JPH0431333A - Production of fluoride optical fiber - Google Patents

Production of fluoride optical fiber

Info

Publication number
JPH0431333A
JPH0431333A JP13401890A JP13401890A JPH0431333A JP H0431333 A JPH0431333 A JP H0431333A JP 13401890 A JP13401890 A JP 13401890A JP 13401890 A JP13401890 A JP 13401890A JP H0431333 A JPH0431333 A JP H0431333A
Authority
JP
Japan
Prior art keywords
base material
core
fluoride
optical fiber
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13401890A
Other languages
Japanese (ja)
Other versions
JP2835385B2 (en
Inventor
Kazuo Fujiura
和夫 藤浦
Shiro Takahashi
志郎 高橋
Teruhisa Kanamori
金森 照寿
Yukio Terunuma
照沼 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13401890A priority Critical patent/JP2835385B2/en
Publication of JPH0431333A publication Critical patent/JPH0431333A/en
Application granted granted Critical
Publication of JP2835385B2 publication Critical patent/JP2835385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/02External structure or shape details
    • C03B2203/06Axial perturbations, e.g. twist, by torsion, undulating, crimped

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To reduce transmission loss by forming a second preform having a specific core diameter with drawing a fluoride glass preform in taper-like and making a fluoride glass preform for optical fiber having a uniform outer diameter with polishing outside of the second preform. CONSTITUTION:A fluoride glass preform composed of a taper-like core 1 and a clad 2 having a specific outer diameter is formed by a suction method, etc. Then, the preform having core diameter variation in longitudinal direction expressed by formula I [x (mm) is distance from core top end and y (mm) is core diameter] is drawn in taper-like state at a take-up speed expressed by formula II [X (mm/min) is feeding speed of preform, Y (mm/min) is take-up speed of preform and t (min) is time after attaining of core top end at central part in furnace] to obtain a preform composed of a core 1 having longitudinally uniform diameter and a clad having a taper-like outer diameter. Thus, periphery of resultant preform is polished to make a preform having a longitudinally uniform outer diameter and drawn to afford the aimed fluoride optical fiber having low transmission loss and a long length.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、低損失かつ長尺なコア径の一定したフッ化物
光ファイバの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method for manufacturing a fluoride optical fiber with low loss and a long length having a constant core diameter.

(以下余白) [従来の技術J フッ化物光ファイバは石英系を凌ぐ10−”dB/km
以下の伝送損失が期待されており、長距離無中継が可能
な伝送媒体として有望視されている。これまで低損失な
ファイバが得られるフッ化物ガラス母材の作製方法とし
てはビルドイン・キャスティング法、サクション法また
は二層融液法があった。ビルドイン・キャスティング法
(特許第1345722号)は、円筒状の鋳型にクラッ
ド組成のガラス融液なキャスティングし中央部が固化し
ない状態で中央部の融液な流しだし、その後中央部へコ
ア融液をキャスティングすることによって母材を作製す
る方法である。サクション法(特開昭63−11535
号)は円筒状鋳型にまずクラッド融液をキャスティング
しさらに連続してコア融液なキャスティングし、クラッ
ド融液が固化する際の体積収縮を利用して中央部にコア
融液を導入し母材を作製する方法である。二層融液法(
特許第1438419号)は円筒状鋳型にまずコア融液
なキャスティングし、さらに連続してコア融液をキャス
ティングし、クラッド融液が固化する前に底を抜いてク
ラッドガラスを流出させ、同時にコアガラスを中心部に
導入する方法である。
(Left below) [Conventional technology J Fluoride optical fiber has a 10-” dB/km performance that exceeds that of quartz fiber.
The following transmission loss is expected, and it is seen as a promising transmission medium capable of long-distance non-relaying. Until now, methods for producing fluoride glass preforms that yield low-loss fibers include build-in casting, suction, and double-layer melting. The build-in casting method (Patent No. 1345722) involves casting a glass melt with a cladding composition into a cylindrical mold, pouring out the melt in the center without solidifying the center, and then pouring the core melt into the center. This is a method of producing a base material by casting. Suction method (JP-A-63-11535
In this method, the cladding melt is first cast into a cylindrical mold, then the core melt is continuously cast, and the core melt is introduced into the center using the volumetric shrinkage when the cladding melt solidifies. This is a method for producing. Two-layer melt method (
Patent No. 1438419) is a cylindrical mold in which the core melt is first cast, then the core melt is continuously cast, and before the clad melt solidifies, the bottom is pulled out and the clad glass flows out, and at the same time the core glass is cast. This is a method of introducing it into the center.

【発明が解決しようとする課題] これらの方法では細径コアおよび散乱損失の小さい母材
は作製できるが、融液の長手方向に温度分布が生じるた
め、長手方向に均一なコア径を有する母材の作製が困難
であった。このようにして作製した母材を線引きして得
られたフッ化物光ファイバでは、コア径が一定していな
いために、接続が困難であり、さらに光の入射方向に応
じて伝送損失特性が変化する等の欠点があった。しかも
また、コア/クラツド径比の制御ができず、単一モード
ファイバが作製できないという欠点もあった。
[Problems to be Solved by the Invention] These methods can produce a base material with a small diameter core and low scattering loss, but because a temperature distribution occurs in the longitudinal direction of the melt, it is difficult to create a matrix with a uniform core diameter in the longitudinal direction. It was difficult to make the material. Fluoride optical fibers obtained by drawing the base material produced in this way are difficult to connect because the core diameter is not constant, and the transmission loss characteristics change depending on the direction of light incidence. There were drawbacks such as: Moreover, there was also the disadvantage that the core/cladding diameter ratio could not be controlled and a single mode fiber could not be produced.

一方、コア/クラツド径比が長手方向に均一な母材の作
製方法としては、これまでにローティシラナルキャステ
ィング法(D、 C,Tranet al、。
On the other hand, as a method for producing a base material with a uniform core/cladding diameter ratio in the longitudinal direction, the rotary silanal casting method (D, C, Tranet al.

Electron、 [、ett、 vol18. P
、59.(1982))が提案されている。この方法は
、円筒状鋳型を回転しつつクラッドガラス融液を鋳型内
部へ流し込み、遠心力により中空円筒状のクラッドガラ
スパイプを作製し、その後、中央部へコアガラス融液を
流し込むことにより母材を作製する方法である。
Electron, [, ett, vol18. P
, 59. (1982)) have been proposed. In this method, a clad glass melt is poured into the mold while rotating a cylindrical mold, a hollow cylindrical clad glass pipe is created by centrifugal force, and then a core glass melt is poured into the center of the base material. This is a method of manufacturing.

この方法で得られた母材はコア/クラツド径比は一定し
ているが、作製過程でクラッド表面がコア融液により再
加熱されることによる結晶化、コアガラス融液の冷却速
度が遅いために生じる結晶化により、散乱損失を低減す
ることが困難であるという欠点があった。さらにまた、
細径のコアが作製できないため、単一モード光ファイバ
の作製もできないという欠点があった。
The base material obtained by this method has a constant core/cladding diameter ratio, but due to crystallization due to the cladding surface being reheated by the core melt during the manufacturing process and the slow cooling rate of the core glass melt. However, due to the crystallization that occurs, it is difficult to reduce scattering loss. Furthermore,
Since a core with a small diameter cannot be manufactured, a single mode optical fiber cannot be manufactured either.

そこで、本発明の目的は、上記欠点を解決して低損失か
つ長尺なフッ化物光ファイバを製造する方法を提供する
ことにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a long fluoride optical fiber with low loss by solving the above-mentioned drawbacks.

【課題を解決するための手段1 上記欠点を解決するために、本発明では、散乱損失が低
い母材が得られるビルドイン・キャスティング法、サク
ション法または二層融液法によって作製したフッ化物ガ
ラス母材を、速度を変えなからテーパ状に延伸し、長手
方向においてコア径の一定した第2の母材を作製し、さ
らにその外周を研磨し長手方向においてクラッドの外径
の一定した低損失フッ化物光ファイバ用母材を作製する
[Means for Solving the Problems 1] In order to solve the above-mentioned drawbacks, the present invention provides a fluoride glass matrix produced by a build-in casting method, a suction method, or a two-layer melt method that can obtain a matrix with low scattering loss. The material is stretched in a tapered shape without changing the speed to produce a second base material with a constant core diameter in the longitudinal direction, and the outer periphery of the second base material is polished to form a low-loss base material with a constant outer diameter of the cladding in the longitudinal direction. Fabricate a base material for a compound optical fiber.

本発明の他の形態では、さらに、上記フッ化物ガラス母
材をフッ化物ガラスパイプに挿入し、そのバイブ内面と
フッ化物ガラス母材との間を減圧状態に保ちつつ、延伸
速度を変えながらテーパ状に延伸することにより、コア
/クラツド径比の制御されたフッ化物光ファイバを作製
する。
In another form of the present invention, the fluoride glass base material is further inserted into a fluoride glass pipe, and while maintaining a reduced pressure state between the inner surface of the vibrator and the fluoride glass base material, the tapered material is tapered while changing the drawing speed. By drawing the fiber into a shape, a fluoride optical fiber with a controlled core/cladding diameter ratio is produced.

[作 用1 本発明では、長手方向においてコア径が均一でないフッ
化物ガラス母材に対して、速度を変えながらテーパ延伸
を行うことによって、かかる母材から長手方向において
コア径の一定した母材を作製し、さらにクラッド外径を
一定にするべくクラッド外周を研磨し、以上により得ら
れた母材を線引きすることにより、コア径が一定であり
、かつコア/クラツド径比が制御され、以て構造不整散
乱の小さい低損失かつ長尺なフッ化物光ファイバを製造
できる。さらにまた、得られた母材をフッ化物ガラスチ
ューブに挿入してテーパ延伸することにより、低損失か
つ長尺な単一モード光ファイバが作製できる。
[Function 1] In the present invention, a fluoride glass base material whose core diameter is not uniform in the longitudinal direction is tapered drawn while changing the speed, thereby forming a base material whose core diameter is constant in the longitudinal direction. By manufacturing the cladding, polishing the outer periphery of the cladding to make the cladding outer diameter constant, and drawing the base material obtained in the above manner, the core diameter is constant and the core/cladding diameter ratio is controlled. By using this method, a long fluoride optical fiber with low structural asymmetric scattering and low loss can be manufactured. Furthermore, by inserting the obtained base material into a fluoride glass tube and tapering it, a long single mode optical fiber with low loss can be produced.

【実施例1 以下、本発明を実施例によって詳細に説明するが、本発
明はこれにより同等限定されるものではない。
[Example 1] Hereinafter, the present invention will be explained in detail with reference to examples, but the present invention is not limited to the same extent by these examples.

(実施例1) サクション法で作製した母材(コア組成:49モル%Z
rF、−25モル%BaFi −3,5モル%LaF、
−2モル%YF、−2,5モル%AβF、−18モル%
LiF 、クラッド組成:47.5モル%ZrF4−2
3.5モル%BaF、 −2,5モル%LaFs−2モ
ル%YF、−4,5モル%l F、−20モル%NaF
)のコア径を第1図に示す。
(Example 1) Base material produced by suction method (core composition: 49 mol% Z
rF, -25 mol% BaFi -3,5 mol% LaF,
-2 mol% YF, -2,5 mol% AβF, -18 mol%
LiF, cladding composition: 47.5 mol% ZrF4-2
3.5 mol% BaF, -2,5 mol% LaFs-2 mol% YF, -4,5 mol% F, -20 mol% NaF
) is shown in Figure 1.

第1図から明らかなように、サクション法で作製した母
材はコアlがテーパ状になっている。クラッド2の外径
は一定である。第1図においてコア径変化を直線近似で
きる部分はコア先端から12〜51f+mの範囲である
。コア先端からの距離をx (am)、コア径をy (
am)とすれば長手方向のコア径変化は次式で表わすこ
とができる。
As is clear from FIG. 1, the core l of the base material produced by the suction method has a tapered shape. The outer diameter of the cladding 2 is constant. In FIG. 1, the area where the change in core diameter can be approximated by a straight line is in the range of 12 to 51 f+m from the tip of the core. The distance from the core tip is x (am), and the core diameter is y (
am), the change in core diameter in the longitudinal direction can be expressed by the following equation.

! = 0. []41x+1.1       ・・
・(1)この母材をテーパ延伸して母材を作製する場合
、コア径が長手方向に一定となる条件は、母材の送り速
度をX (mm/a+in>、母材の引き取り速度をY
 (Iffm /mfn) 、コア先端が電気炉の中央
部に達し7てからの時間t (min)とすれば、次式
で表すことができる。
! = 0. []41x+1.1...
・(1) When producing a base material by tapering this base material, the conditions for the core diameter to be constant in the longitudinal direction are as follows: the feed speed of the base material is X (mm/a+in>), and the take-up speed of the base material is Y
(Iffm/mfn) and the time t (min) after the tip of the core reaches the center of the electric furnace, it can be expressed by the following equation.

Y=(0,025Xt+0.69) ”X    −(
2)送り速度を5、Omm/minとし、母材の加熱温
度を270℃として、第1図に示した母材を(2)式の
弓き取り速度で延伸した。得られた母材の外径およびコ
ア径の長手方向の変化を第2図に示す。第2図から明ら
かなように、コア1の直径が長手方向において均一でク
ラッド2の外径がテーパ状の母材が得られた。この母材
のクラッド2の外周を研磨して、外径が3■で一定であ
り、長さ83mmの母材を得た。
Y=(0,025Xt+0.69) ”X −(
2) The base material shown in FIG. 1 was stretched at a bowing speed of formula (2), with a feed rate of 5 Omm/min and a heating temperature of the base material of 270°C. FIG. 2 shows changes in the outer diameter and core diameter of the obtained base material in the longitudinal direction. As is clear from FIG. 2, a base material was obtained in which the diameter of the core 1 was uniform in the longitudinal direction and the outer diameter of the cladding 2 was tapered. The outer periphery of the cladding 2 of this base material was polished to obtain a base material having a constant outer diameter of 3 mm and a length of 83 mm.

このようにして得た母材にHe−Neレーザ光を入射し
長手方向において垂直方向の散乱光強度を測定した結果
、延伸の前後で散乱光強度に変化はなく、延伸時の再加
熱による散乱体の成長は生じなかった。
As a result of injecting a He-Ne laser beam into the base material obtained in this way and measuring the scattered light intensity in the vertical direction in the longitudinal direction, there was no change in the scattered light intensity before and after stretching, and scattering due to reheating during stretching. No somatic growth occurred.

この母材を線引きして得られたファイバの伝送損失特性
を第3図に示す。このファイバは測定の際、順方向と逆
方向の両方から光を入射して伝送損失を測定したが、測
定結果に差はみられなかった。また、送り速度を0.5
〜10mm/winの範囲で変化させても同様の形状の
母材を作製できた。
FIG. 3 shows the transmission loss characteristics of the fiber obtained by drawing this base material. During the measurement, light was incident on this fiber from both the forward and reverse directions to measure the transmission loss, but no difference was observed in the measurement results. Also, the feed rate was set to 0.5
A base material having a similar shape could be produced even if the change was made within the range of ~10 mm/win.

(実施例2) 実施例1と同様の形状を持つ母材を外径20++v+、
内径7mmの一端が閉じであるフッ化物ガラスバイブに
挿入し、他端からロータリポンプを用いて10torr
の減圧に引きながら、実施例1と同様の条件で延伸を行
った。
(Example 2) A base material having the same shape as Example 1 had an outer diameter of 20++v+,
Insert it into a fluoride glass vibrator with an inner diameter of 7 mm and closed at one end, and use a rotary pump to pump it to 10 torr from the other end.
Stretching was carried out under the same conditions as in Example 1 while reducing the pressure.

延伸後に得られた母材の外径及びコア径の長手方向の変
化を第4図に示す。第4図から明らかなように、コア径
が長手方向において均一な母材が得られた。
FIG. 4 shows changes in the outer diameter and core diameter of the base material obtained after stretching in the longitudinal direction. As is clear from FIG. 4, a base material having a uniform core diameter in the longitudinal direction was obtained.

この母材にHe−Neレーザを入射し、長手方向におい
て垂直方向の散乱光強度を測定したが、延伸前の母材の
散乱光強度と同程度であり、散乱体の成長は生じていな
かった。さらに、母材とガラスバイブとの界面でも散乱
光強度の変化はみられず、界面が完全に融着しているこ
とが分かった。
A He-Ne laser was applied to this base material to measure the scattered light intensity in the vertical direction in the longitudinal direction, which was comparable to the scattered light intensity of the base material before stretching, and no growth of scatterers had occurred. . Furthermore, no change in the intensity of scattered light was observed at the interface between the base material and the glass vibrator, indicating that the interface was completely fused.

延伸の際、ガラスバイブと母材との間を大気圧に保った
場合、界面に気泡が残留したが、わずかでも(差圧1 
torr)減圧にすることにより気泡の生成を抑制でき
た。
When the atmospheric pressure was maintained between the glass vibrator and the base material during stretching, some air bubbles remained at the interface, but even a small amount (differential pressure of 1
torr) By reducing the pressure, the generation of bubbles could be suppressed.

この母材のクラッド2の外周を外径が19.5mmまで
研磨して得られた母材を線引きして約800mの光ファ
イバを得た。この母材の屈折率差は0.61%であり、
コア径が10.3μmであるため、得られたファイバは
カットオフ波長2.2μmの単一モードファイバであっ
た。このファイバの伝送損失特性を第5図に示す。この
ファイバの最低損失は2.55μsで1.5dB/km
であり、この方法で低損失かつ長尺な単一モード光ファ
イバが作製できた。
The outer periphery of the cladding 2 of this base material was polished to an outer diameter of 19.5 mm, and the resulting base material was drawn to obtain an optical fiber of about 800 m. The refractive index difference of this base material is 0.61%,
Since the core diameter was 10.3 μm, the obtained fiber was a single mode fiber with a cutoff wavelength of 2.2 μm. The transmission loss characteristics of this fiber are shown in FIG. The minimum loss of this fiber is 1.5dB/km in 2.55μs
Using this method, we were able to fabricate a long single-mode optical fiber with low loss.

(実施例3) ビルドイン・キャスティング法で作製した母材(コア組
成:53モル%ZrF4−20モル%BaFi  4モ
ル%LaFs−3モル%i F、−20モル%NaF 
、クラッド組成:27モル%ZrF4−26モル%Hf
F4−20モル%BaFz−4モル%LaF、−3モル
%i F、−20モル%NaF)のコア径を第6図に示
す。
(Example 3) Base material produced by build-in casting method (core composition: 53 mol% ZrF4-20 mol% BaFi 4 mol% LaFs-3 mol% iF, -20 mol% NaF
, cladding composition: 27 mol% ZrF4-26 mol% Hf
The core diameters of F4-20 mol% BaFz-4 mol% LaF, -3 mol% iF, -20 mol% NaF) are shown in FIG.

第6図から明らかなように、ビルドイン・キャスティン
グ法で作製した母材はコア1がテーパ状になっている。
As is clear from FIG. 6, the core 1 of the base material produced by the build-in casting method has a tapered shape.

第6図において、コア径変化が直線近似できる部分は、
コア先端から16〜40mmの範囲である。コア先端か
らの距離をx (mm)、コア径をy (mm)とすれ
ば、長手方向のコア径変化は次式%式% この母材をテーパ延伸して母材を作製する場合、コア径
が長手方向において一定となる条件は、母材の送り速度
なX (mm/m1n)、母材の引き取り速度をY (
mm /win) 、コア先端が電気炉の中央部に達し
てからの時間t (win)とすれば、次式で表すこと
ができる。
In Figure 6, the portion where the core diameter change can be approximated by a straight line is
The range is 16 to 40 mm from the tip of the core. If the distance from the tip of the core is x (mm) and the core diameter is y (mm), then the change in the core diameter in the longitudinal direction is expressed by the following formula (%). The conditions for the diameter to be constant in the longitudinal direction are the feeding speed of the base material, X (mm/m1n), and the take-up speed of the base material, Y (
mm /win) and the time t (win) after the core tip reaches the center of the electric furnace, it can be expressed by the following equation.

Y = (0,055Xt+0.13)”X    ・
・・(4)送り速度を1.5mm/winとし、母材の
加熱温度を270℃として、第6図に示した母材を(4
)式の弓き取り速度で延伸した。
Y = (0,055Xt+0.13)"X ・
...(4) The feed rate was 1.5 mm/win, the heating temperature of the base material was 270°C, and the base material shown in Fig. 6 was heated to (4).
) was drawn at the bowing speed of the formula.

得られた母材の外径およびコア径の長手方向の変化を第
7図に示す。第7図から明らかなように、コア径が長手
方向において均一でクラッド2の外径がテーパ状の母材
が得られた。この母材のクラッド2の外周を研磨して外
径が3mmで一定であり、長さ45m田の母材を得た。
FIG. 7 shows changes in the outer diameter and core diameter of the obtained base material in the longitudinal direction. As is clear from FIG. 7, a base material was obtained in which the core diameter was uniform in the longitudinal direction and the outer diameter of the cladding 2 was tapered. The outer periphery of the cladding 2 of this base material was polished to obtain a base material having a constant outer diameter of 3 mm and a length of 45 m.

このようにして得た母材にHe−Neレーザを入射し、
長手方向において垂直方向の散乱光強度を測定した結果
、延伸の前後で散乱光強度に変化はなく、延伸時の再加
熱で散乱体の成長は生じなかった。
A He-Ne laser is incident on the base material obtained in this way,
As a result of measuring the scattered light intensity in the vertical direction in the longitudinal direction, there was no change in the scattered light intensity before and after stretching, and no growth of scatterers occurred due to reheating during stretching.

この母材を線引きして得られたファイバの伝送損失特性
を第8図に示す。このファイバに対しては、測定の際、
順方向と逆方向の両方から光を入射し、伝送損失を測定
したが、測定結果に差はみられなかった。
FIG. 8 shows the transmission loss characteristics of the fiber obtained by drawing this base material. For this fiber, when measuring:
Light was incident from both the forward and reverse directions and the transmission loss was measured, but no difference was observed in the measurement results.

(実施例4) 二層融液法で作製した母材(コア組成:48.5モル%
ZrF4−23.5モル%BaF、−3.5モル%La
Fs  2モル%YFs−2.5モル%iF、−5モル
%LiF −15モル%NaF 、クラッド組成:47
.5モル%ZrF< −23.5モル%BaFz  2
.5モル%LaFi−2モル%YF。
(Example 4) Base material produced by two-layer melt method (core composition: 48.5 mol%
ZrF4 - 23.5 mol% BaF, -3.5 mol% La
Fs 2 mol% YFs - 2.5 mol% iF, -5 mol% LiF - 15 mol% NaF, cladding composition: 47
.. 5 mol% ZrF < -23.5 mol% BaFz 2
.. 5 mol% LaFi-2 mol% YF.

−4,5モル%AI!、 FS−20モル%NaF)を
外径12mm、内径6mmのガラスパイプを用い、パイ
プと母材との間の減圧度を700torrとし、以下の
速度で延伸した。
-4.5 mol% AI! , FS-20 mol % NaF) was stretched at the following speed using a glass pipe with an outer diameter of 12 mm and an inner diameter of 6 mm, with the degree of vacuum between the pipe and the base material being 700 torr.

Y = (0,014Xt+0.81)”X     
−(5)得られた母材のクラッド外形はテーパ状になっ
ており、この母材のクラッドを研磨して長手方向におい
てクラッド2の外径が一定の母材を得た(外径12mm
) * この母材を線引きした結果、700mmのフッ化物光フ
ァイバが得られた。その伝送損失特性を測定した結果、
このファイバの最低損失は、2.55μmで2.0dB
/kmであった。また、このファイバは、屈折率差は0
.24%、コア径17.1μmであるため、カットオフ
波長2.3μmの単一モードファイバであった。
Y = (0,014Xt+0.81)”X
-(5) The outer shape of the cladding of the obtained base material was tapered, and the cladding of this base material was polished to obtain a base material in which the outer diameter of the cladding 2 was constant in the longitudinal direction (outer diameter 12 mm).
) * As a result of drawing this base material, a 700 mm fluoride optical fiber was obtained. As a result of measuring its transmission loss characteristics,
The minimum loss for this fiber is 2.0 dB at 2.55 μm.
/km. Also, this fiber has a refractive index difference of 0
.. 24% and a core diameter of 17.1 μm, it was a single mode fiber with a cutoff wavelength of 2.3 μm.

(実施例5) 実施例1と同様の母材を用い、以下の式に従い延伸した
(Example 5) Using the same base material as in Example 1, it was stretched according to the following formula.

Y=(1/(1−0,021Xt))”X   ・(6
)得られた母材の形状を第9図に示す。この場合、コア
1およびクラッド2の双方共長手方向においてテーパ状
に変化する。第9図から明らかなように、本発明の方法
を用いれば、コア形状を長手方向において任意所望に変
化させたフッ化物光ファイバを作製できる。
Y=(1/(1-0,021Xt))"X ・(6
) The shape of the obtained base material is shown in FIG. In this case, both the core 1 and the cladding 2 are tapered in the longitudinal direction. As is clear from FIG. 9, by using the method of the present invention, it is possible to produce a fluoride optical fiber whose core shape is changed as desired in the longitudinal direction.

なお、実施例2と同様に、フッ化物ガラス母材をフッ化
物ガラスのパイプに挿入し、そのパイプの内面と母材と
の間を減圧状態に保ちながら、(6)式に従って延伸し
て第2の母材を形成することもできる。
As in Example 2, a fluoride glass base material was inserted into a fluoride glass pipe, and while maintaining a reduced pressure state between the inner surface of the pipe and the base material, it was stretched according to equation (6). It is also possible to form a second base material.

[発明の効果1 以上から明らかなように、本発明の方法を用いることに
より、長手方向においてコア径が均一でないフッ化物ガ
ラス母材に対して、速度を変えながらテーパ延伸を行う
ことによって、かかる母材から長手方向においてコア径
の一定した母材を作製し、さらにクラッド外径を一定に
するべくクラッド外周を研磨し、以上により得られた母
材を線引きすることにより、コア径が一定であり、かつ
コア/クラツド径比が制御され、以て構造不整散乱の小
さい低損失かつ長尺なフッ化物光ファイバを製造できる
。さらにまた、得られた母材をフッ化物ガラスチューブ
に挿入してテーパ延伸することにより、低損失かつ長尺
な単一モード光ファイバが作製できるという利点もある
。あるいはまた、本発明によれば、コア径を長手方向に
任意所望に変化させたファイバも作製することができる
[Effects of the Invention 1] As is clear from the above, by using the method of the present invention, a fluoride glass base material whose core diameter is not uniform in the longitudinal direction is subjected to taper drawing while changing the speed. By creating a base material with a constant core diameter in the longitudinal direction, polishing the outer periphery of the cladding to make the cladding outer diameter constant, and drawing the resulting base material, it is possible to maintain a constant core diameter. In addition, the core/cladding diameter ratio is controlled, and a long fluoride optical fiber with low structural asymmetric scattering and low loss can be manufactured. Furthermore, by inserting the obtained base material into a fluoride glass tube and tapering it, there is an advantage that a long single mode optical fiber with low loss can be produced. Alternatively, according to the present invention, it is also possible to produce a fiber in which the core diameter is changed as desired in the longitudinal direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1においてサクション法で作製された母
材の形状の説明図、 第2図は第1図示の母材を延伸した後の母材の形状を示
す断面図、 第3図は実施例1で得られた光ファイバの伝送損失特性
図、 第4図は実施例2においてサクション法で得られた母材
をガラスパイプに挿入してから延伸して得られた母材の
形状を示す断面図、 第5図は実施例2で得られた光ファイバの伝送損失特性
図、 第6図は実施例3においてビルトイン・キャスティング
法で作製された母材の形状の説明図、第7図は第6図示
の母材を延伸した後の母材の形状を示す断面図、 第8図は実施例3で得られた光ファイバの伝送損失特性
図、 第9図は実施例5において延伸後に得られた母材の形状
を示す断面図である。 1・・・コア。 2・・・クラッド。
Figure 1 is an explanatory diagram of the shape of the base material produced by the suction method in Example 1, Figure 2 is a sectional view showing the shape of the base material after stretching the base material shown in Figure 1, and Figure 3 is Figure 4 shows the transmission loss characteristic diagram of the optical fiber obtained in Example 1. Figure 4 shows the shape of the base material obtained by inserting the base material obtained by the suction method in Example 2 into a glass pipe and then drawing it. 5 is a transmission loss characteristic diagram of the optical fiber obtained in Example 2, FIG. 6 is an explanatory diagram of the shape of the base material produced by the built-in casting method in Example 3, and FIG. is a sectional view showing the shape of the base material after stretching the base material shown in Figure 6, Figure 8 is a transmission loss characteristic diagram of the optical fiber obtained in Example 3, and Figure 9 is a diagram showing the shape of the base material after stretching in Example 5. FIG. 3 is a cross-sectional view showing the shape of the obtained base material. 1...Core. 2...Clad.

Claims (1)

【特許請求の範囲】 1)コア径が長手方向において均一でないフッ化物ガラ
ス母材を線引きしてコア径が長手方向に均一なフッ化物
光ファイバを作製する方法において、 前記フッ化物ガラス母材を速度を変えながらテーパ状に
延伸して長手方向においてコア径の一定した第2の母材
を形成する第1工程と、 前記第2の母材の外周を研磨することにより長手方向に
外径の均一なフッ化物光ファイバ用ガラス母材を作製す
る第2工程と を具えたことを特徴とするフッ化物光ファイバの製造方
法。 2)前記第1工程において、フッ化物ガラスのパイプに
前記フッ化物ガラス母材を挿入し、前記パイプの内面と
前記フッ化物ガラス母材との間を減圧状態に保ちつつ、
速度を変えながらテーパ状に延伸することを特徴とする
請求項1に記載のフッ化物光ファイバの製造方法。 3)コア径が長手方向において均一でないフッ化物ガラ
ス母材を線引きしてフッ化物光ファイバを作製する方法
において、 前記フッ化物ガラス母材を速度を変えながらテーパ状に
延伸して長手方向においてコア径が所定の分布をもって
変化する第2の母材を形成する第1工程と、 前記第2の母材の外周を研磨することにより長手方向に
外径の均一なフッ化物光ファイバ用ガラス母材を作製す
る第2工程と を具えたことを特徴とするフッ化物光ファイバの製造方
法。 4)前記第1工程において、フッ化物ガラスのパイプに
前記フッ化物ガラス母材を挿入し、前記パイプの内面と
前記フッ化物ガラス母材との間を減圧状態に保ちつつ、
速度を変えながらテーパ状に延伸することを特徴とする
請求項3に記載のフッ化物光ファイバの製造方法。
[Claims] 1) A method for producing a fluoride optical fiber having a uniform core diameter in the longitudinal direction by drawing a fluoride glass preform having a non-uniform core diameter in the longitudinal direction, comprising: a first step of forming a second base material having a constant core diameter in the longitudinal direction by stretching it in a tapered shape while changing the speed; A method for producing a fluoride optical fiber, comprising a second step of producing a uniform glass preform for a fluoride optical fiber. 2) In the first step, the fluoride glass base material is inserted into a fluoride glass pipe, and while maintaining a reduced pressure state between the inner surface of the pipe and the fluoride glass base material,
2. The method for producing a fluoride optical fiber according to claim 1, wherein the fluoride optical fiber is drawn in a tapered shape while changing speed. 3) In a method of producing a fluoride optical fiber by drawing a fluoride glass preform whose core diameter is not uniform in the longitudinal direction, the fluoride glass preform is drawn into a tapered shape while changing the speed to form a core in the longitudinal direction. a first step of forming a second base material whose diameter changes with a predetermined distribution; and a glass base material for a fluoride optical fiber having a uniform outer diameter in the longitudinal direction by polishing the outer periphery of the second base material. A method for producing a fluoride optical fiber, comprising: a second step of producing a fluoride optical fiber. 4) In the first step, inserting the fluoride glass base material into a fluoride glass pipe, and maintaining a reduced pressure state between the inner surface of the pipe and the fluoride glass base material,
4. The method for producing a fluoride optical fiber according to claim 3, wherein the fluoride optical fiber is drawn in a tapered shape while changing speed.
JP13401890A 1990-05-25 1990-05-25 Manufacturing method of fluoride optical fiber Expired - Lifetime JP2835385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13401890A JP2835385B2 (en) 1990-05-25 1990-05-25 Manufacturing method of fluoride optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13401890A JP2835385B2 (en) 1990-05-25 1990-05-25 Manufacturing method of fluoride optical fiber

Publications (2)

Publication Number Publication Date
JPH0431333A true JPH0431333A (en) 1992-02-03
JP2835385B2 JP2835385B2 (en) 1998-12-14

Family

ID=15118454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13401890A Expired - Lifetime JP2835385B2 (en) 1990-05-25 1990-05-25 Manufacturing method of fluoride optical fiber

Country Status (1)

Country Link
JP (1) JP2835385B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656453A (en) * 1992-08-10 1994-03-01 Nippon Telegr & Teleph Corp <Ntt> Optical fiber preform drawing apparatus
US5308371A (en) * 1992-04-28 1994-05-03 Central Glass Co., Ltd. Method of forming fluoride glass fiber preform
EP0842907A1 (en) * 1996-11-19 1998-05-20 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. Active single mode optical fibres and method for their fabrication
WO2006049186A1 (en) * 2004-11-04 2006-05-11 Shin-Etsu Chemical Co., Ltd. Method of producing optical fiber parent material, optical glass rod, and optical fiber
JP2011228541A (en) * 2010-04-21 2011-11-10 Photonic Science Technology Inc Method of manufacturing tapered optical fiber
CN116774348A (en) * 2023-08-24 2023-09-19 北京工业大学 Double-cladding fluoride gain optical fiber and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308371A (en) * 1992-04-28 1994-05-03 Central Glass Co., Ltd. Method of forming fluoride glass fiber preform
JPH0656453A (en) * 1992-08-10 1994-03-01 Nippon Telegr & Teleph Corp <Ntt> Optical fiber preform drawing apparatus
EP0842907A1 (en) * 1996-11-19 1998-05-20 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. Active single mode optical fibres and method for their fabrication
US5991486A (en) * 1996-11-19 1999-11-23 Cselt- Centro Studi E Laboratori Telecomunicazioni S.P.A. Active single mode optical fibres and method for their fabrication
WO2006049186A1 (en) * 2004-11-04 2006-05-11 Shin-Etsu Chemical Co., Ltd. Method of producing optical fiber parent material, optical glass rod, and optical fiber
JP2011228541A (en) * 2010-04-21 2011-11-10 Photonic Science Technology Inc Method of manufacturing tapered optical fiber
CN116774348A (en) * 2023-08-24 2023-09-19 北京工业大学 Double-cladding fluoride gain optical fiber and preparation method thereof
CN116774348B (en) * 2023-08-24 2023-12-22 北京工业大学 Double-cladding fluoride gain optical fiber and preparation method thereof

Also Published As

Publication number Publication date
JP2835385B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
FI81209B (en) ENMODS OPTICAL VAOGROERSFIBER OCH FOERFARANDET FOER FRAMSTAELLNING AV DESS.
JPS5843336B2 (en) Manufacturing method of clad type optical glass fiber
US4519826A (en) Optical fibers having a fluoride glass cladding and method of making
US5560759A (en) Core insertion method for making optical fiber preforms and optical fibers fabricated therefrom
US5776222A (en) Method of eliminating light scattering bubbles in optical fiber preforms
JPH0431333A (en) Production of fluoride optical fiber
US5573571A (en) Method for making optical fiber preforms and optical fibers fabricated therefrom
US7013678B2 (en) Method of fabricating graded-index optical fiber lenses
Wang et al. A review of the fabrication of optic fiber
JP2566128B2 (en) Mold for manufacturing preform for optical fiber and method for manufacturing preform for optical fiber using this mold
JP2502525B2 (en) Mold for manufacturing optical fiber preforms
JPS6346011B2 (en)
JPS59137329A (en) Manufacture of preform for single-mode optical fluoride fiber
JP3220821B2 (en) Method for manufacturing single mode optical fiber
JPH0660028B2 (en) Method for manufacturing preform for optical fiber
JP3596715B2 (en) Mold for manufacturing preform for polarization-maintaining optical fiber and method for manufacturing preform for optical fiber using this mold
JPH0324420B2 (en)
JPS596265B2 (en) Optical fiber manufacturing method
JPS6311534A (en) Production of jacket pipe for drawing optical fiber
JPS5918127A (en) Manufacture of polarization maintaining optical fiber
JPS593030A (en) Manufacture of base material for infrared optical fiber
JPH054831A (en) Production of infrared-transmitting optical fiber preform
JPS59232927A (en) Manufacture of preform for optical fluoride fiber
JPH06166529A (en) Preparation of jacket pipe
CN110187436A (en) A kind of line-styled single polarization fiber and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12