JPH0211531B2 - - Google Patents

Info

Publication number
JPH0211531B2
JPH0211531B2 JP57196709A JP19670982A JPH0211531B2 JP H0211531 B2 JPH0211531 B2 JP H0211531B2 JP 57196709 A JP57196709 A JP 57196709A JP 19670982 A JP19670982 A JP 19670982A JP H0211531 B2 JPH0211531 B2 JP H0211531B2
Authority
JP
Japan
Prior art keywords
glass
atomized
fluoride
optical fiber
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57196709A
Other languages
Japanese (ja)
Other versions
JPS5987406A (en
Inventor
Tadashi Myashita
Naryuki Mitachi
Yasutake Ooishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57196709A priority Critical patent/JPS5987406A/en
Publication of JPS5987406A publication Critical patent/JPS5987406A/en
Publication of JPH0211531B2 publication Critical patent/JPH0211531B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • C03B37/01277Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by projecting or spraying the melt, e.g. as droplets, on a preform
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は、内部に気泡や結晶質を含まない均一
で光学的性能に優れるフツ化物ガラス光フアイバ
の製造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of a fluoride glass optical fiber that is uniform and has excellent optical performance without containing any air bubbles or crystals therein.

近年、波長が2μm以上の中赤外波長帯用の光
フアイバの開発が進められている。通常の酸化物
ガラスは、光透過特性上、本質的な制約を受ける
ので、この目的の光フアイバには使用されない。
金属フツ化物を構成材料とするフツ化物ガラスが
この中赤外波長帯光フアイバ素材として好ましい
ことは良く知られている。そして、四フツ化ジル
コニウム(ZrF4)、四フツ化ハフニウム(HfF4)、
およびフツ化アルミニウム(AlF3)などを多量
に含むガラスが光フアイバ用に使用されてきた。
従来、この種の光フアイバの製法としては、ガラ
ス融液をノズル付きるつぼに入れ下端からフアイ
バ化するるつぼ法、およびあらかじめ準備したガ
ラス融液を比較的低温に保持した鋳型に投入して
棒状母材を作製し、これを線引きする鋳型法(キ
ヤステイング法)などが採用されていた。
In recent years, development of optical fibers for use in the mid-infrared wavelength band with wavelengths of 2 μm or more has been progressing. Ordinary oxide glasses are not used as optical fibers for this purpose because they are inherently limited in their light transmission properties.
It is well known that fluoride glass made of metal fluoride is preferable as the optical fiber material in the mid-infrared wavelength band. And zirconium tetrafluoride (ZrF 4 ), hafnium tetrafluoride (HfF 4 ),
Glasses containing large amounts of aluminum fluoride (AlF 3 ) and the like have been used for optical fibers.
Traditionally, this type of optical fiber has been manufactured using the crucible method, in which a glass melt is placed in a crucible with a nozzle and turned into a fiber from the bottom end, and the other is the crucible method, in which a glass melt prepared in advance is poured into a mold kept at a relatively low temperature to form a rod-shaped matrix. The casting method, which involves making a material and drawing it into wire, was used.

従来のフツ化物光フアイバの製造における最大
の問題はフツ化物ガラスのガラス安定性に欠ける
点に起因していた。すなわち融液から固体のガラ
スに移行する際および/または一度形成された固
体状ガラスが線引きなどで再加熱される際に、結
晶化や分相を生じる。このため光フアイバ中にお
びただしい光散乱体が生じ、これが大きな散乱損
失を生じて光フアイバの低損失化を妨げていた。
またこのことは均一な光フアイバの製作を妨げ、
断線を生じることもあつた。
The biggest problem in the production of conventional fluoride optical fibers has been due to the lack of glass stability of fluoride glasses. That is, crystallization or phase separation occurs when a melt is transferred to a solid glass and/or when a solid glass once formed is reheated by wire drawing or the like. As a result, a large number of light scatterers are generated in the optical fiber, which causes a large scattering loss and hinders the reduction in loss of the optical fiber.
This also hinders the fabrication of uniform optical fibers,
Occasionally, disconnections occurred.

またフツ化物ガラスを用いる光フアイバの製作
においては、光フアイバ中に多数の気泡が発生
し、結晶や分相と同様に大きな光散乱を招いた。
Furthermore, in the production of optical fibers using fluoride glass, a large number of bubbles are generated in the optical fiber, causing large light scattering similar to crystals and phase separation.

このようなフツ化物ガラスのガラス安定性の欠
除を補うには、フツ化物光フアイバ、とりわけそ
のもとになるガラス体の製作工程、特に熱処理工
程の改善が必要とされていた。
To compensate for this lack of glass stability in fluoride glasses, improvements have been needed in the fabrication process, particularly in the heat treatment process, of fluoride optical fibers, particularly the glass bodies from which they are made.

本発明はフツ化物ガラスのガラス安定性の不足
を補うために、融液ガラスを霧化し、これを基板
上に順次堆積することにより急速冷却を施し、良
質のガラスを得るとともに、気泡の含有を避け、
透明で均一な塊状ガラスを得て、これを線引きす
ることによつて光学的に優れる光フアイバを製作
するものである。以下図面により本発明を詳細に
説明する。
In order to compensate for the lack of glass stability of fluoride glass, the present invention atomizes molten glass and sequentially deposits it on a substrate to rapidly cool it, thereby obtaining high quality glass and reducing the inclusion of air bubbles. avoid,
By obtaining a transparent and uniform bulk glass and drawing it, an optical fiber with excellent optical properties is manufactured. The present invention will be explained in detail below with reference to the drawings.

第1図は本発明におけるフツ化物ガラス体の製
作の実施例を示す。第1図において、10はガラ
ス融液であり、ZrF4(58.1モル%)−BaF2(30.4モ
ル%)−GdF3(3.7モル%)−AlF3(3.8モル%)−
SbF3(4モル%)の組成を有する。このガラス融
液は白金製の容器11に入れられており、全体が
900℃に保持されている。12は超音波発振器で
あり、ガラス融液の霧化に用いられる。霧化した
ガラス融液13は、ボンベ14からのアルゴンガ
スによつて輸送管15を通つてノズル16から吹
き出される。ここで輸送用ガスや霧化ガラスはヒ
ータ17によつて加熱され、霧化ガラスノズル1
6に到達する以前に固化することが防止されてい
る。ノズル16から吹き出した霧化ガラスは出発
基材18に順次堆積され、ガラス体19を形成す
る。
FIG. 1 shows an embodiment of the production of a fluoride glass body according to the present invention. In FIG. 1, 10 is a glass melt, ZrF 4 (58.1 mol %) - BaF 2 (30.4 mol %) - GdF 3 (3.7 mol %) - AlF 3 (3.8 mol %) -
It has a composition of SbF 3 (4 mol%). This glass melt is placed in a container 11 made of platinum, and the whole
It is maintained at 900℃. 12 is an ultrasonic oscillator, which is used to atomize the glass melt. The atomized glass melt 13 is blown out from a nozzle 16 through a transport pipe 15 by argon gas from a cylinder 14 . Here, the transportation gas and the atomized glass are heated by the heater 17, and the atomized glass nozzle 1 is heated.
Solidification before reaching 6 is prevented. The atomized glass blown out from the nozzle 16 is sequentially deposited on the starting substrate 18 to form a glass body 19.

第2図は本発明による他の実施例を示す。第1
図と同様に900℃に保持されたフツ化物ガラス融
液20は、ボンベ24から送られる高速ガス流に
より輸送管25に吸い上げられ、そこで霧化され
る。これは広く知られている噴霧器の原理と同一
である。ノズル26から吹き出された液化ガラス
は、ヒータ27で加熱されて固化をしない融体の
ままに運ばれ、出発基材28上に順次、縦方向に
堆積される。なお第2図において、21は容器、
23は霧化したガラス融液、29は合成されたガ
ラスである。
FIG. 2 shows another embodiment according to the invention. 1st
Fluoride glass melt 20, which is maintained at 900° C. as shown in the figure, is drawn up into a transport pipe 25 by a high-speed gas flow sent from a cylinder 24, where it is atomized. This is the same principle as the widely known atomizer. The liquefied glass blown out from the nozzle 26 is heated by a heater 27 and transported as an unsolidified molten liquid, and is sequentially deposited on the starting substrate 28 in the vertical direction. In addition, in FIG. 2, 21 is a container,
23 is an atomized glass melt, and 29 is a synthesized glass.

ガラスの堆積合成においては、ガラス体を約
200℃に加熱し、熱歪みによる破損を防止してい
る。またガラスの堆積合成部は不活性ガスまたは
フツ素および塩素ガス雰囲気とし、ガラス中への
酸素混入やフツ素の揮発を防止している。
In glass deposition synthesis, the glass body is
It is heated to 200℃ to prevent damage due to thermal distortion. Furthermore, the glass deposition and synthesis section is kept in an inert gas or fluorine and chlorine gas atmosphere to prevent oxygen from entering the glass and fluorine from volatilizing.

このようにして合成されたガラス体について、
均一性を上げるため210℃で24時間熱処理を施し
た。
Regarding the glass body synthesized in this way,
Heat treatment was performed at 210°C for 24 hours to improve uniformity.

第3図および第4図はガラス体の合成態様を示
したものである。第3図においては、2本以上の
ノズル36を用いて動径方向に堆積するものであ
る。2本以上のノズルを同時に動作することは、
ガラス合成の高速化とともに、均一性の向上に役
立つものである。また、ある時点まで第1のノズ
ルからのみ霧化ガラスを吹き出し、適当な太さま
でガラス体を成長させた後、第1のノズルからの
吹き出しを停止し、第2のノズルから霧化ガラス
を吹き出させた。この時、第1のノズルから吹き
出したガラスの組成は、ZrF4(58.1モル%)−
BaF2(30.4モル%)−GdF3(3.7モル%)−AlF3(3.8
モル%)−SbF3(4モル%)であり、第2のノズ
ルから吹き出したガラスの組成は、ZrF4(56.9モ
ル%)−BaF2(29.8モル%)−GdF3(3.6モル%)−
AlF3(5.7モル%)−SbF3(4モル%)であつた。
そしてこれらの屈折率は、それぞれ1.525、1.520
であつた。結局、中心に出発基材38を抜いて生
じた15mmの中空部を有し、コア径が35mm、外径が
55mmのフツ化物光フアイバ母材を得た。そしてコ
アとクラツドの比屈折率差は0.3%であつた。な
お第3図において、33は霧化ガラス、35は霧
化ガラス輸送管である。
FIGS. 3 and 4 show the synthesis mode of the glass body. In FIG. 3, two or more nozzles 36 are used to deposit in the radial direction. Operating two or more nozzles at the same time is
This is useful for speeding up glass synthesis and improving uniformity. In addition, the atomized glass is blown only from the first nozzle up to a certain point, and after the glass body has grown to an appropriate thickness, the blown out from the first nozzle is stopped, and the atomized glass is blown out from the second nozzle. I let it happen. At this time, the composition of the glass blown from the first nozzle was ZrF 4 (58.1 mol%) -
BaF 2 (30.4 mol%) - GdF 3 (3.7 mol%) - AlF 3 (3.8
mol%) - SbF 3 (4 mol%), and the composition of the glass blown out from the second nozzle is ZrF 4 (56.9 mol%) - BaF 2 (29.8 mol%) - GdF 3 (3.6 mol%) -
It was AlF 3 (5.7 mol %)-SbF 3 (4 mol %).
And these refractive indices are 1.525 and 1.520 respectively
It was hot. In the end, it has a 15 mm hollow part created by removing the starting base material 38 in the center, the core diameter is 35 mm, and the outer diameter is 35 mm.
A 55 mm fluoride optical fiber matrix was obtained. The relative refractive index difference between the core and the cladding was 0.3%. In FIG. 3, 33 is atomized glass, and 35 is an atomized glass transport pipe.

第4図は、石英系光フアイバ母材の製作法とし
て広く知られている気相軸付け(VAD)法に類
似した本発明の製造法の適用例を示す。ここでノ
ズル46からはコア用の霧化ガラスを吹き出し、
ノズル46′からはクラツド用霧化ガラスを吹き
出す。このようにしてコア径6.8mm、外径50mm、
長さ150mmのクラツド形光フアイバ母材を得た。
なお第4図の態様において、屈折率が中心から周
囲に向つて徐々に減小するグレーデツド形光フア
イバ母材を製作することもできた。第4図におい
て、43は第1の組成の霧化ガラス、43′は第
2の組成の霧化ガラス、48は出発基材、49は
合成されたガラス体である。
FIG. 4 shows an example of application of the manufacturing method of the present invention, which is similar to the vapor deposition (VAD) method, which is widely known as a method for manufacturing silica-based optical fiber base materials. Here, atomized glass for the core is blown out from the nozzle 46,
Atomized glass for cladding is blown out from the nozzle 46'. In this way, the core diameter is 6.8mm, the outer diameter is 50mm,
A clad optical fiber base material with a length of 150 mm was obtained.
In the embodiment shown in FIG. 4, it was also possible to produce a graded optical fiber base material in which the refractive index gradually decreases from the center toward the periphery. In FIG. 4, 43 is the atomized glass of the first composition, 43' is the atomized glass of the second composition, 48 is the starting substrate, and 49 is the synthesized glass body.

第5図は上記に述べた母材の線引きにより光フ
アイバ母材の製作を示す。第4図で得た光フアイ
バ母材を内径52mm、外径55mmのテフロンパイプに
挿入し、これを局部加熱して細径化することによ
り光フアイバを得た。第5図において、50はガ
ラス母材、51は加熱炉、52は巻き取りドラム
である。
FIG. 5 shows the production of an optical fiber preform by drawing the preform described above. The optical fiber base material obtained in FIG. 4 was inserted into a Teflon pipe with an inner diameter of 52 mm and an outer diameter of 55 mm, and the pipe was locally heated to reduce the diameter, thereby obtaining an optical fiber. In FIG. 5, 50 is a glass base material, 51 is a heating furnace, and 52 is a winding drum.

第6図は製作した光フアイバの断面を示し、6
0がコア、61がクラツド、62がテフロンコー
トである。
Figure 6 shows the cross section of the manufactured optical fiber.
0 is the core, 61 is the cladding, and 62 is the Teflon coat.

本発明における霧化ガラスの堆積による光フア
イバ母材の作製においては、ガラスが融液から固
化まで急速に冷却される。このためガラス安定性
に欠けるフツ化物ガラスにおいても、結晶化や分
相が妨げられ、光学的に均一なガラスが得られる
利点がある。またガラスの合成は薄い膜状ガラス
の順次堆積によるので、内部に空気などの気泡の
含有が防止され、光散乱を生じない利点がある。
さらに霧化ガラスのガラス組成を適当に変化させ
ることにより、動径方向に任意の屈折率分布を有
するガラス体の合成が可能となる利点がある。内
部に屈折率分布を有するガラス体の合成法は石英
ガラス光フアイバでは良く知られているが、フツ
化物ガラスにおいては、ガラス安定性に欠け結晶
化傾向が大であることに起因して、容易ではな
い。本発明の製造法によつて初めて、任意の屈折
率分布を有するフツ化物ガラス光フアイバの作製
ができた。
In the production of an optical fiber preform by depositing atomized glass in the present invention, the glass is rapidly cooled from melt to solidification. Therefore, even in fluoride glasses lacking in glass stability, crystallization and phase separation are prevented, and an optically uniform glass can be obtained. Furthermore, since the glass is synthesized by sequentially depositing thin glass films, it is possible to prevent bubbles such as air from being contained inside, which has the advantage of not causing light scattering.
Furthermore, by appropriately changing the glass composition of the atomized glass, there is an advantage that a glass body having an arbitrary refractive index distribution in the radial direction can be synthesized. The method of synthesizing a glass body with an internal refractive index distribution is well known for silica glass optical fibers, but it is not easy to synthesize fluoride glasses due to the lack of glass stability and high crystallization tendency. isn't it. By using the manufacturing method of the present invention, a fluoride glass optical fiber having an arbitrary refractive index distribution could be manufactured for the first time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による超音波発振器を利用した
霧状フツ化物ガラスの発生と、その堆積によるガ
ラス体の合成の実施例図、第2図は本発明による
高速ガス流を利用した霧化フツ化物ガラスの発生
と、その堆積によるガラス体の合成の実施例図、
第3図は外付け法によるガラス体の合成の実施例
図、第4図は軸付け法によるガラス体の合成の実
施例図、第5図は母材の線引きを示す図、第6図
は光フアイバの断面図である。 10……フツ化物ガラス融液、11……容器、
12……超音波発生器、13……霧化したガラス
融液、14……輸送用ガスボンベ、15……霧化
ガラス輸送管、16……ノズル、17……ヒー
タ、18……出発基材、19……合成されたガラ
ス体、20……フツ化物ガラス融液、21……容
器、23……霧化したガラス融液、24……輸送
用ガスボンベ、25……霧化ガラス輸送管、26
……ノズル、27……ヒータ、28……出発基
材、29……合成されたガラス、33……霧化ガ
ラス、35……霧化ガラス輸送管、36……ノズ
ル、38……出発基材、39……合成されたガラ
ス体、43……第1の組成の霧化ガラス、43′
……第2の組成の霧化ガラス、46,46′……
ノズル、48……出発基材、49……合成された
ガラス体、50……ガラス母材、51……加熱
炉、52……巻き取りドラム、60……コア、6
1……クラツド、62……テフロンコート。
Fig. 1 is an example of the generation of atomized fluoride glass using an ultrasonic oscillator according to the present invention and the synthesis of a glass body by its deposition. Examples of the generation of compound glass and the synthesis of glass bodies through its deposition,
Figure 3 is an example of synthesis of a glass body by the external attachment method, Figure 4 is an example of synthesis of a glass body by the axis attachment method, Figure 5 is a diagram showing line drawing of the base material, and Figure 6 is an example of synthesis of a glass body by the external attachment method. FIG. 2 is a cross-sectional view of an optical fiber. 10... Fluoride glass melt, 11... Container,
12... Ultrasonic generator, 13... Atomized glass melt, 14... Transport gas cylinder, 15... Atomized glass transport tube, 16... Nozzle, 17... Heater, 18... Starting base material , 19...Synthesized glass body, 20...Fluoride glass melt, 21...Container, 23...Atomized glass melt, 24...Transportation gas cylinder, 25...Atomized glass transport pipe, 26
... Nozzle, 27 ... Heater, 28 ... Starting base material, 29 ... Synthesized glass, 33 ... Atomization glass, 35 ... Atomization glass transport pipe, 36 ... Nozzle, 38 ... Starting group Material, 39...Synthesized glass body, 43...Atomized glass of first composition, 43'
...Atomized glass of second composition, 46,46'...
Nozzle, 48... Starting base material, 49... Synthesized glass body, 50... Glass base material, 51... Heating furnace, 52... Winding drum, 60... Core, 6
1...Clad, 62...Teflon coat.

Claims (1)

【特許請求の範囲】[Claims] 1 フツ素化合物を構成材料とするフツ化物ガラ
ス光フアイバの製造において、所定の組成のフツ
素化合物の混合物を高温に保持してガラス融液と
し、これを霧化しこの霧状ガラスを出発基材の上
に順次堆積することにより、塊状のフツ化物ガラ
ス体を形成し、これを加熱細径化することによ
り、光フアイバとすることを特徴とするフツ化物
ガラス光フアイバの製造法。
1. In the production of fluoride glass optical fibers whose constituent materials are fluorine compounds, a mixture of fluorine compounds with a predetermined composition is held at high temperature to form a glass melt, which is atomized and this atomized glass is used as a starting substrate. 1. A method for producing a fluoride glass optical fiber, which comprises sequentially depositing a fluoride glass body on top of the fluoride glass body to form a lumpy fluoride glass body, and heating and reducing the diameter of the body to form an optical fiber.
JP57196709A 1982-11-11 1982-11-11 Production of optical fiber consisting of glass fluoride Granted JPS5987406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57196709A JPS5987406A (en) 1982-11-11 1982-11-11 Production of optical fiber consisting of glass fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57196709A JPS5987406A (en) 1982-11-11 1982-11-11 Production of optical fiber consisting of glass fluoride

Publications (2)

Publication Number Publication Date
JPS5987406A JPS5987406A (en) 1984-05-21
JPH0211531B2 true JPH0211531B2 (en) 1990-03-14

Family

ID=16362278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57196709A Granted JPS5987406A (en) 1982-11-11 1982-11-11 Production of optical fiber consisting of glass fluoride

Country Status (1)

Country Link
JP (1) JPS5987406A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539032A (en) * 1984-08-03 1985-09-03 Geo-Centers, Inc. SF6 Process for dehydration of fluoride glasses

Also Published As

Publication number Publication date
JPS5987406A (en) 1984-05-21

Similar Documents

Publication Publication Date Title
FI81209C (en) One-mode optical waveguide fiber and the method of producing its
US5560759A (en) Core insertion method for making optical fiber preforms and optical fibers fabricated therefrom
JPS60108338A (en) Manufacture of base material for optical fiber
JPH0211531B2 (en)
JPH0431333A (en) Production of fluoride optical fiber
JP2566128B2 (en) Mold for manufacturing preform for optical fiber and method for manufacturing preform for optical fiber using this mold
JPS6320773B2 (en)
JPH0660028B2 (en) Method for manufacturing preform for optical fiber
JP2502525B2 (en) Mold for manufacturing optical fiber preforms
JPH04243931A (en) Production of optical fiber preform
JPS6046942A (en) Preparation of parent material for optical fiber
JPH0240003B2 (en) TANITSUMOODO * HIKARIFUAIBAYOBOZAINOSEIZOHOHO
JPS60176938A (en) Production of preform for optical fiber
JPS59141436A (en) Manufacture of optical fiber preform
JPS62108748A (en) Preparation of glass fiber base material
JPS62246836A (en) Method of forming soot for preform
JPS62187133A (en) Method and device for producing base material for optical fiber
JPS59152234A (en) Preparation of parent material for optical fiber
JPS6311534A (en) Production of jacket pipe for drawing optical fiber
JPH01197338A (en) Production of fluoride optical fiber preform and device therefor
JPS63225546A (en) Production of base material for optical fiber
JPS5858293B2 (en) Manufacturing method of optical fiber base material
JPS61227937A (en) Preparation of parent material for optical fiber
JPS62191434A (en) Production of parent material for optical fiber
JPH0632619A (en) Apparatus and method for producing fluoride glass