JPH06166529A - Preparation of jacket pipe - Google Patents

Preparation of jacket pipe

Info

Publication number
JPH06166529A
JPH06166529A JP4343126A JP34312692A JPH06166529A JP H06166529 A JPH06166529 A JP H06166529A JP 4343126 A JP4343126 A JP 4343126A JP 34312692 A JP34312692 A JP 34312692A JP H06166529 A JPH06166529 A JP H06166529A
Authority
JP
Japan
Prior art keywords
glass
jacket tube
jacket
tube
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4343126A
Other languages
Japanese (ja)
Other versions
JP3196947B2 (en
Inventor
Atsushi Mori
淳 森
Shoichi Sudo
昭一 須藤
Yasutake Oishi
泰丈 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP34312692A priority Critical patent/JP3196947B2/en
Publication of JPH06166529A publication Critical patent/JPH06166529A/en
Application granted granted Critical
Publication of JP3196947B2 publication Critical patent/JP3196947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/02Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • C03B37/01268Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by casting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To prepare a jacket pipe composed of oxide glass of high purity with a high accuracy for preparing low-loss fiber having high strength and weather resistance. CONSTITUTION:A glass material melted in a melting furnace is poured into a mold and cooled to ambient temperature to prepare a glass rod, which is then subjected to perforation processing. The resultant glass rod is housed in an electric furnace 1 to polish the inner surface of the glass rod 3 with a flame from a burner 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信用あるいはセン
サ用の低損失伝送媒体、光アンプまたはレーザー用の増
幅媒体あるいは医療等に用いられる高エネルギー伝送媒
体として用いられるフッ化物ガラス光ファイバの製造方
法において、特にその強度,耐候性を向上させるため
に、光ファイバ母材をジャケット延伸及びジャケット線
引きするのに用いる光ファイバのクラッドの外管ジャケ
ットとなるジャケット管の作製方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low loss transmission medium for optical communication or a sensor, an amplification medium for an optical amplifier or a laser, or a fluoride glass optical fiber used as a high energy transmission medium for medical use. The present invention relates to a method of manufacturing a jacket tube which is an outer tube jacket of a clad of an optical fiber used for jacket stretching and jacket drawing of an optical fiber preform in order to improve its strength and weather resistance.

【0002】[0002]

【従来の技術】光ファイバのコア径を制御する方法とし
て、コア母材にクラッドと同一組成のジャケット管を被
覆し線引きを行うロッドインチューブ法、コア・クラッ
ド構造を有する母材にジャケット管を被覆し延伸するジ
ャケット延伸法(特願平2−134018)及びジャケ
ット線引き法が用いられている。上記方法に用いられて
いるジャケット管の製造法として一般に市販されている
酸化物ガラス管は、主として坩堝内で原料を溶融し、坩
堝底面の穴から下方に流出させると同時に、坩堝の中心
軸上に設けたダイスにより中空のガラス管を得るもので
ある。一方、低融点多成分ガラス、特にフッ化物ファイ
バ用としては、溶融したガラス原料を中空の鋳型に注入
して作製したガラスロッドの中心部に穴を開けてパイプ
状とする方法や、ガラス融液を円筒状の中空鋳型に注入
した後、この鋳型を傾斜あるいは水平に保ちながら高速
で回転させ、遠心力により中空円筒状のパイプを製造す
るローテーショナルキャステイング法(特願平4−23
9413)がある。
2. Description of the Related Art As a method of controlling the core diameter of an optical fiber, a rod-in-tube method is used in which a core tube is coated with a jacket tube having the same composition as the clad, and a core tube having a core / clad structure is used. A jacket stretching method of coating and stretching (Japanese Patent Application No. 2-134018) and a jacket drawing method are used. Oxide glass tubes that are generally commercially available as a method for manufacturing the jacket tube used in the above method are mainly those in which the raw material is melted in the crucible and allowed to flow downward through the holes in the bottom of the crucible, and at the same time on the central axis of the crucible A hollow glass tube is obtained by the die provided in. On the other hand, for low-melting point multi-component glass, especially for fluoride fiber, a method of forming a hole in the center of a glass rod prepared by injecting a molten glass raw material into a hollow mold to form a pipe, or a glass melt. Is poured into a cylindrical hollow mold, and then the mold is rotated at a high speed while keeping the mold inclined or horizontal to produce a hollow cylindrical pipe by centrifugal force (Japanese Patent Application No. 4-23).
9413).

【0003】ZrF4 を主成分とするフッ化物光ファイ
バは、赤外線波長領域で優れた透過特性を有するため、
センサ或いは赤外域の高出力レーザの伝送媒体として注
目されている。さらに赤外領域まで透過するということ
は、すなわちレーリー散乱が低い領域に透過窓が有して
いることを意味し、結果として石英よりも低損失なファ
イバの実現が期待される。さらには近年、光ファイバア
ンプ、特にPrを活性イオンとする1.3μm領域で高
い利得が得られる増幅媒体として注目されている。しか
し、フッ化物ガラスが赤外領域までの透過特性を有する
ということは、すなわち、ガラスを構成する成分の結合
力が弱いということを意味する。このため、フッ化物光
ファイバは機械的強度が不十分で、このファイバの実用
化に対する重大な障害であると考えられている。さらに
フッ化物で構成されているため、大気中の水分と反応
し、加水分解を起こすため結晶化が生じ結果的に強度が
低下するという欠点もあった。これらの問題点を解決す
るために、ガラスを構成する成分として結合力の強い酸
化物から成るガラスによりジャケット管を作り、フッ化
物ガラスとともにジャケット線引きする方法が提案され
ている(L.J.B Vachaet. al., Material Science Forum
Vols. 32-33 (1988)pp. 571-576 )。しかし、フッ
化物ガラスは延伸や線引きの際の熱処理により結晶成長
し、損失の増大や強度の低下を引き起こすため、内壁及
び外壁面上に傷がつき易いダイス法や、内壁に研磨材な
どの不純物が残りやすい穴あけ法で、この酸化物ガラス
ジャケット管を作製するには問題があった。またローテ
ーショナルキャステイング法では、内壁に傷が生じない
ジャケット管を作ることができるが、粘性の高い酸化物
ガラスではこの方法が使えないという制約があった。
A fluoride optical fiber containing ZrF 4 as a main component has excellent transmission characteristics in the infrared wavelength region,
It has attracted attention as a transmission medium for sensors or high-power lasers in the infrared region. Further, transmission to the infrared region means that the transmission window is provided in a region where Rayleigh scattering is low, and as a result, it is expected to realize a fiber having lower loss than quartz. Further, in recent years, it has been attracting attention as an optical fiber amplifier, particularly as an amplifying medium which can obtain a high gain in a 1.3 μm region in which Pr is an active ion. However, the fact that the fluoride glass has a transmission characteristic up to the infrared region means that the binding force of the components constituting the glass is weak. For this reason, the fluoride optical fiber has insufficient mechanical strength and is considered to be a serious obstacle to practical use of this fiber. Further, since it is composed of a fluoride, it has a drawback that it reacts with moisture in the air to cause hydrolysis, resulting in crystallization and consequently a decrease in strength. In order to solve these problems, a method has been proposed in which a jacket tube is made of glass composed of an oxide having a strong binding force as a constituent of the glass, and the jacket wire is drawn together with the fluoride glass (LJB Vachaet. Al. , Material Science Forum
Vols. 32-33 (1988) pp. 571-576). However, fluoride glass grows due to crystal growth due to heat treatment during drawing and drawing, which causes an increase in loss and a decrease in strength.Therefore, a die method that easily scratches the inner and outer wall surfaces and impurities such as abrasives on the inner wall. However, there was a problem in producing this oxide glass jacket tube by a drilling method that tends to remain. Further, the rotation casting method can make a jacket tube without causing scratches on the inner wall, but there is a limitation that this method cannot be used for highly viscous oxide glass.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の問題点
を解決するために提案されたもので、その目的は、高純
度で高精度なジャケット管の作製方法を提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been proposed to solve the above problems, and an object of the present invention is to provide a method for producing a jacket tube of high purity and high accuracy.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は溶融炉内で溶融したガラス素材を鋳型の中
に注ぎ入れ、室温まで冷却して作製したガラス棒に穴あ
け加工を施して内面を研磨するジャケット管の作製方法
において、前記穴あけ加工を施した内面を火炎により研
磨することを特徴とするジャケット管の作製方法を発明
の要旨とするものである。換言すれば、本発明で提案す
るジャケット管の作製方法は、低軟化点の酸化物ガラス
管において、その内面を火炎研磨することを最も主要な
特徴とするものである。
[Means for Solving the Problems] To achieve the above object, the present invention pours a molten glass material in a melting furnace into a mold, cools it to room temperature, and punches the glass rod. In the method for producing a jacket tube for polishing an inner surface by means of polishing, the method for producing a jacket tube is characterized in that the inner surface that has been subjected to the drilling process is polished with a flame. In other words, the method of manufacturing the jacket tube proposed by the present invention is characterized mainly in that the inner surface of the oxide glass tube having a low softening point is flame-polished.

【0006】[0006]

【作用】本発明はジャケット管の作製方法において、ガ
ラス管を火炎研磨するため、高精度で高純度のジャケッ
ト管を容易に作製することができ、これによって低損失
で、高強度かつ耐候性の高いファイバを作製することが
できる。
In the method for producing a jacket tube according to the present invention, since the glass tube is flame-polished, a highly precise and highly pure jacket tube can be easily produced, which results in low loss, high strength and weather resistance. High fibers can be made.

【0007】[0007]

【実施例】次に本発明の実施例について説明する。図1
は本発明によるジャケット管の火炎研磨装置の断面概略
図を示し、図において、1は石英管に電熱線を巻いた電
気炉、2は母材を固定するための治具、3はジャケット
管、4は酸水素バーナーである。まず、すでに穴のあい
たジャケット管3を治具2に固定し、ジャケット管3全
体を電気炉1の中へ入れ、ゆっくり回転させながら予加
熱を行う。次に、回転と加熱を保持しつつ、酸水素バー
ナー4をジャケット管3の内面にゆっくり挿入,引き出
しを繰り返し、火炎研磨を行う。以下、実施例によって
本発明を詳細に説明するが、本発明はこれにより何等限
定されるものではない。
EXAMPLES Next, examples of the present invention will be described. Figure 1
Shows a schematic sectional view of a flame polishing apparatus for a jacket tube according to the present invention, in which 1 is an electric furnace in which a heating wire is wound around a quartz tube, 2 is a jig for fixing a base material, 3 is a jacket tube, 4 is an oxyhydrogen burner. First, the jacket tube 3 having holes is fixed to the jig 2, and the entire jacket tube 3 is put into the electric furnace 1 and preheated while slowly rotating. Next, while maintaining rotation and heating, the oxyhydrogen burner 4 is slowly inserted into and pulled out from the inner surface of the jacket tube 3 to repeat flame polishing. Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

【0008】〔実施例1〕溶融後に組成が60P2 5
−8ZnO−8PbO−10Li2 O−10Na2 O−
4V2 5 (モル%)、総量が60gとなるように秤量
し、白金坩堝に入れてArガス雰囲気で400℃で2時
間加熱して原料中に存在する炭酸化物をCO2 の形で除
去した後、1000℃で2時間保持して溶融させた。次
に、電気炉で200℃に加熱しておいた黄銅製の円筒状
の中空鋳型に上記の融液を流し込み、室温まで除冷し
た。得られたリン酸ガラスに電気ドリルで穴を開けたの
ち、内径5mmφになるまで電気研磨機で研磨した。次
に、濃度20%のフッ酸水溶液に20分間漬けてエッチ
ングした後、このリン酸ガラス管全体を内径30mm
φ,長さ250mmの石英管に白金をまきつけて作った
電気炉1に入れ、250℃に加熱,保温しつつ、先端に
1mmφの穴の開いた外径3mmφ,長さ200mmの
石英管に酸素と水素を流し、先端で燃焼させたバーナー
4でガラス管3の内径を火炎研磨した。
Example 1 After melting, the composition was 60 P 2 O 5
-8ZnO-8PbO-10Li 2 O- 10Na 2 O-
4V 2 O 5 (mol%), weighed so that the total amount becomes 60 g, put in a platinum crucible and heated in an Ar gas atmosphere at 400 ° C. for 2 hours to remove carbonates existing in the raw material in the form of CO 2. After that, it was held at 1000 ° C. for 2 hours to be melted. Next, the above melt was poured into a brass cylindrical hollow mold that had been heated to 200 ° C. in an electric furnace, and the mixture was cooled to room temperature. The obtained phosphate glass was punched with an electric drill, and then polished with an electric polishing machine until the inner diameter became 5 mmφ. Next, after dipping in a 20% hydrofluoric acid aqueous solution for 20 minutes for etching, the entire phosphoric acid glass tube has an inner diameter of 30 mm
Put it in an electric furnace 1 made by sprinkling platinum on a quartz tube with a diameter of 250 mm and heating it to 250 ° C while keeping it warm, while oxygen is added to a quartz tube with an outer diameter of 3 mmφ and a length of 200 mm with a hole of 1 mmφ at the tip. Then, the inner diameter of the glass tube 3 was flame-polished with the burner 4 which was burned at the tip and burned at the tip.

【0009】このリン酸ガラス管の内壁を詳細に観察し
たが、傷・塵などの不純物は見られなく、非常に平滑に
形成されていた。別にコア組成が49ZrF4 −25B
aF2 −3.5LaF3 ─2YF3 −2.5AlF3
18LiF(モル%)、クラッドは47.5ZrF4
23.5BaF2 −2.5LaF3 ─2YF3 −4.5
AlF3 −20NaF(モル%)からなるコア・クラッ
ド構造を有する外径5mmφの母材を、サンクション・
キャスティング法(特開昭63−11535号公報)に
より製造した。この母材の表面を研磨し、さらにオキシ
塩化ジルコニウム・塩酸水溶液中でエッチングし、充分
に乾燥した後、先に述べた円筒状の酸化物ガラス管(ジ
ャケット管)内に挿入した。その後、真空ポンプを用い
てジャケット管内を減圧しながら、外部よりゾーン加熱
して軟化させ、母材とジャケット管を一体化しつつ延伸
速度を変えながら、コア径が一定となるように延伸し
た。外形がテーパー状に延伸された母材の外径が4.8
mmの一定となるように研磨し、フッ化水素水溶液でエ
ッチングした後、充分に乾燥した。この母材を、同様に
作製した同じ組成の、もう1本のジャケット管に挿入
し、さらにこのジャケット管外部にテフロンFEPパイ
プを被覆し、管内部を減圧しながら、ゾーン加熱しジャ
ケット線引きを行った。得られたファイバは長さ1k
m,外径125μm,コア径10.5mm,比屈折率差
0.61%であり、カットオフ2.2μmの単一モード
光ファイバであった。このファイバの断面を顕微鏡で観
察したが、フッ化ガラスと酸化物ガラスの界面に結晶の
発生や乱れはなく、スムーズであった。このファイバの
最低損失値は波長2.55μmで1.75dB/kmで
あった。次にこのファイバの引っ張り強度を測定した。
測定長は20m,サンプル数は40で、高強度部分は7
00MPaとなり、フッ化物ガラスのみにテフロンFE
Pパイプを被覆した場合の400MPaから大きく改善
された。
When the inner wall of this phosphoric acid glass tube was observed in detail, impurities such as scratches and dust were not found, and it was formed very smooth. Separately, the core composition is 49ZrF 4 -25B
aF 2 -3.5LaF 3 ─2YF 3 -2.5AlF 3 -
18LiF (mol%), clad 47.5ZrF 4
23.5BaF 2 -2.5LaF 3 ─2YF 3 -4.5
A base material having an outer diameter of 5 mm and having a core / clad structure made of AlF 3 -20 NaF (mol%)
It was produced by the casting method (Japanese Patent Laid-Open No. 63-11535). The surface of the base material was polished, further etched in a zirconium oxychloride / hydrochloric acid aqueous solution, sufficiently dried, and then inserted into the cylindrical oxide glass tube (jacket tube) described above. Then, while the pressure inside the jacket tube was reduced using a vacuum pump, the zone tube was softened by zone heating from the outside, and while stretching the base material and the jacket tube while changing the stretching speed, the core tube was stretched to have a constant core diameter. The outer diameter of the base material stretched in a tapered shape is 4.8.
It was polished to a constant mm, etched with an aqueous solution of hydrogen fluoride, and then sufficiently dried. This base material was inserted into another jacket tube of the same composition prepared in the same manner, and the outside of this jacket tube was covered with a Teflon FEP pipe. Zone heating was performed while decompressing the inside of the tube to perform jacket drawing. It was The resulting fiber has a length of 1k
m, the outer diameter was 125 μm, the core diameter was 10.5 mm, the relative refractive index difference was 0.61%, and the cutoff was 2.2 μm. When the cross section of this fiber was observed with a microscope, there was no generation or disorder of crystals at the interface between the fluoride glass and the oxide glass, and it was smooth. The minimum loss value of this fiber was 1.75 dB / km at a wavelength of 2.55 μm. Next, the tensile strength of this fiber was measured.
The measurement length is 20 m, the number of samples is 40, and the high-strength part is 7
00MPa, Teflon FE only for fluoride glass
This was a significant improvement from 400 MPa when the P pipe was coated.

【0010】〔実施例2〕実施例1と同一組成,同一方
法にてジャケット管を作製し、フッ化物ガラスの母材を
挿入してジャケット延伸した。母材は実施例1と同様、
エッチング,乾燥した後、UV硬化型の樹脂を被覆しな
がら線引きした。このファイバの伝送損失特性は実施例
1とほぼ同様であった。また、実施例1と同様の方法で
引っ張り強度を測定した。測定結果は最高値で900M
Paに達しており、フッ化物ガラスのみにUVコートし
たファイバの最高値550MPaに比べ大幅に向上し
た。次に、両方のファイバを温度70℃,湿度80%の
高温・高湿槽の中に一週間保持した後、また同様に引っ
張り強度を測定した。フッ化物ガラスのみにUVコート
したファイバは200MPa以下へと大幅に強度が弱ま
ったのに対し、酸化物ガラスでジャケットし、UVコー
トしたファイバは平均800MPaの強度があり、ほと
んど劣化は認められなかった。
[Example 2] A jacket tube was produced by the same composition and method as in Example 1, a base material of fluoride glass was inserted, and jacket stretching was performed. The base material is the same as in Example 1.
After etching and drying, a wire was drawn while covering with a UV curable resin. The transmission loss characteristics of this fiber were almost the same as in Example 1. Further, the tensile strength was measured by the same method as in Example 1. Maximum measurement result is 900M
It has reached Pa, which is much higher than the maximum value of 550 MPa of the fiber UV-coated only on the fluoride glass. Next, both fibers were kept in a high temperature and high humidity tank having a temperature of 70 ° C. and a humidity of 80% for one week, and then the tensile strength was measured in the same manner. The strength of the fiber UV-coated only on the fluoride glass was significantly weakened to 200 MPa or less, whereas the fiber coated with the oxide glass and UV-coated had an average strength of 800 MPa, and almost no deterioration was observed. .

【0011】〔実施例3〕実施例1と同一組成,同一方
法にてジャケット管を作製する際、管の内径を火炎研磨
したのと同様な方法で外径も火炎研磨した後、フッ化物
ガラス母材を挿入してジャケット延伸した。その後、被
覆材としてテフロンFRPとUVキュアーコートを併用
し、線引きした。引っ張り強度は大幅に向上し、平均強
度950MPaが得られた。フッ化物ガラスジャケット
されたファイバに同様の被覆を施した場合の最高強度
は、600MPaであった。
[Example 3] When a jacket tube was made by the same composition and method as in Example 1, the inner diameter of the tube was flame-polished in the same manner as the outer diameter, and then the fluoride glass was used. The base material was inserted and the jacket was stretched. After that, Teflon FRP and UV cure coat were used together as a coating material and drawn. The tensile strength was significantly improved, and an average strength of 950 MPa was obtained. The maximum strength for a similar coating on a fluoride glass jacketed fiber was 600 MPa.

【0012】図2は実施例3で得られた酸化物ジャケッ
トファイバとフッ化物ジャケットファイバを温度60
℃,湿度70%の高温高湿槽に入れたときの波長1.3
μmにおけるファイバの伝送損失の時間変化である。図
2において、横軸に日数をとり、縦軸に伝送損失をとっ
てある。図中、断線とあるのは光の通らないことを示
す。この図から明らかなように、酸化物ガラスをジャケ
ットしたファイバは、フッ化物ガラスをジャケットした
ファイバよりも、伝送特性の変化が大幅に小さいことが
わかる。
FIG. 2 shows the oxide jacket fiber and the fluoride jacket fiber obtained in Example 3 at a temperature of 60.
Wavelength 1.3 when put in a high temperature and high humidity chamber at ℃ and 70% humidity
It is the time change of the transmission loss of the fiber in μm. In FIG. 2, the horizontal axis represents the number of days and the vertical axis represents the transmission loss. In the figure, a broken line indicates that light does not pass. As is clear from this figure, the oxide glass jacketed fiber has a significantly smaller change in transmission characteristics than the fluoride glass jacketed fiber.

【0013】[0013]

【発明の効果】以上の実施例で説明したように、本発明
の方法を用いることにより、高精度で高純度な酸化物ガ
ラス管ができるため、低損失で高強度かつ耐候性の高い
ファイバが作製できる。したがって、従来のフッ化物ガ
ラスを基本素材としたファイバで実用化の障害となって
いた信頼性の問題が克服できるという利点がある。
As described in the above embodiments, by using the method of the present invention, a highly accurate and highly pure oxide glass tube can be obtained, so that a fiber with low loss, high strength and high weather resistance can be obtained. Can be made. Therefore, there is an advantage that the reliability problem, which has been an obstacle to the practical use of the conventional fiber made of fluoride glass, can be overcome.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるジャケット管火炎研磨装置の具体
例の断面概略図を示す。
FIG. 1 shows a schematic cross-sectional view of a specific example of a jacket tube flame polishing apparatus according to the present invention.

【図2】フッ化物ガラスジャケットファイバと酸化物ガ
ラスジャケットファイバの伝送特性を示す。
FIG. 2 shows transmission characteristics of a fluoride glass jacket fiber and an oxide glass jacket fiber.

【符号の説明】[Explanation of symbols]

1 電気炉 2 治具 3 ジャケット管 4 酸水素バーナー 1 Electric furnace 2 Jig 3 Jacket tube 4 Oxygen burner

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶融炉内で溶融したガラス素材を鋳型の
中に注ぎ入れ、室温まで冷却して作製したガラス棒に穴
あけ加工を施して内面を研磨するジャケット管の作製方
法において、前記穴あけ加工を施した内面を火炎により
研磨することを特徴とするジャケット管の作製方法。
1. A method of producing a jacket tube, comprising pouring a glass material melted in a melting furnace into a mold, cooling the glass material to room temperature, and making a hole in the glass rod to polish the inner surface. A method for producing a jacket tube, which comprises polishing the inner surface subjected to heat treatment with a flame.
【請求項2】 ジャケット管の作製方法において、火炎
研磨する際、前記穴あけ加工を施したガラス棒を電気炉
内に収納し、加熱することを特徴とする請求項1記載の
ジャケット管の作製方法。
2. The method for producing a jacket tube according to claim 1, wherein when flame-polishing, the glass rod subjected to the perforating process is housed in an electric furnace and heated in the method for producing the jacket tube. .
【請求項3】 ジャケット管の作製方法において、穴あ
け加工を施したガラス棒の内面を火炎研磨するのに先立
ち、ガラスをエッチングする液体で洗浄することを特徴
とする請求項1記載のジャケット管の作製方法。
3. The method for producing a jacket tube according to claim 1, wherein the inner surface of the holed glass rod is washed with a liquid for etching the glass prior to flame polishing. Manufacturing method.
JP34312692A 1992-11-30 1992-11-30 Fabrication method of fluoride optical fiber Expired - Fee Related JP3196947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34312692A JP3196947B2 (en) 1992-11-30 1992-11-30 Fabrication method of fluoride optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34312692A JP3196947B2 (en) 1992-11-30 1992-11-30 Fabrication method of fluoride optical fiber

Publications (2)

Publication Number Publication Date
JPH06166529A true JPH06166529A (en) 1994-06-14
JP3196947B2 JP3196947B2 (en) 2001-08-06

Family

ID=18359124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34312692A Expired - Fee Related JP3196947B2 (en) 1992-11-30 1992-11-30 Fabrication method of fluoride optical fiber

Country Status (1)

Country Link
JP (1) JP3196947B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734296A (en) * 2019-02-28 2019-05-10 上海强华实业股份有限公司 Quartz stove tube automatic polishing machine and polishing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734296A (en) * 2019-02-28 2019-05-10 上海强华实业股份有限公司 Quartz stove tube automatic polishing machine and polishing method
CN109734296B (en) * 2019-02-28 2023-12-26 上海强华实业股份有限公司 Automatic polishing machine and polishing method for quartz furnace tube

Also Published As

Publication number Publication date
JP3196947B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
KR20010082180A (en) Methods and apparatus for producing optical fiber
US5560759A (en) Core insertion method for making optical fiber preforms and optical fibers fabricated therefrom
US4165152A (en) Process for producing optical transmission fiber
US4289516A (en) Low loss optical fibers
JPH10182188A (en) Single-mode active optical fiber and its production
US5573571A (en) Method for making optical fiber preforms and optical fibers fabricated therefrom
JPH06166529A (en) Preparation of jacket pipe
JP2566128B2 (en) Mold for manufacturing preform for optical fiber and method for manufacturing preform for optical fiber using this mold
JPH0431333A (en) Production of fluoride optical fiber
JP2502525B2 (en) Mold for manufacturing optical fiber preforms
JP2565712B2 (en) Optical fiber manufacturing method
JP3376422B2 (en) Glass jacket tube manufacturing apparatus and optical fiber manufacturing method
CN112520999B (en) Method for preparing graded-index optical fiber by selectively volatilizing fiber core components
JPH0692683A (en) Optical fiber of fluoride
CN113716857B (en) Double-clad single-mode soft glass optical fiber and preparation method and application thereof
CN109143459B (en) Cladding method of rare earth ion doped low-temperature garnet crystal bar
JP2000128558A (en) Production of quartz glass preform for optical fiber
JPH01222206A (en) Production of functional optical fiber
JPS6311534A (en) Production of jacket pipe for drawing optical fiber
JPS6231322B2 (en)
JPH06273642A (en) Fluoride optical fiber
JPS6351978B2 (en)
JPS6346011B2 (en)
JPH05323132A (en) Fluoride glass fiber and its production
JPH01215738A (en) Production of optical glass fiber having core-clad structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees