JPS60122737A - Manufacture of parent material for optical fiber - Google Patents

Manufacture of parent material for optical fiber

Info

Publication number
JPS60122737A
JPS60122737A JP22704483A JP22704483A JPS60122737A JP S60122737 A JPS60122737 A JP S60122737A JP 22704483 A JP22704483 A JP 22704483A JP 22704483 A JP22704483 A JP 22704483A JP S60122737 A JPS60122737 A JP S60122737A
Authority
JP
Japan
Prior art keywords
burner
base material
optical fiber
core
clad layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22704483A
Other languages
Japanese (ja)
Other versions
JPS624331B2 (en
Inventor
Hiroo Kanamori
弘雄 金森
Naoki Yoshioka
直樹 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22704483A priority Critical patent/JPS60122737A/en
Publication of JPS60122737A publication Critical patent/JPS60122737A/en
Publication of JPS624331B2 publication Critical patent/JPS624331B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/54Multiple burner arrangements combined with means for heating the deposit, e.g. non-deposition burner
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position

Abstract

PURPOSE:To manufacture a parent material having an uniform composition in the longitudinal direction whose greater part can be effectively utilized for an optical fiber by changing the time to start the charging of a glass material into each burner in the manufacture of a porous parent material by a VAD process. CONSTITUTION:The raw material is firstly charged only into a burner 10 for the clad, and only an oxyhydrogen flame is passed through burners 9 and 10 to grow the first clad layer 14 on a starting material 12. When the diameter of the first clad layer 14 becomes approximately equal to the diameter of the first clad layer when the shape of an amorphous parent material is stabilized, the raw material is also charged into the burner 9 for the core and only the oxyhydrogen flame is passed through the burner 11. The starting material 12 is pulled upward in accordance with the growth of a core part 13. When the second clad layer 15 can be deposited on the side surface of the first clad layer 14, the raw material is also charged into the burner 11 for the clad. The second clad layer 15 is successively deposited on the first clad layer 14 to manufacture the parent material for an optical fiber.

Description

【発明の詳細な説明】 (技術分野) 本発明はWAD法による光ファイバ用多孔負母材の製造
方法に関し、特に複数のガラス微粒子合成用バーナーを
用いて光フアイバ用多孔質母材を製造する際に、長手方
向に均一であり、光ファイバとして有効利用できる部分
の多い多孔質母材の製造に関するものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a method for manufacturing a porous negative base material for optical fibers by the WAD method, and particularly for manufacturing a porous base material for optical fibers using a plurality of burners for synthesizing glass fine particles. In particular, it relates to the production of a porous preform that is uniform in the longitudinal direction and has many parts that can be effectively used as optical fibers.

(背景技術〕 複数のバーナーを用いたVAD法による光フアイバ用多
孔質母材の製造方法を第1図を用いて説明する。第1図
1aJは単一モードファイバ用多孔質母札第1図(bl
はマルチモードファイバ用多孔質母材の製造方法の1例
を模式的に示したものである。コア部を形成するための
ガラス微粒子合成用バーナー(以下単にコア用バーナー
と呼ぶ)1から燃焼用ガス、助燃カスとともにBit4
4. Che014 などのガラス原料を噴出さセ、火
炎内での加水分解反応忙より、ガラス微粒子を形成させ
、該ガラス微粒子を出発材30片端忙堆積させる。出発
材4を回転・引上装置4により回転させながら上方に引
き上げていくことによりコア部に相当するガラス微粒子
の堆積体3が軸方向に成長してい(。同時にクラッド部
を形成するためのバーナー(クラッド用バーナーと呼ぶ
)2によりコア部6の外周部にクラッド部に相当するガ
ラス微粒子堆積体6が形成されてい(。7は反応容器8
は排気管である。
(Background Art) A method for manufacturing a porous base material for an optical fiber by a VAD method using a plurality of burners will be explained with reference to FIG. 1. (bl
1 schematically shows an example of a method for manufacturing a porous base material for a multimode fiber. Bit 4 along with combustion gas and auxiliary combustion residue from a burner for synthesizing glass fine particles (hereinafter simply referred to as core burner) 1 for forming the core part
4. When a glass raw material such as Che014 is ejected, fine glass particles are formed through a hydrolysis reaction in a flame, and the glass fine particles are deposited on one end of the starting material 30. By pulling the starting material 4 upward while rotating it using the rotating/pulling device 4, a deposit 3 of glass particles corresponding to the core portion grows in the axial direction (at the same time, a burner is used to form the cladding portion). (referred to as a cladding burner) 2 forms a glass particle deposit 6 corresponding to a cladding part on the outer periphery of the core part 6 (7 is a reaction vessel 8).
is the exhaust pipe.

従来、複数のバーナーを用いて、多孔質母材を形成する
際に各バーナーから同時にガラス原料を投入し始めるこ
とが一般的である。この際の欠点を図面を用いて説明す
る。第2図は単一モードファイバの多孔質母材の成長過
程を模式的に表わしたものである。第2図(al及び(
b)に於いてはコア用バーナー9及び2本のり2ツド用
バーナ10,11(コア用バーナーに近い方のクラッド
用バーナーを第1クラツド用バーナー10、遠い方のバ
ーナーを第2り2ツド用バーナー11と称する)を用い
ているが各バーナーから同時にガラス原料を噴出させ始
めている。
Conventionally, when forming a porous base material using a plurality of burners, it is common to start charging glass raw materials from each burner at the same time. The drawbacks in this case will be explained using the drawings. FIG. 2 schematically shows the growth process of a porous base material of a single mode fiber. Figure 2 (al and (
In b), the burner 9 for the core and the two burners 10 and 11 for the cladding (the burner for the cladding that is closer to the burner for the core is the burner 10 for the first cladding, and the burner that is farther away from the burner for the cladding is the burner 10 for the cladding 1st, and the burner for the cladding that is farther from the burner for the core is the burner 10 for the cladding 2nd The glass raw materials are started to be ejected from each burner at the same time.

このようにして多孔質母材を形成した場合には、■第2
図(alに示されるように第2クラツド用)(−ナーに
より形成される第2クラッド層15が出発材12の先端
よりかなり上部の位置より形成され始め、さらに■コツ
部3の成長に伴い、出発材が引上げられていくため第1
クラツドノ(−ナーにより形成される第1タラツドノー
14及び第2クラッド層15が所望の外径にまで成長す
るまでの過渡的時間が長くなる。このことにより、第2
図+1))に示すように、形成された多孔質母材に於い
て、外径の不均一な部分の占める割合が高(なり笑際に
光7アイノくとして有効利用できる部分(斜線部)は小
さくなり生産性か低下する。
When a porous base material is formed in this way,
The second cladding layer 15 formed by the -ner begins to form from a position considerably above the tip of the starting material 12, and as the tip part 3 grows, , as the starting material is being pulled up, the first
The transition time required for the first cladding layer 14 and the second cladding layer 15 formed by the cladding layer to grow to a desired outer diameter becomes longer.
As shown in Figure 1), the formed porous base material has a high proportion of areas with non-uniform outer diameters (areas that can be effectively used as optical fibers (hatched area)). becomes smaller and productivity decreases.

マルチモード光ファイバの多孔質母材作製の際にも同様
なことが言える。第6図堕1及び(blはマルチモード
・コアイノくの多孔質母材の成長過程を模式的に表わし
たものである。第3図に於いて16はコア用バーナー1
7はクラッド用)(−ナ18は;ア部19はクラッド部
20は出発材である。この場合でも、やはり、コア用バ
ーf−16とクラッド用バーナー17から同時にガラス
原料を噴出させ始めると、単一モードファイバ用多孔質
母材製造の場合と同様にクラッド部19は出発材20の
先端よりかなり上部から形成され始め、さらにコア部1
8の成長に伴い出発材が引上げられていく為、クラッド
部が所定の径にまで成長するまでの過渡的時間が長くな
り、母材中に占め、る非有効部分の割合が増す。
The same thing can be said when producing a porous base material for a multimode optical fiber. Figure 6 (1) and (BL) schematically represent the growth process of the porous base material of the multi-mode core. In Figure 3, 16 is the core burner 1.
7 is for the cladding) (-na 18 is; A part 19 is the cladding part 20 is the starting material. In this case as well, if you start blowing out the glass raw material from the core bar f-16 and the cladding burner 17 at the same time. As in the case of producing a porous preform for a single mode fiber, the cladding part 19 begins to be formed well above the tip of the starting material 20, and furthermore, the cladding part 19 begins to be formed well above the tip of the starting material 20.
Since the starting material is pulled up as the cladding part 8 grows, the transition time until the cladding part grows to a predetermined diameter becomes longer, and the proportion of the ineffective portion in the base material increases.

(発明の目的〕 本発明の目的は複数のバーナーを用いて多孔質母材を形
成する際、従来法におけるようにガラス原料を同時に各
バーナーから噴出させることによって生じる。前述した
ような欠点を克服し、作成した多孔質母材中で有効利用
できる部−分の割合を増すための方法を提供することに
ある。
(Objective of the Invention) The object of the present invention is to overcome the above-mentioned drawbacks when forming a porous matrix using a plurality of burners, by simultaneously ejecting glass raw materials from each burner as in the conventional method. However, it is an object of the present invention to provide a method for increasing the proportion of the portion that can be effectively utilized in the prepared porous base material.

(発明の構成〕 本発明は、T/AD法により複数のガラス微粒子合成用
バーナーを用いて光ファイバ用多孔賀母材を形成する際
に、ガラス原料の投入開始時間を各バーナー毎に変化さ
せることにより、fJ(J記目的を達成する方法につい
て述べたものである。
(Structure of the Invention) The present invention is characterized in that when forming a perforated base material for optical fiber using a plurality of burners for synthesizing glass fine particles by the T/AD method, the start time of introducing glass raw materials is changed for each burner. This article describes how to achieve the objectives of fJ.

すなわち本発明の要旨はVAD法により、複数のガラス
微粒子合成用バーナーを用いて光フアイバ用多孔質母材
を製造する際に、各バーナー毎へのガラス原料の投入開
始時間を変えることを特徴とする光フアイバ用母材の製
造方法を提供するところにある。
That is, the gist of the present invention is that when producing a porous base material for optical fiber using a plurality of burners for synthesizing glass fine particles by the VAD method, the time at which glass raw materials are started to be introduced into each burner is changed. An object of the present invention is to provide a method for manufacturing an optical fiber base material.

特に単一モード光ファイバ用多孔質母材作製の場合は第
1り2ツド用バーナー、コア用バーナー、第2り2ツド
用バーナー、第3クシツド用バーナーという順序で原料
投入を開始し、マルチモード光フアイバ用多孔質母林作
製の場合はコア用バーナー、り2ツド用バーナー、とい
う順序で原料投入を開始するとより効果的である。
In particular, when producing a porous base material for a single mode optical fiber, start adding raw materials in the order of the burner for the first and second wires, the core burner, the second and second wire burners, and the third burner for the third wire. In the case of producing a porous mother forest for mode optical fibers, it is more effective to start adding raw materials in the order of the core burner and the radial burner.

以下本発明につき、図面を用いて説明をする。The present invention will be explained below with reference to the drawings.

第2崗或いは第3図に示したように複数のパ−ナーを用
いて多孔質母材を形成する際、原料投入を各バーナーと
も同時に行う場合には長さ方向に外径が不均一である部
分の比率が多い。多孔質母材形成において一般的に原料
投入開始直後から多孔質母材形状が一定となるまでの過
渡的時間がある。この過渡的時間の間に形成された多孔
質母材は外径が変動しており光ファイバとして使用でき
ない訳であるが、原料投入を各バーナーとも同時に行う
と、この過渡的時間内に形成される部分が多(なる。−
力木発明の方法は、IjX料投大投入時間バーナーにつ
いてずらすことにより過渡的時間内に形成される部分を
小さくすることが可能となる。第4図(aJ〜<crは
、単一モード光ファイバ用多孔質母材の形成時に本発明
を適用する際の方法を示している。第4図中の符号は第
2図で説明したのと同じものを意味する。まず最初に第
1クラツド用バーナー10のみに原料投入を始めバーナ
ー9,11は酸水素炎のみを流すことにより第4図(a
Jに示すように第1クラッド層14のみが出発材12上
に成長する。この時、出発材12は上方へ引き上げられ
ていない。第1クラッド層の径が多孔質母材形状が安定
した時の第1クラッド層の径にほぼ等しくなった状態で
コア用バーナ9へも原料投入を始めバーナー11は酸水
素のみを流した状態で、コア部13を形成していきコア
部の成長に合わせて出発材を上方に引き上げてい<(b
l。第2クラツド用バーナー11の原料は、第1クラッ
ド層が長手方向に引き上げられていき、第2クラッド層
が第1クーラッド層の側面に堆積できる状態になった時
点で投入を開始する(cJo第2クラッド層の形状が一
定になるまでの過渡的時間は第2クラッド層が第1クラ
ッド層上に堆積し始めてい(ので、各バーナー同時に原
料を投入する場合(第2図)に比べ格段に短か(なる。
When forming a porous base material using the second burner or multiple burners as shown in Figure 3, if raw materials are input to each burner at the same time, the outer diameter may be uneven in the length direction. The proportion of a certain part is high. In the formation of a porous base material, there is generally a transitional time from immediately after the start of raw material input until the shape of the porous base material becomes constant. The outer diameter of the porous base material formed during this transitional time fluctuates and it cannot be used as an optical fiber, but if raw materials are input to each burner at the same time, the porous base material formed during this transitional time will not be able to be used as an optical fiber. There are many parts that are
The method of the Rikiki invention makes it possible to reduce the portion formed during the transient time by staggering the IjX injection time with respect to the burner. FIG. 4 (aJ~<cr indicates the method of applying the present invention when forming a porous preform for a single mode optical fiber. The symbols in FIG. 4 are the same as those explained in FIG. 2. This means the same thing as in Fig. 4 (a).First of all, the raw material is introduced only into the burner 10 for the first cladding, and the burners 9 and 11 are made to flow only with oxyhydrogen flame.
Only the first cladding layer 14 is grown on the starting material 12, as shown in FIG. At this time, the starting material 12 is not pulled upward. When the diameter of the first cladding layer is approximately equal to the diameter of the first cladding layer when the shape of the porous base material is stabilized, raw materials are also started to be fed into the core burner 9, and the burner 11 is in a state where only oxyhydrogen is flowing. Then, the core part 13 is formed and the starting material is pulled upward as the core part grows.
l. The raw material for the second cladding burner 11 is started when the first cladding layer is pulled up in the longitudinal direction and the second cladding layer can be deposited on the side surface of the first cladding layer (cJo The transition time until the shape of the second cladding layer becomes constant is that the second cladding layer begins to deposit on the first cladding layer (so the time required for the shape of the second cladding layer to become constant is much longer than when raw materials are charged to each burner at the same time (Figure 2). Is it short?

その結果、第4図(C1に示すように外径が均一で有効
利用できる部分(斜線部〕の比率の大きい多孔質母材を
得ることが可能となる。
As a result, as shown in FIG. 4 (C1), it is possible to obtain a porous base material with a uniform outer diameter and a large proportion of effectively usable portions (hatched portions).

次にマルチモード光ファイバ用多孔賀母材形成時に本発
明の適用方法について第5図tar t tblを用い
て説明する。第5図中の符号は第3図で説明したのと同
じものを意味する。まずコア用バーナー16にのみ原料
投入を開始し、クラッド用バーナー17は酸水素炎のみ
の状態で、コア部の径が安定した時の径にほぼ等しくな
るまで成長した段階で、コア部の軸方向の成長に会わせ
て出発材を上方に引き上げていく。クラッド用バーナ1
7の原料はコア部が軸方向に引上げられていきり2ラド
層がコア部の側面に堆積できる状態になった時点で投入
を開始する。クラッド層の形状が一定になるまでの過渡
的時間はり2ラド層がコア部の側面から堆積していくの
で第3図に示したようにコア用バーナー及びクラッド用
バーナーから同時に原料投入した場合よりも格段に短か
(なる。その結果第5図(bJに示すように外径が均一
で有効利用できる部分(斜線部)の比率の大きい多孔質
母材を得ることができる。
Next, a method of applying the present invention to the formation of a perforated base material for a multimode optical fiber will be explained using FIG. The symbols in FIG. 5 have the same meanings as explained in FIG. 3. First, raw materials are started to be input only to the core burner 16, and the cladding burner 17 is in a state of only oxyhydrogen flame, and when the diameter of the core grows to be almost equal to the stable diameter, the axis of the core The starting material is pulled upward to match the growth in the direction. Burner 1 for cladding
The raw material No. 7 is started to be introduced when the core part is pulled up in the axial direction and a second layer can be deposited on the side surface of the core part. The transition time until the shape of the cladding layer becomes constant is 2 rad layers are deposited from the side of the core part, so it takes longer time than when raw materials are input from the core burner and cladding burner at the same time as shown in Figure 3. As a result, as shown in FIG. 5 (bJ), it is possible to obtain a porous base material with a uniform outer diameter and a large proportion of the effectively usable portion (hatched area).

(実施例1) 単一モード光ファイバ用多孔質母材の合成に於いて、原
料投入開始時間をコア用バーナー、第1クラツド用バー
ナー、第2クラツド用バーナーで同時にした場合(A1
本発明に従ってずらせた場合(Blを比較した結果を示
す。tAIとtBlとで多孔質母材形成の為の各種条件
は原料投入時間以外は全(同一である。表1に多孔質母
材の形成条件を示す。(Blの場合第1クラツド用原料
投入からコア用原料投入までの時間は30分、第2クラ
ツド用原料投入までの時間は60分であった。この時、
tAIの場合得られた母材の有効部の光フアイバ換算長
は約60軸であったのに対しく81の場合は約807.
であり、本発明の効果が太(実施例2) iルナモード光ファイバ用多孔質母材の合成に於いて、
原料投入開始時間をコア用バーナーとクラッド用バーナ
ーで同時にした場合(+1と本発明を用いて、原料投入
開始時間を変えた場合(DIを比較した結果を示す。(
CIと(DIとで多孔質母材形成の為の各種製造条件は
原料投入開始時間以外は全く同一である。表2に多孔質
母材の形成条件を示す。(DIの場合はコア用原料投入
からクラッド用原料投入までの時間は45分間であった
。この時(CIの場合、得られた母材の有効部の光フア
イバ換算長は約2072であったのに対しくDIの場合
は、約24icMであり本発明による効果が見られる。
(Example 1) In the synthesis of a porous preform for a single-mode optical fiber, when the raw material input start time was set at the same time for the core burner, the first cladding burner, and the second cladding burner (A1
The results of comparing Bl when staggered according to the present invention are shown. The various conditions for forming a porous base material for tAI and tBl are all the same except for the raw material input time. The formation conditions are shown below. (In the case of Bl, the time from inputting the raw material for the first cladding to the inputting the raw material for the core was 30 minutes, and the time from inputting the raw material for the second cladding was 60 minutes. At this time,
In the case of tAI, the optical fiber equivalent length of the effective part of the base material obtained was about 60 axes, whereas in the case of 81, it was about 807.
Therefore, the effects of the present invention are significant (Example 2) In the synthesis of a porous preform for a lunar mode optical fiber,
The results of comparing DI are shown when the raw material input start time is set at the same time for the core burner and the cladding burner (+1) and when the raw material input start time is changed using the present invention (DI).
The various manufacturing conditions for forming the porous base material for CI and (DI) are completely the same except for the raw material input start time. Table 2 shows the formation conditions for the porous base material. The time from the input to the input of the raw material for cladding was 45 minutes.At this time (in the case of CI, the optical fiber equivalent length of the effective part of the obtained base material was about 2072, whereas in the case of DI , about 24 icM, and the effect of the present invention can be seen.

(発明の効果) 以上詳述したところからも明ら、かなように、従来法に
比べ本発明の方法は、光フアイバ母材において長手方向
に外径が均一で光ファイバーとして有効利用できる部分
の比率のはるかに高い優れた母材を製造する方法である
(Effects of the Invention) As is clear from the above detailed description, compared to the conventional method, the method of the present invention has a uniform outer diameter in the longitudinal direction of the optical fiber base material and the ratio of the portion that can be effectively used as an optical fiber. This is a method for producing superior base materials with much higher

【図面の簡単な説明】[Brief explanation of drawings]

第1 tt ; (at単一モードファイバ用多孔質母
材製造方法の一例を模式的に示す概念図。 (blマルチモード7アイパ用多孔質母林製造方法の一
例を模式的に示す概念図。 第2図;本発明によらない場合の単一モードファイバ用
多孔質母材の成長過程を説明 する概念図。 第5囚;本発明によらない場合のマルチモードファイバ
用多孔質母材の成長過aを説 明する概念図。 第4図(ILlへ<aに本発明の方法による単一モード
ファイバ用多孔賀母材の成長過程を説 明する概念図。 第5図(al l (bl ;本発明の方法によるマル
チモードファイバ用多孔質母材の成長過程を 説明する概念図。 〔なお図中、バーナーからの炎が梨地にて示されている
ものは、l1jL科を眞している状態を示しており、炎
が無地にて示されているものは原料を流していないが酸
水素等の炎は点火されている状態を示す。〕 代理人 内 1) 明 代理人 萩 原 亮 − 第2図
1st tt; (at Conceptual diagram schematically showing an example of a method for manufacturing a porous matrix for single mode fiber. (bl Conceptual diagram schematically showing an example of a method for manufacturing a porous matrix for multimode 7 eyeglass. Figure 2: A conceptual diagram explaining the growth process of a porous base material for a single mode fiber when not according to the present invention. Fifth Figure: Growth of a porous base material for a multimode fiber when not according to the present invention Fig. 4 (A conceptual diagram explaining the growth process of a porous base material for single mode fiber by the method of the present invention. Fig. 5 (al l (bl; book) A conceptual diagram explaining the growth process of a porous base material for a multimode fiber by the method of the invention. The flame shown in plain color indicates that the raw material is not flowing, but the flame of oxyhydrogen, etc. is ignited.] Agents 1) Akira Agent Ryo Hagiwara - 2nd figure

Claims (3)

【特許請求の範囲】[Claims] (1)VAD法により、複数のガラス微粒子合成用バー
ナーを用いて光フアイバ用多孔質母材を製造する際に、
各バーナー毎へのガラス原料の投入開始時間を変えるこ
とを特徴とする光フアイバ用母材の製造方法。
(1) When manufacturing a porous base material for optical fiber using multiple glass particle synthesis burners by the VAD method,
A method for producing a base material for optical fiber, characterized by changing the start time of charging glass raw materials to each burner.
(2) まずコア周辺部のクラッド層を形成するための
バーナーに、次いで、コア部を形成するためのバーナー
に次いで、前記クラッド層の周囲にさらにクラッド層を
形成するためのバーナーに順次ガラス原料を投入してい
(特許請求の範囲第1項に記載の光フアイバ用母材の製
造方法。
(2) The glass raw material is first sent to a burner for forming a cladding layer around the core, then to a burner for forming a core, and then to a burner for forming a cladding layer around the cladding layer. (a method for producing an optical fiber base material according to claim 1).
(3) まず、コア部を形成するためのバーナーに次い
でクラッド層を形成するためのバーナーに順次ガラス原
料を投入していく特許請求の範囲第1項に記載の元ファ
イバ用母材の製造方法。
(3) The method for manufacturing a base material for an original fiber according to claim 1, in which glass raw materials are sequentially introduced into a burner for forming a core portion and then a burner for forming a cladding layer. .
JP22704483A 1983-12-02 1983-12-02 Manufacture of parent material for optical fiber Granted JPS60122737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22704483A JPS60122737A (en) 1983-12-02 1983-12-02 Manufacture of parent material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22704483A JPS60122737A (en) 1983-12-02 1983-12-02 Manufacture of parent material for optical fiber

Publications (2)

Publication Number Publication Date
JPS60122737A true JPS60122737A (en) 1985-07-01
JPS624331B2 JPS624331B2 (en) 1987-01-29

Family

ID=16854641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22704483A Granted JPS60122737A (en) 1983-12-02 1983-12-02 Manufacture of parent material for optical fiber

Country Status (1)

Country Link
JP (1) JPS60122737A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196388A (en) * 2015-04-06 2016-11-24 信越化学工業株式会社 Production method of porous glass preform
WO2017161094A1 (en) * 2016-03-18 2017-09-21 Corning Incorporated Burner design for particle generation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196388A (en) * 2015-04-06 2016-11-24 信越化学工業株式会社 Production method of porous glass preform
WO2017161094A1 (en) * 2016-03-18 2017-09-21 Corning Incorporated Burner design for particle generation
US10562804B2 (en) 2016-03-18 2020-02-18 Corning Incorporated Burner design for particle generation
US11667558B2 (en) 2016-03-18 2023-06-06 Corning Incorporated Burner design for particle generation

Also Published As

Publication number Publication date
JPS624331B2 (en) 1987-01-29

Similar Documents

Publication Publication Date Title
JPS60122737A (en) Manufacture of parent material for optical fiber
JPH05323130A (en) Multifocus type burner and production of glass particulate deposited body by using this burner
JP2002080238A (en) Base material for optical fiber and method of forming the same
JPH10167748A (en) Burner for synthesis of glass raw material and production of glass raw material
JP5342514B2 (en) Burner for glass fine particle synthesis and method for producing glass fine particle deposit
JP2011230937A (en) Method for producing porous glass preform
JPS60264338A (en) Manufacture of optical fiber preform
JP2011230986A (en) Manufacturing method for glass preform
JP5459241B2 (en) Glass base material manufacturing method
JPS61227937A (en) Preparation of parent material for optical fiber
JPH0459626A (en) Formation of porous glass
JPS60260433A (en) Manufacture of base material for optical fiber
JPH0725624A (en) Production of soot preform
JPS58135147A (en) Preparation of base material for optical fiber
JPS6011241A (en) Manufacture of base material for optical fiber
JPH0258218B2 (en)
JPH09132423A (en) Production of optical fiber preform
JPS5915092B2 (en) Method of manufacturing optical transmission glass
JP2559489B2 (en) Method for manufacturing optical fiber preform
JPS5978941A (en) Manufacture of base material for optical fiber
JPH0488306A (en) Dispersion shift optical fiber
JPS5911881B2 (en) Optical fiber manufacturing method
JPS61186240A (en) Production of piled material of glass fine particles
JPS62162642A (en) Production of porous preform for optical fiber
JP2003327443A (en) Method for manufacturing glass preform for optical fiber