単一モードフアイバの製造等にも
適すると共にガラス形成微粒子を付着成長させて
光フアイバ母材を得る為の反応容器や透明化用ヒ
ータ等も全体に大きくする必要がなく、更にまた
光フアイバ母材中に異物が混入するおそれが少な
いので伝送性能が優れた光フアイバ母材を提供す
ることができる。しかも高温ガス吹出し用ノズル
にハロゲンガスまたはハロゲン化合物ガスを供給
しており、結晶化してコア用多孔質プリフオーム
に付着したガラス形成微粒子をクラツド部形成前
に揮発除去させることができるので、クラツド部
を厚くしても伝送性能が優れた光フアイバの母材
を製造することができる。
Since the present invention has the above-described configuration, it is relatively small and simple, but it prevents the core soot and the clad soot from mixing and prevents the soot from being mixed with the soot near the boundary between the core and the cladding. It is possible to obtain the desired transmission performance because the refractive index distribution of the optical fiber can be shaped into the desired shape, and it is also possible to reduce the temperature gradient of the optical fiber base material during manufacturing to prevent its cracking.
In addition, since the ratio of the core diameter to the cladding diameter can be made small without increasing the diameter of the obtained optical fiber base material, it is suitable for manufacturing single mode fibers, etc., and it is also possible to make the optical fiber base material by adhering and growing glass-forming fine particles. To provide an optical fiber base material which has excellent transmission performance since there is no need to increase the overall size of a reaction vessel, a heater for transparency, etc. for obtaining the optical fiber, and there is little risk of foreign matter being mixed into the optical fiber base material. Can be done. In addition, halogen gas or halogen compound gas is supplied to the high-temperature gas blowing nozzle, and the glass-forming fine particles that have crystallized and adhered to the porous preform for the core can be removed by volatilization before the cladding part is formed. It is possible to manufacture an optical fiber base material that has excellent transmission performance even if it is thickened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する為の光フアイバ母材
の製造装置の一例を示す概略縦断面図、第2図は
本発明を説明するための比較例及び実施例で得ら
れた光フアイバ母材の屈折率分布を示し、Aは比
較例2、Bは実施例1、Cは実施例2に対応して
いる。 なお図面に用いられている符号に於いて、3…
コア用バーナ、4,5…高温ガス吹出し用ノズ
ル、6…クラツド用バーナ、12,14…コア用
多孔質プリフオーム、16…最終的に得られた多
孔質プリフオームである。
FIG. 1 is a schematic vertical sectional view showing an example of an optical fiber preform manufacturing apparatus for carrying out the present invention, and FIG. 2 is an optical fiber preform obtained in comparative examples and examples for explaining the present invention. The refractive index distribution of the material is shown, and A corresponds to Comparative Example 2, B corresponds to Example 1, and C corresponds to Example 2. Regarding the symbols used in the drawings, 3...
Burner for core, 4, 5... Nozzle for blowing out high temperature gas, 6... Burner for cladding, 12, 14... Porous preform for core, 16... Finally obtained porous preform.

Claims (1)

【特許請求の範囲】[Claims] 1 光フアイバ母材のコア部を構成するガラス形
成微粒子を合成するためのコア用バーナと、前記
光フアイバ母材のクラツド部を構成するガラス形
成微粒子を合成するためのクラツド用バーナとに
ガラス形成原料ガス及び可燃性ガスを夫々供給
し、これらの可燃性ガスを燃焼させた火炎中で前
記ガラス形成原料ガスを反応させることによつ
て、前記ガラス形成微粒子を付着成長させて前記
コア部とこのコア部の周囲に一体的に形成された
前記クラツド部とからなる光フアイバ母材を得る
ようにした光フアイバ母材の製造方法に於いて、
前記コア用バーナと前記クラツド用バーナとの間
に高温ガス吹出しノズルを配置し、この高温ガス
吹出し用ノズルにハロゲンガスまたはハロゲン化
合物ガスを供給しつつこの高温ガス吹出し用ノズ
ルによつて前記コア部に高温ガスを吹付けるよう
にしたことを特徴とする光フアイバ母材の製造方
法。
1. A core burner for synthesizing the glass-forming fine particles constituting the core portion of the optical fiber base material, and a cladding burner for synthesizing the glass-forming fine particles constituting the clad portion of the optical fiber base material. By supplying a raw material gas and a combustible gas, and causing the glass-forming raw material gas to react in a flame in which these combustible gases are burned, the glass-forming fine particles are allowed to adhere and grow, forming a bond with the core portion. In a method for producing an optical fiber preform, the method comprises obtaining an optical fiber preform consisting of a core portion and the cladding portion integrally formed around the core portion,
A high-temperature gas blow-off nozzle is disposed between the core burner and the clad burner, and while halogen gas or halogen compound gas is supplied to the high-temperature gas blow-off nozzle, the core section is A method for producing an optical fiber base material, characterized in that a high-temperature gas is blown onto the fiber.
JP19405982A 1982-11-05 1982-11-05 Preparation of parent material of optical fiber Granted JPS5983953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19405982A JPS5983953A (en) 1982-11-05 1982-11-05 Preparation of parent material of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19405982A JPS5983953A (en) 1982-11-05 1982-11-05 Preparation of parent material of optical fiber

Publications (2)

Publication Number Publication Date
JPS5983953A JPS5983953A (en) 1984-05-15
JPH0327493B2 true JPH0327493B2 (en) 1991-04-16

Family

ID=16318260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19405982A Granted JPS5983953A (en) 1982-11-05 1982-11-05 Preparation of parent material of optical fiber

Country Status (1)

Country Link
JP (1) JPS5983953A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196039A (en) * 1987-10-07 1989-04-14 Sumitomo Electric Ind Ltd Production of optical fiber preform
JPH0764578B2 (en) * 1987-12-11 1995-07-12 住友電気工業株式会社 Manufacturing method of base material for single mode optical fiber
JPH0788231B2 (en) * 1989-06-06 1995-09-27 信越化学工業株式会社 Manufacturing method of optical fiber preform
KR950000588A (en) * 1993-06-18 1995-01-03 쿠라우찌 노리타카 Manufacturing method of single mode optical fiber base material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727934A (en) * 1980-07-25 1982-02-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS5792532A (en) * 1980-11-28 1982-06-09 Nippon Telegr & Teleph Corp <Ntt> Preparation of oxide powder rod for optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727934A (en) * 1980-07-25 1982-02-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS5792532A (en) * 1980-11-28 1982-06-09 Nippon Telegr & Teleph Corp <Ntt> Preparation of oxide powder rod for optical fiber

Also Published As

Publication number Publication date
JPS5983953A (en) 1984-05-15

Similar Documents

Publication Publication Date Title
KR970006995B1 (en) Method and apparatus for production of glass preform for optical fiber
KR830002158B1 (en) Method for forming optical waveguide preform having continuously removable starting member
KR970006994B1 (en) Method of flame grinding glass preform
US20030101772A1 (en) Manufacturing method for optical fiber preform
JPH0327493B2 (en)
EP0612701B1 (en) Vapour axial deposition process for making optical fibre preforms
JP2010037125A (en) Method for producing optical fiber preform
JPS60264338A (en) Manufacture of optical fiber preform
KR100235556B1 (en) Method for producing grass preform for optical fiber using thermal spraying of quartz powder
JP7571607B2 (en) Optical fiber manufacturing method
JP2601091Y2 (en) Equipment for manufacturing porous glass preform for optical fiber
JP2770103B2 (en) Manufacturing method of optical fiber preform
JP4176978B2 (en) Manufacturing method of large optical fiber preform
JP3992970B2 (en) Manufacturing method and apparatus for manufacturing glass preform for optical fiber
JPS6291440A (en) Production of optical fiber
JPS61281039A (en) Production of optical fiber
KR100762611B1 (en) Method for fabricating optical fiber preform and method for fabricating optical fiber using the same
JPH0712951B2 (en) Method for manufacturing base material for optical fiber
JPH05116980A (en) Production of performed base material for optical fiber
JPH0784331B2 (en) Method for manufacturing glass base material for optical fiber
JPH02302334A (en) Production of preform for optical fiber
JPH02124736A (en) Production of optical fiber preform
JPH0583499B2 (en)
JPS61227937A (en) Preparation of parent material for optical fiber
JPH013030A (en) Manufacturing method of glass base material for optical fiber