JPS59152234A - Preparation of parent material for optical fiber - Google Patents

Preparation of parent material for optical fiber

Info

Publication number
JPS59152234A
JPS59152234A JP2156083A JP2156083A JPS59152234A JP S59152234 A JPS59152234 A JP S59152234A JP 2156083 A JP2156083 A JP 2156083A JP 2156083 A JP2156083 A JP 2156083A JP S59152234 A JPS59152234 A JP S59152234A
Authority
JP
Japan
Prior art keywords
core
fine particles
cladding
parent material
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2156083A
Other languages
Japanese (ja)
Inventor
Fumiaki Hanawa
文明 塙
Tetsuo Miya
哲雄 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2156083A priority Critical patent/JPS59152234A/en
Publication of JPS59152234A publication Critical patent/JPS59152234A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:In preparation of a parent material for single mode optical fiber by vapor-phase axial deposition (VAD method), to obtain a parent material capable of forming an optical fiber having low loss, by setting a partition wall between a part for forming a porous parent material for core and a part for forming a porous parent material for clad. CONSTITUTION:The flame flow 2 of the torch 1 for synthesizing fine particles for core is blown on the starting material 11 (the sign 12 is a rotary pulling device) in the reactor 15, the fine particles 3 of glass contained in it are attached and piled on the material to form the porous parent material 9 for core. The flame flow 6 of the torch 5 for synthesizing fine particles for clad is blown on the material, the fine particles for clad contained in it is attached and piled on the parent material 9 to form the porous parent material 10 for clad. In the above-mentioned method, the partition wall 16 is made between a part for forming the parent material 9 and a part for forming the parent material 10, so that prepared excess fine particles for core and prepared excess fine particles for clad are discharged from the exhaust vent 14 and the exhaust vent 13 separately, respectively, without blending.

Description

【発明の詳細な説明】 本発明は気相軸付は法(VAD法)による単一″゛モー
ド光ファイバ用母材の製造方法に関する。 1従来のこ
の種の製造方法を第1図を参照して説明すれば次の通り
です。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a base material for a single mode optical fiber by the vapor phase axial deposition method (VAD method). 1. Refer to FIG. 1 for a conventional manufacturing method of this type. The explanation is as follows.

第1図において、コア用微粒子合成トーチ1に、燃焼用
H2ガスおよび0.ガスとともに送り込まれたガラス形
成原料5ift、 、 G60!4は、火炎加水分解反
応により火炎流2の内部にコア用ガラス微粒子3の流れ
を形成すると同時に、回転する出発材11の先端部に付
着、堆積し、ガラス微粒子の集合体であるコア用多孔質
母材9を形成する。また□バクラッド用微粒子合成トー
チ5によって火炎流iの内部にクラッド用ガラス微粒子
7が合成され、前記の工程で形成されたコア用多孔質母
材9の表面に付着、堆積してコア部とクラッド層を有す
る多孔質母材10が作製材される。
In FIG. 1, a core particulate synthesis torch 1 is equipped with H2 gas for combustion and 0.00000000. The glass-forming raw materials 5ift, , G60!4 sent together with the gas form a flow of core glass fine particles 3 inside the flame stream 2 by a flame hydrolysis reaction, and at the same time adhere to the tip of the rotating starting material 11. The particles are deposited to form a core porous base material 9 which is an aggregate of glass particles. In addition, glass fine particles 7 for cladding are synthesized inside the flame stream i by the fine particle synthesis torch 5 for back cladding, and adhere and deposit on the surface of the porous base material 9 for core formed in the above step, forming the core part and the cladding glass particles 7. A porous matrix 10 having layers is prepared.

このようにして作製材された多孔質母材10を1500
〜1600°Cの温度で加熱して透明な光フアイバ用母
材を得る。
The porous base material 10 produced in this way was
A transparent preform for optical fiber is obtained by heating at a temperature of ~1600°C.

このような従来法によれば、コア用微粒子合成トーチ1
およびクラッド用微粒子合成トーチ5に“よって合成さ
れたガラス微粒子3,7のうち、付1着、堆積されなか
った余剰微粒子4,8は排気口]3から反応容器15の
外に排気されるわけであるが、この際、コア用余剰微粒
子4とクラッド用余剰微粒子8が完全に分離されて排気
されず、コ・ア用余剰微粒子4の大部分はコア用多孔質
母材9の表面およびクラッド用多孔質体表面の一部を伝
わってクラッド用余剰微粒子8まで達し、コア用余剰微
粒子4とクラッド用余剰微粒子8が混合されて排気口】
8から反応容器15の外に排気され□“る。
According to such a conventional method, the core fine particle synthesis torch 1
Among the glass particles 3 and 7 synthesized by the cladding particle synthesis torch 5, surplus particles 4 and 8 that have not been deposited are exhausted to the outside of the reaction vessel 15 from the exhaust port 3. However, at this time, the core surplus fine particles 4 and the cladding surplus fine particles 8 are not completely separated and exhausted, and most of the core surplus fine particles 4 are on the surface of the core porous base material 9 and the cladding. The excess fine particles 4 for the core and the surplus fine particles 8 for the cladding are mixed together and reach the exhaust port through a part of the surface of the porous body.
8 to the outside of the reaction vessel 15.

従ってこれにより作製材された光フアイバ用母材におけ
るコアとクラッドとの境界には第2図に示すように屈折
率分布のすそ拡がりが存在するようになる。クラッド層
への光パワー拡がりの影響゛による損失増加が生じる単
一モード光ファイバでは、第2図に示すようなすそ拡が
りを有する屈折率分布の場合、クラッド層への光パワー
拡がりの影響をより強く受けることになるので、低損失
化が困難なことや、クラッド層の厚みを厚くしなけ′□
゛31 ればならない等の問題がある。
Therefore, as shown in FIG. 2, a base widening of the refractive index distribution exists at the boundary between the core and the cladding in the optical fiber base material produced in this manner. In single-mode optical fibers, where loss increases due to the effect of optical power spread on the cladding layer, in the case of a refractive index distribution with a base spread as shown in Fig. 2, the effect of optical power spread on the cladding layer is reduced. Because of this, it is difficult to reduce loss and the thickness of the cladding layer must be increased.
There are problems such as ``31.''

そこで、単一モード光ファイバの屈折率分布の理想形で
あるステップ型分布を目ざし、前述した問題点を解決す
る製法が提案されている。その一つの方法は第8図に示
すように二つの排気口を設。
Therefore, a manufacturing method has been proposed that solves the above-mentioned problems by aiming at a step-type refractive index distribution, which is the ideal form of the refractive index distribution of a single mode optical fiber. One method is to install two exhaust ports as shown in Figure 8.

ける方法である。すなわちコア用余剰微粒子4のみを排
気する排気口14と、クラッド用余剰微粒子8のみを排
気する排気口】3を設け、各余剰微粒子を単独で排気す
る方法である。他の一つの方法は第4図に示すように、
形成されたコア用多孔1・・質母材9の表面にガス吹出
ノズル17により、不活性ガスを吹き出し、ガスの流れ
]8によってコア用余剰微粒子4がコア用多孔質母材9
の表面を伝わってクラッド用余剰微粒子8と混合するの
を防ぐ方法である。
This is a way to That is, an exhaust port 14 for exhausting only the core surplus fine particles 4 and an exhaust port 3 for exhausting only the cladding surplus fine particles 8 are provided, and each surplus fine particle is exhausted individually. Another method is as shown in Figure 4.
Inert gas is blown out from the gas blowing nozzle 17 onto the surface of the formed porous base material 9 for the core 1, and the surplus fine particles 4 for the core are removed by the gas flow]8.
This is a method of preventing the excess fine particles 8 for cladding from being mixed with the excess fine particles 8 for cladding.

本発明者らは提案されたこれら二つの方法、すなわち第
8図および第4図の方法について検討したが、両方法と
もコア用余剰微粒子4とクラッド用余剰微粒子8の混合
を完全に防ぐことができず、従って作製辺された光フア
イバ用母材のファージ”(4) ラッド境界に、まだすそ拡がり°が存在しているこlと
が明らかになった。
The present inventors have studied these two proposed methods, that is, the methods shown in FIG. 8 and FIG. Therefore, it became clear that there was still a skirt spread at the edge of the phage rad boundary of the optical fiber base material.

本発明はコア用多孔質母材形成部とクラッド用多孔質層
形成部の間に隔壁を設け、コア用余剰微粒子とクラッド
用余剰微粒子を完全に分離して排・1気することを特徴
とし、その目的はコアークラッド境界におけるすそ拡が
りの屈折率分布を防去し、単一モード光ファイバの屈折
率分布の理想形であるステップ型分布構造を有する光フ
アイバ用母材の製法を提供することにある。以下図面に
より本1゜発明の詳細な説明する。
The present invention is characterized in that a partition wall is provided between the core porous base material forming section and the cladding porous layer forming section, and excess fine particles for the core and excess fine particles for the cladding are completely separated and exhausted. The purpose is to provide a method for manufacturing an optical fiber base material having a step-type distribution structure, which is the ideal form of the refractive index distribution of a single mode optical fiber, by preventing the refractive index distribution of the base broadening at the core-clad boundary. It is in. The present invention will be described in detail below with reference to the drawings.

第5図は本発明の一実施例図であって、従来法と異なる
点は、コア用多孔質母材堆積部とクラッド用多孔質層堆
積部の間に隔壁16が設けられてオリ、さらにコア用余
剰微粒子4とクラッド用余15剰微粒子8を隔壁16に
よりそれぞれ分離された排気口18および14から排気
するところである。
FIG. 5 shows an embodiment of the present invention, which differs from the conventional method in that a partition wall 16 is provided between the core porous base material deposition section and the cladding porous layer deposition section. The core surplus fine particles 4 and the cladding surplus fine particles 8 are exhausted from the exhaust ports 18 and 14, which are separated by the partition wall 16, respectively.

このような装置構成によれば、コア用多孔質母材9とし
て堆積されなかった余剰微粒子4はコア用多孔質母材9
の表面を伝わってクラッド用余剰!II微粒千8と混合
することがなく、従ってほぼ完全1なステップ型屈折率
分布の光フアイバ用母材を得ることができる。
According to such an apparatus configuration, the surplus fine particles 4 that were not deposited as the porous base material 9 for core are
Surplus for cladding transmitted through the surface of! There is no mixing with II fine particles, and therefore it is possible to obtain an optical fiber base material having an almost perfect step-type refractive index distribution.

隔壁板の材質は約500°C以上の耐熱性を有するもの
であれば、いかなる材質のものでもよく、たとえばガラ
ス板類、セラミックス類等があげられる。次に本発明の
実施例における反応条件の一興体例について述べる。
The material of the partition plate may be any material as long as it has heat resistance of about 500° C. or higher, such as glass plates, ceramics, etc. Next, examples of reaction conditions in Examples of the present invention will be described.

コア用微粒子合成トーチ1に、5iOt、 、 GeC
t。
For core particle synthesis torch 1, 5iOt, , GeC
t.

を9 a : 7 (mo1%)の割合で混合した原料
ガス11・を、100 cc/minの流速でキャリア
用Heガス250 cc/minとともに送り込み、H
2ガス8 l/min、0□ガス6 l/min XI
(eガス1 l/minで構成された火炎流2で火炎加
水分解して、コア用ガラス微粒子流8を生成させ、これ
を15 rpmで回転する出R発材11の先端に吹き付
けてコア用多孔質母材9を形成した。コア用多孔質母材
9が隔壁板16を通過してクラッド用微粒子合成トーチ
5の位置まで成長した時点で、S ic l 4を80
0 cc/minの流速でキャリア用Helガス850
 Co/minとともにり2゛″ラッド用微粒子合成ト
ーヂ5・に送り込み、H2ガ 。
A raw material gas 11 mixed at a ratio of 9a:7 (mo1%) was fed together with 250 cc/min of He gas for carrier at a flow rate of 100 cc/min.
2 gas 8 l/min, 0□ gas 6 l/min XI
(Flame hydrolysis is performed with a flame stream 2 composed of e-gas at 1 l/min to generate a core glass fine particle stream 8, which is sprayed onto the tip of the starting R starting material 11 rotating at 15 rpm to form a core glass particle stream 8. A porous base material 9 was formed. When the core porous base material 9 passed through the partition plate 16 and grew to the position of the cladding fine particle synthesis torch 5, SiCl 4 was heated to 80
Carrier Hel gas 850 at a flow rate of 0 cc/min
Co/min and feed it into a 2'' rad fine particle synthesis tool 5.

ス61//n]土n102ガス7 l/min 、 l
(eガス1 l/minで構成された火炎流6によって
火炎加水分解してクラッド用ガラス微粒子流7を生成さ
せ、これを前記コア用多孔質母材9の表面に吹き付けて
クラ・ラド層を形成し、コア部とクラッド層を有する多
孔質母材10を52算いrの速度で作製した。
61//n] Soil n102 Gas 7 l/min, l
(Flame hydrolysis is performed by a flame flow 6 composed of e-gas at 1 l/min to generate a glass particulate flow 7 for the cladding, and this is blown onto the surface of the porous base material 9 for the core to form a cladding layer. A porous base material 10 having a core portion and a cladding layer was produced at a speed of 52 r.

上記工程中、コア用余剰微粒子4は排気口14から、ま
たクラッド用余剰微粒子8は排気口13から反応容器1
5の外に完全に排気され、従来生にじていたコア用余剰
微粒子4とクラッド用余剰微粒子8の混合現象を完全に
防ぐことができた。
During the above process, the excess fine particles 4 for the core are passed through the exhaust port 14, and the excess fine particles 8 for the cladding are passed through the exhaust port 13 into the reaction vessel 1.
The mixing phenomenon of excess fine particles 4 for the core and excess fine particles 8 for the cladding, which had conventionally occurred, could be completely prevented.

このようにして得られた多孔質母材10を1500°C
〜1600°Cの温度で加熱して透明な光フアイバ用母
材とした。
The porous base material 10 thus obtained was heated to 1500°C.
It was heated at a temperature of ~1600°C to obtain a transparent optical fiber base material.

この光フアイバ用母材の屈折率分布を第6図に示す。第
6図から明らかなように、コアとクラッドとの境界部に
おける屈折率分布のすそ拡がりはほとんど見られず、は
ぼ完全なステップ型屈折率分布であった。      
          !・・(7) また表−1は本発明によって作製した単一モー1ド光フ
アイバと、従来法すなわち第1図の方法、第3図の方法
、第4図の方法で作製した単一モード光ファイバの波長
1.39μmにおけるOH基の含有量を調べた結果を示
す。
The refractive index distribution of this optical fiber base material is shown in FIG. As is clear from FIG. 6, there was hardly any widening of the refractive index distribution at the boundary between the core and the cladding, and the refractive index distribution had an almost perfect step-type refractive index distribution.
! ...(7) Table 1 also shows the single-mode optical fibers fabricated according to the present invention and the single-mode optical fibers fabricated by the conventional methods, that is, the method shown in Figure 1, the method shown in Figure 3, and the method shown in Figure 4. The results of examining the content of OH groups in optical fibers at a wavelength of 1.39 μm are shown.

表−1 これらの光ファイバは多孔質母材作製方法のみが異なり
、その他の工程、たとえば透明ガラス化l・方法、使用
するジャケット管、線引き方法はすべて同一方法とした
。表−1から明らかなように、本発明によって得られた
光ファイバのOH基含有量は、従来法に比べて少なかっ
た。これは屈折率分布がステップ型であるので、クラッ
ド層への光−□°゛(8) パワー拡がりが従来法で得られた光ファイバより1も少
なく、従ってクラッド層の一部として使用されるジャケ
ット管(OH基が非常に多い)の影響による損失増加が
従来法よりも少ないことを意味している。
Table 1 These optical fibers differed only in the method of preparing the porous base material, and all other steps, such as the transparent vitrification method, the jacket tube used, and the drawing method were all the same. As is clear from Table 1, the OH group content of the optical fiber obtained by the present invention was lower than that of the conventional method. Since the refractive index distribution is step-type, the power spread of light to the cladding layer is less than that of optical fibers obtained by conventional methods, so it can be used as part of the cladding layer. This means that the increase in loss due to the influence of the jacket tube (which has a large number of OH groups) is smaller than in the conventional method.

以上説明したように、本発明の光フアイバ用母材の製造
方法は、コア用多孔質母材形成部とクラッド用多孔質層
形成部の間に隔壁を設けることを特徴とするので、コア
とクラッドの境界部における屈折率分布のすそ拡がりを
抑えることができ、10単一モード光フアイバにおける
クラッド層への光パワー拡がりを、従来法で作製した光
ファイバに比べて著しく抑えることができる。従って低
損失な単一モード光ファイバを実現し易い利点がある。
As explained above, the method for manufacturing an optical fiber preform of the present invention is characterized by providing a partition between the core porous preform forming section and the cladding porous layer forming section. The base spread of the refractive index distribution at the boundary of the cladding can be suppressed, and the spread of optical power to the cladding layer in the 10 single mode optical fiber can be significantly suppressed compared to optical fibers produced by conventional methods. Therefore, there is an advantage that it is easy to realize a low loss single mode optical fiber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第8図および第4図は従来の単一モード用母材
の製造方法を説明するための装置の構成を示す図、 第2図は第1図の従来法により作製せられた光フアイバ
用母材の屈折率分布の一例を示す図、′。 第5図は本発明による母材製造の一実施例図、1第6図
は本発明の一実施例により作製〜された単一モード光フ
ァイバ用母材の屈折率分布を示す図である。 1・・・コア用微粒子合成トーチ、2・・・火炎流、3
・・・5コア用ガラス微粒子、4・・・コア用余剰微粒
子、5・・・クラッド用微粒子合成トーチ、6・・・火
炎流、7・・・クラッド用ガラス微粒子、8・・・クラ
ッド用余剰微粒子、9・・・コア用多孔質母材、10・
・・多孔質母材、11・・・出発材、12・・・回転−
引上げ装置、 1・)18 、14・・・排気口、15
・・・反応容器、16・・・隔壁板、17・・・ガス吹
出ノズル、18・・・ガスの流れ。 第1図 ε f。 特開昭59−152234(4) 第3図 □ 第4図
Figures 1, 8, and 4 are diagrams showing the configuration of an apparatus for explaining the conventional method of manufacturing a base material for single mode. A diagram ′ showing an example of the refractive index distribution of a base material for optical fiber. FIG. 5 is a diagram showing an example of manufacturing a preform according to the present invention, and FIG. 1 is a diagram showing a refractive index distribution of a preform for a single mode optical fiber manufactured according to an embodiment of the present invention. 1... Fine particle synthesis torch for core, 2... Flame flow, 3
...5 Glass fine particles for core, 4... Surplus fine particles for core, 5... Fine particle synthesis torch for cladding, 6... Flame flow, 7... Glass fine particles for cladding, 8... For cladding Excess fine particles, 9...Porous base material for core, 10.
...Porous base material, 11...Starting material, 12...Rotation-
Lifting device, 1.) 18, 14...Exhaust port, 15
... Reaction container, 16 ... Partition plate, 17 ... Gas blowing nozzle, 18 ... Gas flow. Figure 1 ε f. JP-A-59-152234 (4) Figure 3 □ Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 コア用微粒子合成トーチによりコア用ガラス微粒子
を合成し、回転する支持棒の先端にコア用多孔質ガラス
体を堆積させて、軸方向に成長させると同時に、クラッ
ド用微粒子合成トーチによりクラッド用ガラス微粒子を
合成し、これをコア用多孔質ガラス体の周囲に堆積させ
てコア部とクラッド部を有する多孔1(・質ガラス体を
形成した後、該多孔質ガラス体を加熱する単一モード光
ファイバ用母材の製造方法において、コア用多孔質ガラ
ス体堆積部とクラッド用多孔質ガラス体堆積部の間に隔
壁を設けて、コア用余剰微粒子とクラツド1゛用余剰微
粒子を、前記隔壁によりそれぞれ分離された排気口から
排気することを特徴とする単一モード光ファイバ用母材
の製造方法。
1 Synthesize glass fine particles for the core using a fine particle synthesis torch for the core, deposit a porous glass body for the core on the tip of a rotating support rod, grow it in the axial direction, and at the same time synthesize glass for the cladding using a fine particle synthesis torch for the cladding. After synthesizing fine particles and depositing them around a porous glass body for a core to form a porous glass body having a core portion and a cladding portion, single mode light is applied to heat the porous glass body. In the method for manufacturing a fiber base material, a partition wall is provided between a core porous glass body accumulation part and a cladding porous glass body accumulation part, and excess fine particles for the core and surplus fine particles for the cladding 1 are separated by the partition wall. A method for producing a base material for a single mode optical fiber, characterized in that exhaust is exhausted from separate exhaust ports.
JP2156083A 1983-02-14 1983-02-14 Preparation of parent material for optical fiber Pending JPS59152234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2156083A JPS59152234A (en) 1983-02-14 1983-02-14 Preparation of parent material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2156083A JPS59152234A (en) 1983-02-14 1983-02-14 Preparation of parent material for optical fiber

Publications (1)

Publication Number Publication Date
JPS59152234A true JPS59152234A (en) 1984-08-30

Family

ID=12058393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2156083A Pending JPS59152234A (en) 1983-02-14 1983-02-14 Preparation of parent material for optical fiber

Country Status (1)

Country Link
JP (1) JPS59152234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271700A (en) * 2015-11-16 2016-01-27 江苏通鼎光棒有限公司 Control device for environment airflow in VAD reaction cavity and application thereof
CN107986612A (en) * 2017-12-19 2018-05-04 长飞光纤光缆股份有限公司 A kind of VAD prepares the device of fibre parent material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820744A (en) * 1981-07-22 1983-02-07 Nippon Telegr & Teleph Corp <Ntt> Preparation of parent material for optical fiber
JPS58213645A (en) * 1982-06-04 1983-12-12 Nippon Telegr & Teleph Corp <Ntt> Piling of oxide powder by vapor-phase axial deposition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820744A (en) * 1981-07-22 1983-02-07 Nippon Telegr & Teleph Corp <Ntt> Preparation of parent material for optical fiber
JPS58213645A (en) * 1982-06-04 1983-12-12 Nippon Telegr & Teleph Corp <Ntt> Piling of oxide powder by vapor-phase axial deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271700A (en) * 2015-11-16 2016-01-27 江苏通鼎光棒有限公司 Control device for environment airflow in VAD reaction cavity and application thereof
CN107986612A (en) * 2017-12-19 2018-05-04 长飞光纤光缆股份有限公司 A kind of VAD prepares the device of fibre parent material

Similar Documents

Publication Publication Date Title
CA1233080A (en) Method of fabricating optical fiber preforms
GB1573675A (en) Continuous fibre fabrication process
JPS59152234A (en) Preparation of parent material for optical fiber
JP2002528379A (en) Method for manufacturing soot for optical fiber preform and preform manufactured by the method
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
US5207813A (en) Method for producing glass article
JPH0327493B2 (en)
JPS60260433A (en) Manufacture of base material for optical fiber
JP3118723B2 (en) Method for producing porous glass preform for optical fiber
JPH0258218B2 (en)
JPS6041627B2 (en) Manufacturing method of optical fiber base material
JPS61183140A (en) Production of base material for optical fiber
JPS604978Y2 (en) Glass particle synthesis torch
JPS6055450B2 (en) Manufacturing method of optical fiber base material
JPH0712951B2 (en) Method for manufacturing base material for optical fiber
JP2846048B2 (en) Method for producing porous glass base material
JPH0784331B2 (en) Method for manufacturing glass base material for optical fiber
JPH01203238A (en) Production of optical fiber preform
JPH0336772B2 (en)
JPS63225546A (en) Production of base material for optical fiber
JPS63123828A (en) Production of porous preform for optical fiber
JPS6121177B2 (en)
JPH05339011A (en) Production of glass particulate deposited body
JPH0211531B2 (en)
JPS593028A (en) Manufacture of base material for optical fiber