JPS61227937A - Preparation of parent material for optical fiber - Google Patents

Preparation of parent material for optical fiber

Info

Publication number
JPS61227937A
JPS61227937A JP6920485A JP6920485A JPS61227937A JP S61227937 A JPS61227937 A JP S61227937A JP 6920485 A JP6920485 A JP 6920485A JP 6920485 A JP6920485 A JP 6920485A JP S61227937 A JPS61227937 A JP S61227937A
Authority
JP
Japan
Prior art keywords
core
porous glass
glass body
burner
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6920485A
Other languages
Japanese (ja)
Inventor
Hiroo Kanamori
弘雄 金森
Hisao Sato
久雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6920485A priority Critical patent/JPS61227937A/en
Publication of JPS61227937A publication Critical patent/JPS61227937A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To prevent deformation and crack generation of a glass body by the effect of burner flame for cladding in a VAD process by blowing gas to the side face of a porous glass body for core. CONSTITUTION:Fine particles 5, 6 for core glass and clad glass synthesized each by a core burner 1 and a clad burner 2 are deposited on the top end on a rotating starting bar. Thus, a porous glass body 9 for core is grown in the axial direction and a porous glass for clad 10 is grown surrounding the glass body 9 for core. In this stage, the porous glass bodies are formed while blowing gas to the glass bodies 6 through nozzles 15 disposed at the opposite side to the burner 1. The porous glass bodies are then made transparent by heating.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はVAD法による単一モード光ファイバ用母材の
製造方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a method for manufacturing a preform for a single mode optical fiber by a VAD method.

(従来の技術) 従来のVAD法による単一モード光ファイバ用母材の製
造方法を第2図を用いて説明する。
(Prior Art) A method of manufacturing a preform for a single mode optical fiber using the conventional VAD method will be described with reference to FIG.

第2図において雪はコア用ガラス微粒子合成用バーナー
(以下コア用バーナーと称する)、2はクラッド用ガラ
ス微粒子合成用バーナー(以下クラッド用バーナーと称
する)である。コア用バーナー1にはコア用ガラス原料
が、クラッド用バーナー2にはクラッド用ガラス原料が
H2,02とともに送シ込まれる。コア用ガラス原料は
、コア用バーナー1によル形成される酸水素火炎5の中
で火炎加水分解反応によルコア用ガラス微粒子5となル
クラツド用ガラス原料はクラッド用バーナー2により形
成される酸水素火炎4の中でクラッド用ガラス微粒子6
となる。
In FIG. 2, Yuki is a burner for synthesizing glass fine particles for the core (hereinafter referred to as the burner for core), and 2 is a burner for synthesizing glass fine particles for the cladding (hereinafter referred to as the burner for cladding). A core glass raw material is fed to the core burner 1, and a clad glass raw material is fed to the clad burner 2 together with H2 and 02. The glass raw material for the core undergoes a flame hydrolysis reaction in the oxyhydrogen flame 5 formed by the burner 1 for the core, and becomes the glass fine particles 5 for the core. Glass particles for cladding 6 in hydrogen flame 4
becomes.

ガラス微粒子を、回転引上装置7に装着され九回転す不
出発@aの先端に付着堆積させつつ出発棒8を引上げて
いくことにより、コア用多孔質ガラス体9とこれを取シ
囲むクラッド用多孔質ガラス体10が軸方向に形成され
ていく。コア用ガラス原料としてはSi(、/4及びコ
ア部の屈折率を高める為に例えばGeCj14が、クラ
ッド用ガラス原料としては8iC/4が一般的に用いら
れる。11は反応容器、12は付着堆積しなかったコア
用ガラス微粒子13、クラッド用ガラス微粒子14及び
廃ガスを排出する為の排気管である。
By pulling up the starting rod 8 while depositing glass particles on the tip of the non-starter @a which is attached to the rotary pulling device 7 and rotates nine times, the porous glass body 9 for the core and the cladding surrounding it are pulled up. The porous glass body 10 is formed in the axial direction. As the glass raw material for the core, Si(, /4 and, for example, GeCj14 is generally used to increase the refractive index of the core part, and as the glass raw material for the cladding, 8iC/4 is generally used. 11 is a reaction vessel, 12 is an adhesion deposition This is an exhaust pipe for discharging the glass particles 13 for the core, the glass particles 14 for the cladding, and waste gas that were not removed.

このようにして作製した多孔質ガラス体に、加熱脱水処
理及び加熱透明化処理ヲ施し、透明なコア部とクラッド
層を有する光ファイバ用母材とする。該母材は必要に応
じて所定径に延伸し、石英ガラス管内に挿入一体化した
のち線引して単一モード光ファイバとする。
The thus produced porous glass body is subjected to a heating dehydration treatment and a heating transparentization treatment to obtain an optical fiber base material having a transparent core portion and a cladding layer. The base material is stretched to a predetermined diameter as necessary, inserted into a quartz glass tube and integrated, and then drawn to form a single mode optical fiber.

(発明が解決しようとする問題点) 上記のような構成で行われる従来のVAD法による単一
モード・ファイバ用多孔質ガラス体 ・の作製法におい
てり、以下に述べるような2つの欠点があった。
(Problems to be Solved by the Invention) The method for manufacturing a porous glass body for a single mode fiber using the conventional VAD method with the above configuration has two drawbacks as described below. Ta.

第1の欠点は、生産性を高める目的でコア用及びクラッ
ド用ガラス原料の供給量全増加させ、多孔質ガラス体の
製造速度を向上させようとした時に生じる。すなわち、
ガラス原料供給量を増加した際には、ガラス原料の反応
を促進させる為に、同時にH2,02ガスの流量も増加
させる必要がある。また、多孔質ガラス体が割れたフ落
下することを防止する為には、多孔質ガラス体のカサ密
度を高くする必l!があるが、単にガラス原料のみを増
加させると多孔質ガラス体のガラス微粒子堆積面の温度
が低下する。多孔質ガラス体のカサ密度はガラス微粒子
堆積部の温度と密接な相関がめ)、ガラス微粒子堆積部
の温度が低下すると、多孔質ガラス体のカサ密度が低く
な)多孔質ガラス体の割れや落下が起り易くなる。そこ
で、ガラス原料供給量を増加させ死際には、多孔質ガラ
ス体の割れや落下を防ぐ為にも、供給するH2.02ガ
スの流量を増加させる必要がある。以上の目的でバーナ
ーへのH2,02の供給量を増加し良際、第2図で9と
示したコア部は、成長していくに従い、クラッド用バー
ナー2の火炎4に強く加熱され収縮変形を起こす場合が
ある。また極端な場合にはクラッド用バーナー2の火炎
4の加熱によルコア部9が急激な温度変化を受け、割れ
て落下することもある。そこで、従来法では、安定な生
産を行うにはクラッド用バーナー2に供給するH2゜0
2  量を制限せざるを得なくな夛、その結果ガラス原
料投入量も制限され、生産性の向上が困難でめった。
The first drawback occurs when trying to increase the production speed of porous glass bodies by increasing the total supply of glass raw materials for core and cladding in order to increase productivity. That is,
When the amount of glass raw material supplied is increased, it is necessary to simultaneously increase the flow rate of H2,02 gas in order to promote the reaction of the glass raw material. Also, in order to prevent the porous glass body from falling when broken, it is necessary to increase the bulk density of the porous glass body! However, if only the glass raw material is increased, the temperature of the surface of the porous glass body on which the glass fine particles are deposited decreases. The bulk density of the porous glass body is closely correlated with the temperature of the part where the glass fine particles are deposited.) When the temperature of the part where the glass fine particles are deposited decreases, the bulk density of the porous glass body decreases.) The porous glass body may crack or fall. becomes more likely to occur. Therefore, it is necessary to increase the flow rate of H2.02 gas to be supplied in order to increase the amount of glass raw material supplied and to prevent the porous glass body from cracking or falling at the time of death. For the above purpose, the amount of H2,02 supplied to the burner was increased, and as the core portion shown as 9 in Fig. 2 grew, it was strongly heated by the flame 4 of the cladding burner 2 and contracted and deformed. may occur. In extreme cases, the lucoa portion 9 may undergo a rapid temperature change due to heating by the flame 4 of the cladding burner 2, causing it to crack and fall. Therefore, in the conventional method, in order to achieve stable production, H2゜0 is supplied to the clad burner 2.
2. As a result, the amount of glass raw materials input was also limited, making it difficult and difficult to improve productivity.

従来法における第2の欠点はコア用ノ(−ナー1によっ
て形成されたコア用ガラス微粒子5のうちで付着堆積し
なかったもの15が排気管12を通ってすみやかに排出
されず、クラッド部表面の一部をつたわって流れ、その
一部がクラッド部に堆積してしまうことにある。この結
果、作製された光コアイノぐ用母材では、コアとクラッ
ド部の境界が不明瞭になル、第3図に示すように屈折率
分布において、コア周辺部のクラッド層に屈折率分布の
傾斜(以下すそ波力と呼ぶ)が生じてしまう。従って、
クラッド部への光のパワー拡がルの影響による伝送損失
増加が生じる単一モード光ファイバでは、第3図に示す
ような屈折率分布のすそ広がシがある場合にクラッド部
への光のパワー拡がりの影響がより大きくなるので、低
損失化が困難であったシ、クラッド部の厚みを厚くする
必要がでてくる。
The second drawback of the conventional method is that among the core glass fine particles 5 formed by the core-forming agent 1, those 15 that have not adhered and deposited are not promptly discharged through the exhaust pipe 12, and the cladding surface As a result, in the fabricated optical core injector base material, the boundary between the core and the cladding becomes unclear. As shown in Fig. 3, in the refractive index distribution, a slope (hereinafter referred to as skirt wave force) of the refractive index distribution occurs in the cladding layer around the core.
In single-mode optical fibers, where the transmission loss increases due to the influence of the power spread of light to the cladding, if there is a base broadening of the refractive index distribution as shown in Figure 3, the power of light to the cladding increases. Since the influence of power spread becomes larger, it becomes necessary to increase the thickness of the cladding part, which has been difficult to reduce loss.

本発明の目的は、上記した従来法の欠点を克服し、多孔
質ガラス体の装造速度を向上できるとともに、すそ拡が
りのない屈折率分布構造を有する伝送特性に優れた単一
モード元ファイバを得ることのできる新規力先ファイバ
用母材の製造方法を提供するところにある。
The purpose of the present invention is to overcome the drawbacks of the conventional methods described above, improve the speed of fabricating a porous glass body, and create a single-mode original fiber with excellent transmission characteristics and a refractive index distribution structure without base broadening. It is an object of the present invention to provide a method for producing a new preform for a fiber-formed fiber.

(問題点を解決するための手段) 本発明者らは鋭意研究の結果、従来法による上記欠点を
克BFiするための手段として、コア用多孔質ガラス体
の側面にガスを吹きつけることにより、クラッド用バー
ナーの火炎によるコア用多孔質ガラス部の強加熱を防止
するとともに、さらに該ガスをコア用バーナーとは多孔
質ガラス体に関し反対側から吹きつけることによル、コ
ア部に付着堆積しなかったコア用ガラス微粒子がクラッ
ド部表面を伝わって流れる仁とを防止し、該ガラス微粒
子をすみやかに排出する本発明の方法に到達した。
(Means for Solving the Problems) As a result of intensive research, the present inventors found that as a means to overcome the above-mentioned drawbacks of the conventional method, by blowing gas on the side surface of the porous glass body for the core, In addition to preventing strong heating of the porous glass part for the core by the flame of the cladding burner, the gas is also blown from the opposite side of the porous glass body from the core burner to prevent the gas from adhering to the core part. The method of the present invention has been achieved, which prevents the core glass fine particles from flowing along the surface of the cladding part and promptly discharges the glass fine particles.

すなわち、本発明it回転する出発棒の先端にコア用バ
ーナ及びクラッド用バーナーにてそれぞれ合成したコア
用及びクラッド用ガラス微粒子を堆積させ、軸方向にコ
ア用多孔質ガラス体と該コア用多孔質ガラス体を取シ曲
むクラッド用多孔質ガラス体を同時に成長させて、コア
部とクラッド部を有する多孔質ガラス体を形成したのち
、該多孔質ガラス体を、加熱脱水処理及び加熱透明化処
理する光ファイバ用母材の製造方法において、実質的に
コア用バーナーの軸と多孔質ガラス体の軸を含む平面内
でかつコア用多孔質ガラス体に関しコア用バーナーとは
反対側に配置されたノズルよりガスをコア用多孔質ガラ
ス体の側面部に吹きつけながら多孔質ガラス体を形成す
ることを特徴とする光ファイバ用母材の製造方法である
That is, in the present invention, glass fine particles for the core and for the cladding synthesized by the burner for the core and the burner for the cladding are deposited on the tip of the rotating starting rod, and the porous glass body for the core and the porous glass body for the core are deposited in the axial direction. A porous glass body for cladding that bends the glass body is simultaneously grown to form a porous glass body having a core portion and a cladding portion, and then the porous glass body is subjected to heating dehydration treatment and heating transparentization treatment. In a method for manufacturing an optical fiber base material, the method is such that the core burner is located within a plane substantially including the axis of the core burner and the axis of the porous glass body, and on the opposite side of the core porous glass body from the core burner. This method of manufacturing an optical fiber preform is characterized in that a porous glass body is formed while blowing gas from a nozzle onto a side surface of a porous glass body for a core.

以下図面を用いて本発明の方法全具体的に説明する。The entire method of the present invention will be explained in detail below with reference to the drawings.

第1図は本発明の一実施例を示す模式図であって、従来
法と異なる点はコア用バーナーとは多孔質ガラス体に関
し反対11にガス吹出用のノズル15が設けられておル
、該ノズル15にガスを供給しコア用多孔質ガラス体9
の側面部にガスを吹きつける点にある。なお反応容器の
図示は省略しである。但し、第1図は、本発明の要旨と
する点Yr−WJl明するだけのもので17各バーナー
、ノズルの詳細な配置関係や、寸法等を何ら限定するも
のではない。第1図に示すような方法によれば、クラッ
ド用バーナー2の火炎4により強く加熱されるコア用多
孔質母材の部分(図中矢印で示したコア用多孔質母材と
クラッド用多孔質母材の境界近傍部)がノズル15から
吹き出されたガスにより冷却され、該部分の温度がさ#
1ど高温にならず、コア用多孔質母材の変形や割れ、落
下を防止することができる。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, which differs from the conventional method in that the core burner is made of a porous glass body and a gas blowing nozzle 15 is provided on the opposite side 11. Gas is supplied to the nozzle 15 and the core porous glass body 9 is
The point is to spray gas onto the sides of the Note that illustration of the reaction container is omitted. However, FIG. 1 is only for illustrating the gist of the present invention, and does not limit the detailed arrangement relationship or dimensions of the 17 burners and nozzles. According to the method shown in FIG. The area near the boundary of the base material is cooled by the gas blown out from the nozzle 15, and the temperature of this area decreases.
It is possible to prevent the porous base material for the core from deforming, cracking, or falling without ever increasing the temperature.

さらに、ノズル15から吹き出されたガスの流れ(図中
、斜線部16で示した)により、コア用多孔質ガラス体
9上に堆積しなかったコア用ガラス微粒子13がクラッ
ド部表面に達することができず、すみやかに排気管12
を通って排出され、コア用ガラスぶ料の一部がクラッド
用多孔質ガラス体10表面で付着することがなく、第4
図に示すよ5を屈折率分布のすそ拡ルの殆んどない単一
モード光ファイバ用母材を得るこ 。
Furthermore, the flow of gas blown out from the nozzle 15 (indicated by a shaded area 16 in the figure) prevents the core glass fine particles 13 that have not been deposited on the core porous glass body 9 from reaching the cladding surface. If this is not possible, immediately remove the exhaust pipe 12.
A part of the glass material for the core does not adhere to the surface of the porous glass body 10 for the cladding, and the fourth
As shown in Fig. 5, it is possible to obtain a base material for a single mode optical fiber with almost no base widening of the refractive index distribution.

とができる。尚、吹きつけるガスの種類としてはN2ガ
ス02ガス不活性ガス空気などが取扱いが容易である為
好ましいが、特に常置が生じない限シ、いかなるガスを
用いても問題はな込。
I can do that. As for the type of gas to be blown, N2 gas, 02 gas, inert gas, air, etc. are preferable because they are easy to handle, but there is no problem with using any gas as long as it does not remain permanently in place.

また第1図に示し良ように付着堆積しなかったクラッド
用ガラス微粒子14の排出の為に新たに排気管12’′
fr−設けることも好ましい。
In addition, a new exhaust pipe 12'' was installed to discharge the glass fine particles 14 for cladding that did not adhere and accumulate as shown in FIG.
It is also preferable to provide fr-.

(実施例) 実施例1 コア用バーナー1に81R4ft75667分、GaC
l2を6cc1分、H2ガス2.5 II 7分、02
ガス8J/分及びAr  ガス543/分を供給し、ク
ラッド用バーナー2に131014を800cc/分、
H2ガス20J/分、02ガス2 s 47分及びムr
ガス15J/分を供給し、コア用ガラス微粒子5とクラ
ッド用ガラス微粒子6t−形成し、30rpmで回転す
る1 8N1φの出発石英棒8の先端にコア部とクラッ
ド部を有する外径115nφの多孔質ガラス体を軸方向
成長速度55jIIIlハrで形成した。この時第1図
のごとくコア用バーナー1とはコア用多孔質ガラス体9
に菌し反対側に配置されるよう内径5關φの石英ガラス
製ノズル15を設は該ノズル15によりコア用多孔質ガ
ラス体9の側面部にN2  ガスk104/分の流量で
吹きつけた。尚全く同一のガラス微粒子合成条件でノズ
ル15を設けなかった場合には、クラッド用バーナー2
の火炎4によりコア用多孔質ガラス体9が収縮変形し安
定な多孔質ガラス体形成ができなかった。このようにし
て得られた多孔質ガラス体を、Hθ:、C/=99=1
の雰囲気で温度1050Cに昇温された電気炉により加
熱脱水処理をしたのち、HelOO%、1650Cの電
気炉中で透明ガラス化処理を行った。その結果、第5図
に示す屈折率分布を有する光ファイバ用母材を得た。該
母材をファイバ化後コア径が7.8μm になるよう所
定径に延伸し、市販の天然石英管(OH基含有量的10
0 ppm )内に挿入、一体化したのち外径f 25
 ttm  に線引した結果得られたファイバーは、波
長1.3μm での伝送損失値は0.396B/Km、
1.59μmでのOH基による吸収損失はα86B /
 Kmと優れたものであった。
(Example) Example 1 81R4ft75667min, GaC in core burner 1
6cc of l2 for 1 minute, H2 gas 2.5 II 7 minutes, 02
Gas 8 J/min and Ar gas 543/min were supplied, and 131014 was supplied to cladding burner 2 at 800 cc/min.
H2 gas 20J/min, 02 gas 2s 47min and mr
Gas is supplied at 15 J/min to form core glass particles 5 and cladding glass particles 6t, and a porous material with an outer diameter of 115 nφ having a core portion and a cladding portion is placed at the tip of a starting quartz rod 8 of 18N1φ which is rotated at 30 rpm. The glass body was formed at an axial growth rate of 55jIII1 hr. At this time, as shown in Fig. 1, the core burner 1 is a porous glass body 9 for the core.
A quartz glass nozzle 15 with an inner diameter of 5 φ was installed on the opposite side of the core porous glass body 9 to spray N2 gas at a flow rate of k104/min. In addition, if the nozzle 15 is not provided under exactly the same glass particle synthesis conditions, the cladding burner 2
The core porous glass body 9 contracted and deformed due to the flame 4, and a stable porous glass body could not be formed. The porous glass body thus obtained is Hθ:, C/=99=1
After heat dehydration treatment was performed in an electric furnace heated to 1050C in an atmosphere of 1000C, transparent vitrification treatment was performed in an electric furnace at HelOO% and 1650C. As a result, an optical fiber preform having the refractive index distribution shown in FIG. 5 was obtained. After forming the base material into a fiber, it was drawn to a predetermined diameter so that the core diameter was 7.8 μm.
0 ppm) and integrated into the outer diameter f 25
The fiber obtained as a result of drawing at ttm has a transmission loss value of 0.396B/Km at a wavelength of 1.3μm,
The absorption loss due to OH group at 1.59 μm is α86B /
Km was excellent.

比較例1 実施例1で示した条件でノズル15を用いない場合多孔
質ガラス休作#ができなかったので、多孔質ガラス体製
造速度を実施例1の約半分として第6図に示す屈折率分
布を有する光7アイパ用母材を作成してファイバ化し、
その伝送損失を測定した。その結果1.3μm での伝
送損失は0.7 dB / K+a 、  1.39 
μ+11でのOH基による吸収損失は8 (IB / 
Kmと実施例に比べ劣っていた。
Comparative Example 1 When the nozzle 15 was not used under the conditions shown in Example 1, porous glass suspension # could not be obtained, so the refractive index shown in FIG. Create a base material for an optical 7-eyeper with a distribution and make it into a fiber,
The transmission loss was measured. As a result, the transmission loss at 1.3 μm is 0.7 dB/K+a, 1.39
The absorption loss due to OH group at μ+11 is 8 (IB/
Km was inferior to that of the example.

この際加熱脱水処理、透明ガラス化処理線引条件、コア
径、クラツド径コアの屈折率は実施例と同様であったの
で、伝送損失の劣化は第6図にみられる屈折率分布のす
そ拡シが原因であると推定された。尚、多孔質母材の製
造時には、コア用バーナー1にSin/4を40cc/
分、Ge Oj! 4を3.8cc/分、H2ガス2.
2)7分、02ガス8J/分、 Ar  ガス3ノ/分
、クラッド用バーナーにはBIOI  f400cc7
分、H2ガスを12.、e7分02ガスを1017分、
Arガスを62/分供給し、外径80.φの多孔質ガラ
ス体ヲ35w/hr  の軸方向成長速度で形成した。
At this time, the heating dehydration treatment, transparent vitrification treatment, wire drawing conditions, core diameter, and cladding diameter were the same as in the examples, so the deterioration in transmission loss was due to the expansion of the refractive index distribution seen in Figure 6. It was assumed that this was caused by In addition, when producing the porous base material, 40cc/40cc of Sin/4 was added to the core burner 1.
Min, Ge Oj! 4 at 3.8cc/min, H2 gas 2.
2) 7 minutes, 02 gas 8J/min, Ar gas 3 no/min, BIOI f400cc7 for cladding burner
12 minutes of H2 gas. , e7 min 02 gas for 1017 min,
Ar gas was supplied at 62/min, and the outer diameter was 80. A porous glass body having a diameter of φ was formed at an axial growth rate of 35 w/hr.

(発明の効果) 以上説明したように本発明の光ファイバ母材装造方法は
多孔質ガラス体の創造速度を上げる際に生ずるコア用多
孔質ガラス体のクラッド用バーナーの火炎による変形、
割れ、落下など防止することができ、また屈折率分布に
おけるすそ拡りを少なくし伝送特性に秀れた単一モード
光ファイバを得ることができるので製造効率、品質の両
者を向上できる非常に優れた方法である。
(Effects of the Invention) As explained above, the method for assembling an optical fiber preform of the present invention prevents the deformation of the porous glass body for the core due to the flame of the burner for the cladding, which occurs when the creation speed of the porous glass body is increased.
It is an extremely excellent material that can improve both manufacturing efficiency and quality because it can prevent cracking and falling, and it can also reduce the widening of the base in the refractive index distribution and produce a single mode optical fiber with excellent transmission characteristics. This is a method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様を示す模式図、第2図は従
来のVAD法による単一モード光ファイバ用多孔質ガラ
ス体の製造方法を示す図、第3図は従来法により作製し
たすそ拡シのある屈折率分布を示すグラフ、 第4図は本発明により得られるすそ拡りの殆んどない屈
折率分布を示すグラフ、 第5図は実施例において得られた屈折率分布を示すグラ
フ 第6図は比較例において得られた屈折率分布を示すグラ
フである。
Figure 1 is a schematic diagram showing one embodiment of the present invention, Figure 2 is a diagram showing a method for manufacturing a porous glass body for single mode optical fiber using the conventional VAD method, and Figure 3 is a diagram showing a method for manufacturing a porous glass body for a single mode optical fiber using the conventional VAD method. FIG. 4 is a graph showing a refractive index distribution with a base expansion, FIG. 4 is a graph showing a refractive index distribution with almost no base expansion obtained by the present invention, and FIG. 5 is a graph showing a refractive index distribution obtained in an example. The graph shown in FIG. 6 is a graph showing the refractive index distribution obtained in the comparative example.

Claims (1)

【特許請求の範囲】[Claims] (1)回転する出発棒の先端にコア用バーナ及びクラッ
ド用バーナーにてそれぞれ合成したコア用及びクラッド
用ガラス微粒子を堆積させ軸方向にコア用多孔質ガラス
体と該コア用多孔質ガラス体を取り囲むクラッド用多孔
質ガラス体を同時に成長させて、コア部とクラッド部を
有する多孔質ガラス体を形成したのち、該多孔質ガラス
体を、加熱脱水処理及び加熱透明化処理する光ファイバ
用母材の製造方法において、実質的にコア用バーナーの
軸と多孔質ガラス体の軸を含む平面内でかつコア用多孔
質ガラス体に関しコア用バーナーとは反対側に配置され
たノズルよりガスをコア用多孔質ガラス体の側面部に吹
きつけながら多孔質ガラス体を形成することを特徴とす
る光ファイバ用母材の製造方法。
(1) On the tip of a rotating starting rod, deposit glass particles for the core and cladding synthesized using a burner for the core and a burner for the cladding, respectively, and form the porous glass body for the core and the porous glass body for the core in the axial direction. An optical fiber base material in which a surrounding porous glass body for cladding is simultaneously grown to form a porous glass body having a core part and a cladding part, and then the porous glass body is subjected to heating dehydration treatment and heating transparentization treatment. In the manufacturing method, gas is supplied to the core from a nozzle arranged in a plane substantially including the axis of the core burner and the axis of the porous glass body and on the opposite side of the core porous glass body from the core burner. 1. A method for producing an optical fiber preform, comprising forming a porous glass body by blowing onto a side surface of the porous glass body.
JP6920485A 1985-04-03 1985-04-03 Preparation of parent material for optical fiber Pending JPS61227937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6920485A JPS61227937A (en) 1985-04-03 1985-04-03 Preparation of parent material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6920485A JPS61227937A (en) 1985-04-03 1985-04-03 Preparation of parent material for optical fiber

Publications (1)

Publication Number Publication Date
JPS61227937A true JPS61227937A (en) 1986-10-11

Family

ID=13395959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6920485A Pending JPS61227937A (en) 1985-04-03 1985-04-03 Preparation of parent material for optical fiber

Country Status (1)

Country Link
JP (1) JPS61227937A (en)

Similar Documents

Publication Publication Date Title
KR830002158B1 (en) Method for forming optical waveguide preform having continuously removable starting member
CA1148341A (en) Fabrication method of single-mode optical fiber preforms
FI68391B (en) CONTAINER CONTAINER FOIL FRAMEWORK FOR FRAMSTAELLNING AV ETT AEMNE FOER EN OPTISK VAOGLEDARE
US4233045A (en) Apparatus and method for making optical filament preform
GB2128982A (en) Fabrication method of optical fiber preforms
JPS5939742A (en) Optical fiber preform and manufacture
JP3653902B2 (en) Glass base material synthesis burner and glass base material manufacturing method
JPS61227937A (en) Preparation of parent material for optical fiber
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
KR20020067992A (en) Method of forming soot preform
JPH0327493B2 (en)
JPS58135147A (en) Preparation of base material for optical fiber
JP2545408B2 (en) Method of manufacturing optical waveguide stop preform
JPS62162637A (en) Production of optical fiber preform
JPS6227343A (en) Production of base material for single mode optical fiber
JP4185304B2 (en) Method for producing porous preform for optical fiber
JPS6011241A (en) Manufacture of base material for optical fiber
JPH0459626A (en) Formation of porous glass
JPS63156032A (en) Formation of suit for preform
JPS6259063B2 (en)
JPH04119940A (en) Production of glass body
JPS60122737A (en) Manufacture of parent material for optical fiber
JPH06122527A (en) Production of optical fiber preform
JPH01203238A (en) Production of optical fiber preform
JPH0712951B2 (en) Method for manufacturing base material for optical fiber