JPH0656453A - Optical fiber preform drawing apparatus - Google Patents

Optical fiber preform drawing apparatus

Info

Publication number
JPH0656453A
JPH0656453A JP21283392A JP21283392A JPH0656453A JP H0656453 A JPH0656453 A JP H0656453A JP 21283392 A JP21283392 A JP 21283392A JP 21283392 A JP21283392 A JP 21283392A JP H0656453 A JPH0656453 A JP H0656453A
Authority
JP
Japan
Prior art keywords
optical fiber
valve
pipe
jacket tube
fiber preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21283392A
Other languages
Japanese (ja)
Other versions
JP2817865B2 (en
Inventor
Teruhisa Kanamori
照寿 金森
Yukio Terunuma
幸雄 照沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4212833A priority Critical patent/JP2817865B2/en
Publication of JPH0656453A publication Critical patent/JPH0656453A/en
Application granted granted Critical
Publication of JP2817865B2 publication Critical patent/JP2817865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To suppress crystal deposition at interface between a jacket pipe and a preform by setting the jacket pipe in to which the preform is inserted in a drawing device and then introducing a reactive gas into the jacket pipe. CONSTITUTION:Holders 3 and 4 are installed through O-rings 20 and 21 to the both ends of a jacket pipe 2 into which a glass preform 1 is inserted. The upper and lower supporting pipes 5 and 6 are installed through O-rings 22 and 23. Valves 13, 14 and 15 are closed and a valve 16 is opened and the interior of the jacket pipe 2 is evacuated. Then, the valve 16 is closed and the valve 13 is opened and a gas is charged from a reactive gas feeder 19 into the pipe and then the valve 15 is opened and the surface of inside of the pipe is treated with the gas under flowing thereof. In a drawing process, the valve 13 is closed and the valve 14 is opened and a definite amount of gas is made to flow. Subsequently, the valve 15 is closed and the valve 16 is opened and the pressure of the interior of the pipe is reduced to keep the inside to a proper reactive gas partial pressure. Drawing operation comprising heating and softening the lower part of the pipe in a heating furnace 11 and lowering a feed-out arm 9 at a definite rate is carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低損失の単一モードフ
ッ化物光ファイバのための母材を作製する母材延伸装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a preform drawing apparatus for producing a preform for a low loss single mode fluoride optical fiber.

【0002】[0002]

【従来の技術】フッ化物光ファイバは、フッ化物ガラス
が低いフェノンエネルギーを持つことから、石英系ファ
イバを凌ぐ低損失値を実現できる伝送媒体として有望視
されているうえに、レーザや光アンプ用の活性イオンの
良好なホスト媒体としても注目されている。このような
応用にフッ化物光ファイバを適用するにはファイバを単
一モード化する必要があるが、このためにはガラス母材
をジャケット管内に挿入して延伸・一体化する、いわゆ
るジャケット延伸(特開平4−31333号)という手
法を実施しなければならない。
2. Description of the Related Art Fluoride optical fibers are promising as a transmission medium that can realize a low loss value that surpasses silica based fibers because fluoride glass has low phenon energy, and also for lasers and optical amplifiers. It is also attracting attention as a good host medium for the active ions of In order to apply a fluoride optical fiber to such an application, it is necessary to make the fiber into a single mode, but for this purpose, a glass base material is inserted into a jacket tube and drawn / integrated. The technique of Japanese Patent Laid-Open No. 4-31333) must be implemented.

【0003】すなわち、従来、ジャケット延伸はジャケ
ット管内を減圧したのち、ジャケット管の一部を加熱・
軟化させて引っ張ることによって、ジャケット管とその
中の母材を一体化していた。
That is, conventionally, in the jacket stretching, after decompressing the inside of the jacket pipe, a part of the jacket pipe is heated.
By softening and pulling, the jacket tube and the base material therein were integrated.

【0004】しかしながら、フッ化物ガラスは結晶化し
易いため、従来の延伸装置を用いた場合、ジャケット管
と母材の界面に結晶が析出するという欠点や、そのよう
な延伸で得た母材から作製されたファイバの伝送損失が
増大するという問題もあった。
However, since fluoride glass is easily crystallized, when a conventional stretching apparatus is used, crystals are deposited at the interface between the jacket tube and the base material, and the base material obtained by such stretching is used. There is also a problem that the transmission loss of the treated fiber increases.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
の技術的課題を解決し、低損失なフッ化物単一モード光
ファイバを製造するための母材延伸装置を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above technical problems and to provide a base material drawing apparatus for producing a low loss fluoride single mode optical fiber.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の光ファイバ母材延伸装置は、ガラスジャケ
ット管と該ジャケット管内に挿入された光ファイバ母材
とを共に加熱する加熱手段と、該加熱手段による加熱の
ために軟化した前記光ファイバ母材および前記ジャケッ
ト管に張力を加えて前記光ファイバ母材および前記ジャ
ケット管の変形部分を延伸する張力印加手段とを有する
光ファイバ母材延伸装置において、前記加熱手段による
加熱の前に前記光ファイバ母材と前記ジャケット管との
間の空間に反応性ガスを導入するガス導入手段と、前記
張力印加手段による延伸時に前記光ファイバ母材および
前記ジャケット管の変形部分に加わる張力が一定となる
ように前記加熱手段の加熱温度を調節する加熱温度調節
手段とを含むことを特徴とする。
In order to achieve the above object, the optical fiber preform stretching apparatus of the present invention is a heating means for heating both a glass jacket tube and an optical fiber preform inserted in the jacket tube. And an optical fiber preform having tension applying means for applying tension to the optical fiber preform and the jacket tube softened for heating by the heating means to extend the deformed portion of the optical fiber preform and the jacket tube. In the material drawing apparatus, gas introducing means for introducing a reactive gas into the space between the optical fiber preform and the jacket tube before heating by the heating means, and the optical fiber base during drawing by the tension applying means. Material and heating temperature adjusting means for adjusting the heating temperature of the heating means so that the tension applied to the deformed portion of the jacket tube is constant. And it features.

【0007】[0007]

【作用】本発明においては、母材が挿入されたジャケッ
ト管を延伸装置にセットした後に反応性ガスをジャケッ
ト管内に導入できるので、ジャケット管内壁と母材表面
を浄化でき、結晶核生成が防止されるため、ジャケット
管と母材の界面での結晶析出を抑制できる。また、本発
明においては、一定の張力で延伸されるので延伸時の過
加熱による結晶化を抑制できる。このため、本発明の延
伸装置により得られる光ファイバ母材からは低損失の光
ファイバを得ることができる。
In the present invention, the reactive gas can be introduced into the jacket tube after the jacket tube in which the base material has been inserted is set in the stretching device, so that the inner wall of the jacket tube and the surface of the base material can be purified and crystal nucleation is prevented. Therefore, crystal precipitation at the interface between the jacket tube and the base material can be suppressed. Further, in the present invention, since the film is drawn with a constant tension, crystallization due to overheating during drawing can be suppressed. Therefore, a low loss optical fiber can be obtained from the optical fiber preform obtained by the drawing apparatus of the present invention.

【0008】[0008]

【実施例】次に本発明を詳細に説明する。The present invention will be described in detail below.

【0009】本発明の光ファイバ母材延伸装置の一実施
例の模式図を図1に示す。1はガラス母材、2はジャケ
ット管、3および4は第1および第2ジャケット管ホル
ダー、5は上部支持管、6は下部支持管、7は上部ロー
ドセル、8は下部ロードセル、9は張力印加手段として
の送り出しアーム、10は張力印加手段としての引き下
げアーム、11は加熱手段としての加熱炉、12は真空
ポンプ、13,14,15および16は第1,第2,第
3および第4ストップバルブ、17および18は第1お
よび第2流量計、19はガス導入手段としての反応性ガ
ス供給装置、20,21,22および23は第1,第
2,第3および第4 O−リング、24は加熱温度調節
手段としての温度制御器である。
FIG. 1 shows a schematic view of an embodiment of the optical fiber preform stretching apparatus of the present invention. 1 is a glass base material, 2 is a jacket tube, 3 and 4 are first and second jacket tube holders, 5 is an upper support tube, 6 is a lower support tube, 7 is an upper load cell, 8 is a lower load cell, and 9 is tension application. A sending arm as means, 10 is a pulling down arm as tension applying means, 11 is a heating furnace as heating means, 12 is a vacuum pump, 13, 14, 15 and 16 are first, second, third and fourth stops. Valves, 17 and 18 are first and second flow meters, 19 is a reactive gas supply device as a gas introduction means, 20, 21, 22, and 23 are first, second, third and fourth O-rings, Reference numeral 24 is a temperature controller as a heating temperature adjusting means.

【0010】上記構成の延伸装置を用いてジャケット管
2の内壁とガラス母材1の表面を前処理するには、ま
ず、ガラス母材1を挿入したジャケット管2の両端に第
1および第2ジャケット管ホルダー3および4をO−リ
ング20および21を介して取付ける。次に、そのジャ
ケット管ホルダー3および4を上部支持管5および下部
支持管6にO−リング22および23を介して装着す
る。第1,第2および第3ストップバルブ13,14お
よび15を閉じ、第4ストップバルブ16を開けてジャ
ケット管2内を真空引きした後、第4ストップバルブ1
6を閉じ、第1ストップバルブ13を開けて管内に反応
性ガス供給装置19からガスを入れ、その後第3ストッ
プバルブ15を開けてガスを流しながら内部の表面を処
理する。このとき、ガス流量は第1流量計17により設
定する。表面処理を特定の温度で行う場合は加熱炉11
を所定の温度に上げ、送り出しアーム9と引き下げアー
ム10を等速で上下に動かして加熱炉11内でジャケッ
ト管2をスキャンして加熱する。
In order to pretreat the inner wall of the jacket tube 2 and the surface of the glass preform 1 by using the stretching apparatus having the above-mentioned construction, first, the first and second ends of the jacket tube 2 in which the glass preform 1 is inserted are provided. Attach jacket tube holders 3 and 4 via O-rings 20 and 21. Next, the jacket tube holders 3 and 4 are attached to the upper support tube 5 and the lower support tube 6 via O-rings 22 and 23. After closing the first, second and third stop valves 13, 14 and 15 and opening the fourth stop valve 16 to evacuate the inside of the jacket pipe 2, the fourth stop valve 1
6 is closed, the first stop valve 13 is opened and gas is introduced from the reactive gas supply device 19 into the pipe, and then the third stop valve 15 is opened and the inner surface is treated while flowing gas. At this time, the gas flow rate is set by the first flow meter 17. Heating furnace 11 when surface treatment is performed at a specific temperature
Is heated to a predetermined temperature, and the feeding arm 9 and the lowering arm 10 are moved up and down at a constant speed to scan the jacket tube 2 in the heating furnace 11 for heating.

【0011】延伸工程では、まず、第1ストップバルブ
13を閉じ、第2ストップバルブ14を開けて第2流量
計18より一定量のガスを流す。次に、第3ストップバ
ルブ15を閉じ第4ストップバルブ16を開いてジャケ
ット管2内を減圧して適当な反応性ガス分圧に保ったま
ま、加熱炉11内でジャケット管2の下部を加熱・軟化
させる。続いて、ジャケット管2内の圧力を一定に保持
したまま、送り出しアーム9を一定速度で下降させ、ジ
ャケット管2を加熱炉11内に送り込み通過させなが
ら、同時に引き下げアーム10を所定の速度で下降させ
て内部の母材1とジャケット管2を延伸・一体化する。
このとき、上部ロードセル7と下部ロードセル8に加わ
る荷重を測定し、変形した延伸部にかかっている張力を
検出し、これが一定値をとるように温度制御器24によ
って加熱炉の温度を調節する。
In the stretching step, first, the first stop valve 13 is closed, the second stop valve 14 is opened, and a fixed amount of gas is flown from the second flow meter 18. Next, the third stop valve 15 is closed and the fourth stop valve 16 is opened to depressurize the inside of the jacket pipe 2 and maintain the partial pressure of the reactive gas at an appropriate level, while heating the lower part of the jacket pipe 2 in the heating furnace 11.・ Soften. Subsequently, while keeping the pressure in the jacket tube 2 constant, the feeding arm 9 is lowered at a constant speed, and while the jacket tube 2 is fed into the heating furnace 11 and passed therethrough, the pulling arm 10 is simultaneously lowered at a predetermined rate. Then, the internal base material 1 and the jacket tube 2 are stretched and integrated.
At this time, the load applied to the upper load cell 7 and the lower load cell 8 is measured, the tension applied to the deformed stretched portion is detected, and the temperature of the heating furnace is adjusted by the temperature controller 24 so that it takes a constant value.

【0012】以下、本発明を具体的な実施例によって詳
細に説明するが、本発明はこれにより何ら限定されるも
のではない。
Hereinafter, the present invention will be described in detail with reference to specific examples, but the present invention is not limited thereto.

【0013】(実施例1)コアが49ZrF4 −25B
aF2 −3.5LaF3 −2YF3 −2.5AlF3
18LiF(mol%)、クラッドが47.5ZrF4
−23.5BaF2 −2.5LaF3 −2.5YF3
4.5AlF3 −20NaF(mol%)からなるフッ
化物ガラス母材(外径6.8mm、コア径0.5mm、
長さ150mm、比屈折率差0.95%)と、母材のク
ラッドガラスと同一の組成のフッ化物ジャケット管(外
径15mm、内径7.0mm、長さ150mm)を用
い、図1に示した装置にセットした。ジャケット管2内
を真空に引いた後、フッ化水素ガスとフッ素ガスとアル
ゴンガスの混合ガス(濃度はそれぞれ25%、10pp
m、75%)を管内に導入し、室温で毎分200ccの
量を30分間流した。続いて、加熱炉11内で10mm
/minの速度で上下にスキャンすることによりジャケ
ット管2を180℃に加熱した。この状態で60分間保
って表面処理した後、混合ガスを止め、ジャケット管2
内を真空引きした。管内を真空に保ったまま、ジャケッ
ト管2の下部を290℃に加熱・軟化させ、送り出しア
ーム9を1.5mm/minで下降させてジャケット管
2を順次加熱炉11内に送り込んだ。同時に引き下げア
ーム10を6mm/minで引き下ろした。このとき、
各アームに取り付けたロードセル7および8にかかる荷
重をモニターして、加熱炉11内のジャケット管2の変
形部分に50gの張力が常に加わるように加熱炉11の
温度を調節した。このように延伸して外径7.5mm、
長さ250mmの母材を得た。この母材から線引いた9
00mのファイバ(外径125μm)は1.3μmにカ
ットオフ波長を持つ単一モードファイバで、1.3μm
の損失値は18dB/kmであった。延伸に用いた母材
の残りを線引いて得たファイバの損失は波長1.3μm
で17dB/kmとなった。損失測定の精度を考慮する
と両者に差はないと判断でき、本発明の延伸装置による
延伸では損失増加は無視できると結論される。
(Example 1) The core is 49ZrF 4 -25B.
aF 2 -3.5LaF 3 -2YF 3 -2.5AlF 3 -
18LiF (mol%), clad 47.5ZrF 4
-23.5BaF 2 -2.5LaF 3 -2.5YF 3 -
4.5AlF 3 -20NaF (mol%) consisting of a fluoride glass preform (outside diameter 6.8 mm, core diameter 0.5 mm,
Using a length of 150 mm, relative refractive index difference of 0.95%) and a fluoride jacket tube (outer diameter 15 mm, inner diameter 7.0 mm, length 150 mm) of the same composition as the base material of the clad glass, shown in FIG. Installed in the device. After evacuating the inside of the jacket pipe 2, a mixed gas of hydrogen fluoride gas, fluorine gas and argon gas (concentration: 25%, 10 pp, respectively)
m, 75%) was introduced into the tube, and 200 cc / min was flowed for 30 minutes at room temperature. Then, 10 mm in the heating furnace 11
The jacket tube 2 was heated to 180 ° C. by scanning up and down at a speed of / min. In this state, hold for 60 minutes for surface treatment, then stop the mixed gas,
The inside was evacuated. While the inside of the tube was kept vacuum, the lower part of the jacket tube 2 was heated and softened to 290 ° C., the feeding arm 9 was lowered at 1.5 mm / min, and the jacket tube 2 was sequentially fed into the heating furnace 11. At the same time, the pull-down arm 10 was pulled down at 6 mm / min. At this time,
The load applied to the load cells 7 and 8 attached to each arm was monitored, and the temperature of the heating furnace 11 was adjusted so that 50 g of tension was constantly applied to the deformed portion of the jacket tube 2 in the heating furnace 11. By stretching in this way, the outer diameter is 7.5 mm,
A base material having a length of 250 mm was obtained. 9 drawn from this base material
The 00m fiber (outer diameter 125 μm) is a single mode fiber with a cutoff wavelength of 1.3 μm, 1.3 μm
Loss value was 18 dB / km. The loss of the fiber obtained by drawing the rest of the base material used for drawing has a wavelength of 1.3 μm.
It became 17 dB / km. Considering the accuracy of the loss measurement, it can be judged that there is no difference between the two, and it is concluded that the increase in loss can be ignored in the stretching by the stretching device of the present invention.

【0014】(実施例2)コアが50ZrF4 −19B
aF2 −5PbF2 −3.5LaF3 −2YF3−2.
5AlF3 −18LiF(mol%)、クラッドが2
3.75ZrF4 −23.75HfF4 −23.5Ba
2 −2.5LaF3 −2.5YF3 −4.5AlF3
−20NaF(mol%)からなるフッ化物ガラス母材
(外径6.8mm、コア径0.3mm、長さ150m
m、比屈折率差2.1%)と、47.5ZrF4 −2
3.5BaF2 −2.5LaF3 −2.5YF3 −4.
5AlF3−20NaF(mol%)からなるフッ化物
ジャケット管(外径15mm、内径7.0mm、長さ1
50mm)を用い、母材のクラッドガラスと同一の組成
のフッ化物ジャケット管(外径15mm、内径7.0m
m、長さ150mm)を用い、実施例1と同様にして図
1に示した延伸装置にこれらをセットした。ジャケット
管2内を真空に引いた後、表面処理用の反応性ガスとし
てNF3 ガスを管内に導入した。続いて、第1ストップ
バルブ13を閉じ、第2および第4ストップバルブ14
および16を開け、第2流量計18によりガスの流量を
調節してジャケット管2内の圧力を、大気より300m
mH2 Oだけ下げた。管内をこの圧力に保ったまま、ジ
ャケット管の下部を285℃に加熱・軟化させ、送り出
しアーム9を1mm/minで下降させてジャケット管
2を順次加熱炉11内に送り込んだ。同時に引き下げア
ーム10を4mm/minで引き下ろした。このとき、
各アームに取り付けたロードセル7および8にかかる荷
重をモニターして、加熱炉11内のジャケット管2の変
形部分に60gの張力が常に加わるように加熱炉11の
温度を調節した。このように延伸して外径7.5mm、
長さ250mmの母材を得た。この母材から線引いた9
00mのファイバ(外径125μm)は1.0μmにカ
ットオフ波長を持つ単一モードファイバで、1.3μm
の損失値は20dB/kmと低損失であった。
Example 2 The core is 50ZrF 4 -19B.
aF 2 -5PbF 2 -3.5LaF 3 -2YF 3 -2.
5AlF 3 -18LiF (mol%), clad 2
3.75ZrF 4 -23.75HfF 4 -23.5Ba
F 2 -2.5LaF 3 -2.5YF 3 -4.5AlF 3
Fluoride glass base material made of -20 NaF (mol%) (outer diameter 6.8 mm, core diameter 0.3 mm, length 150 m)
m, relative refractive index difference 2.1%), and 47.5ZrF 4 -2
3.5BaF 2 -2.5LaF 3 -2.5YF 3 -4.
5AlF 3 -20NaF (mol%) consisting of fluoride jacket tube (outer diameter 15 mm, inner diameter 7.0 mm, length 1
Fluoride jacketed tube (outer diameter 15 mm, inner diameter 7.0 m) having the same composition as the base material clad glass.
m, length 150 mm) and set them in the stretching apparatus shown in FIG. 1 in the same manner as in Example 1. After the inside of the jacket tube 2 was evacuated, NF 3 gas was introduced into the tube as a reactive gas for surface treatment. Then, the first stop valve 13 is closed and the second and fourth stop valves 14 are closed.
And 16 are opened, the flow rate of the gas is adjusted by the second flow meter 18, and the pressure in the jacket pipe 2 is set to 300 m from the atmosphere.
Only mH 2 O was lowered. While the inside of the pipe was kept at this pressure, the lower part of the jacket pipe was heated and softened to 285 ° C., the feeding arm 9 was lowered at 1 mm / min, and the jacket pipe 2 was sequentially fed into the heating furnace 11. At the same time, the pull-down arm 10 was pulled down at 4 mm / min. At this time,
The load applied to the load cells 7 and 8 attached to each arm was monitored, and the temperature of the heating furnace 11 was adjusted so that a tension of 60 g was constantly applied to the deformed portion of the jacket tube 2 in the heating furnace 11. By stretching in this way, the outer diameter is 7.5 mm,
A base material having a length of 250 mm was obtained. 9 drawn from this base material
The 00m fiber (outer diameter 125μm) is a single mode fiber with a cutoff wavelength of 1.0μm, 1.3μm
The loss value was 20 dB / km, which was a low loss.

【0015】本実施例では、本発明の装置を用いた場
合、延伸工程の進行中においても、管内の一定のガス分
圧を設定できるため、反応性ガスでジャケット管内壁と
母材表面を浄化しながら延伸できることを示すものであ
る。
In this embodiment, when the apparatus of the present invention is used, a constant gas partial pressure in the pipe can be set even during the stretching process, so that the inner wall of the jacket pipe and the surface of the base material are cleaned with the reactive gas. It shows that it can be stretched while being stretched.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
高品質なフッ化物光ファイバ母材が得られるので、この
フッ化物光ファイバ母材からは低損失のフッ化物単一モ
ードファイバを得ることが可能である。この低損失のフ
ッ化物単一モードファイバにより、伝送距離の増大や、
光増幅器の特性向上が期待できるため、光通信システム
の低コスト化および高性能化が図れるという利点があ
る。
As described above, according to the present invention,
Since a high quality fluoride optical fiber preform can be obtained, it is possible to obtain a low loss fluoride single mode fiber from this fluoride optical fiber preform. This low loss fluoride single mode fiber increases transmission distance and
Since the characteristics of the optical amplifier can be expected to be improved, there are advantages that the cost and performance of the optical communication system can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光ファイバ母材延伸装置の一実施例の
構成を示す模式図である。
FIG. 1 is a schematic view showing a configuration of an embodiment of an optical fiber preform stretching device of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス母材 2 ジャケット管 3 第1ジャケット管ホルダー 4 第2ジャケット管ホルダー 5 上部支持管 6 下部支持管 7 上部ロードセル 8 下部ロードセル 9 送り出しアーム 10 引き下げアーム 11 加熱炉 12 真空ポンプ 13 第1ストップバルブ 14 第2ストップバルブ 15 第3ストップバルブ 16 第4ストップバルブ 17 第1流量計 18 第2流量計 19 反応性ガス供給装置 20 第1 O−リング 21 第2 O−リング 22 第3 O−リング 23 第4 O−リング 24 温度制御器 1 Glass Base Material 2 Jacket Tube 3 First Jacket Tube Holder 4 Second Jacket Tube Holder 5 Upper Support Tube 6 Lower Support Tube 7 Upper Load Cell 8 Lower Load Cell 9 Sending Arm 10 Pulling Arm 11 Heating Furnace 12 Vacuum Pump 13 First Stop Valve 14 2nd stop valve 15 3rd stop valve 16 4th stop valve 17 1st flow meter 18 2nd flow meter 19 Reactive gas supply apparatus 20 1st O-ring 21 2nd O-ring 22 3rd O-ring 23 Fourth O-ring 24 Temperature controller

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C03C 13/04 // G02B 6/00 356 A 7036−2K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication C03C 13/04 // G02B 6/00 356 A 7036-2K

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガラスジャケット管と該ジャケット管内
に挿入された光ファイバ母材とを共に加熱する加熱手段
と、該加熱手段による加熱のために軟化した前記光ファ
イバ母材および前記ジャケット管に張力を加えて前記光
ファイバ母材および前記ジャケット管の変形部分を延伸
する張力印加手段とを有する光ファイバ母材延伸装置に
おいて、 前記加熱手段による加熱の前に前記光ファイバ母材と前
記ジャケット管との間の空間に反応性ガスを導入するガ
ス導入手段と、 前記張力印加手段による延伸時に前記光ファイバ母材お
よび前記ジャケット管の変形部分に加わる張力が一定と
なるように前記加熱手段の加熱温度を調節する加熱温度
調節手段とを含むことを特徴とする光ファイバ母材延伸
装置。
1. A heating means for heating together a glass jacket tube and an optical fiber preform inserted in the jacket tube, and tension applied to the optical fiber preform and the jacket tube softened by the heating means. In the optical fiber preform stretching device having a tension applying means for stretching the deformed portion of the optical fiber preform and the jacket tube in addition to the optical fiber preform and the jacket tube before heating by the heating means. A gas introducing means for introducing a reactive gas into the space between the heating means and the heating temperature of the heating means so that the tension applied to the deformed portion of the optical fiber preform and the jacket tube becomes constant during the stretching by the tension applying means. And a heating temperature adjusting means for adjusting the optical fiber preform.
JP4212833A 1992-08-10 1992-08-10 Optical fiber preform stretching equipment Expired - Lifetime JP2817865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4212833A JP2817865B2 (en) 1992-08-10 1992-08-10 Optical fiber preform stretching equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4212833A JP2817865B2 (en) 1992-08-10 1992-08-10 Optical fiber preform stretching equipment

Publications (2)

Publication Number Publication Date
JPH0656453A true JPH0656453A (en) 1994-03-01
JP2817865B2 JP2817865B2 (en) 1998-10-30

Family

ID=16629115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4212833A Expired - Lifetime JP2817865B2 (en) 1992-08-10 1992-08-10 Optical fiber preform stretching equipment

Country Status (1)

Country Link
JP (1) JP2817865B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870231A (en) * 1995-06-30 1999-02-09 Olympus Optical Co., Ltd. Zoom lens system
US9212082B2 (en) 2012-12-26 2015-12-15 Heraeus Quarzglas Gmbh & Co. Kg System and method for fabricating optical fiber preform and optical fiber
EP3323791A1 (en) * 2016-11-22 2018-05-23 Heraeus Tenevo LLC Upward collapse process and apparatus for making glass preforms
US11649185B2 (en) * 2019-01-15 2023-05-16 Heraeus Quartz North America Llc Automated large outside diameter preform tipping process and resulting glass preforms

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431333A (en) * 1990-05-25 1992-02-03 Nippon Telegr & Teleph Corp <Ntt> Production of fluoride optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431333A (en) * 1990-05-25 1992-02-03 Nippon Telegr & Teleph Corp <Ntt> Production of fluoride optical fiber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870231A (en) * 1995-06-30 1999-02-09 Olympus Optical Co., Ltd. Zoom lens system
US9212082B2 (en) 2012-12-26 2015-12-15 Heraeus Quarzglas Gmbh & Co. Kg System and method for fabricating optical fiber preform and optical fiber
EP3323791A1 (en) * 2016-11-22 2018-05-23 Heraeus Tenevo LLC Upward collapse process and apparatus for making glass preforms
KR20180057529A (en) * 2016-11-22 2018-05-30 헤래우스 테네보 엘엘씨 Upward collapse process and apparatus for making glass preforms
JP2018083751A (en) * 2016-11-22 2018-05-31 ヘレーウス テネーヴォ エルエルシーHeraeus Tenevo Llc Upward collapse process and apparatus for manufacturing glass preform
EP3590899A1 (en) * 2016-11-22 2020-01-08 Heraeus Quartz North America LLC Upward collapse process and apparatus for making glass preforms
US11405107B2 (en) 2016-11-22 2022-08-02 Heraeus Quartz North America Llc Upward collapse process and apparatus for making glass preforms
US11811453B2 (en) 2016-11-22 2023-11-07 Heraeus Quartz North America Llc Upward collapse process and apparatus for making glass preforms
US11649185B2 (en) * 2019-01-15 2023-05-16 Heraeus Quartz North America Llc Automated large outside diameter preform tipping process and resulting glass preforms

Also Published As

Publication number Publication date
JP2817865B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
CA1054795A (en) Optical fibres
US6817213B2 (en) Method of fabricating optical fiber preform and method of fabricating optical fiber
US4820322A (en) Method of and apparatus for overcladding a glass rod
JPH08208259A (en) Optical fiber base material that has thermal conductivity variation in radial direction and its manufacture
JP2798486B2 (en) Method and apparatus for producing hermetic coated optical fiber
GB2314077A (en) Making optical fibres by drawing rod-in-tube preforms
EP0244135A1 (en) Method of and apparatus for overcladding an optical preform rod
US20060179888A1 (en) Manufacture of optical fibers using enhanced doping
US4908053A (en) Process for producing chalcogenide glass fiber
JPH0656453A (en) Optical fiber preform drawing apparatus
JP2002531367A (en) Manufacturing apparatus and method for manufacturing optical fiber preform by shrinking and closing deposition tube
EP0678763A1 (en) Process for producing optical waveguide
GB1596088A (en) Method of making glass articles
US6266980B1 (en) Centerline protection using heavy inert gases
CN113277728B (en) Optical fiber drawing furnace suitable for fluoride glass
US5314519A (en) Methods and apparatus for increasing optical fiber draw speed
JP2655909B2 (en) Draw furnace for fluoride optical fiber
JP3385804B2 (en) Fluoride optical fiber manufacturing equipment
US4294514A (en) Light-wave guides and method of producing same
US5429653A (en) Method of partially introverting a multiple layer tube to form an optical fiber preform
JPH0471019B2 (en)
JP2987998B2 (en) Low pressure CVD equipment
JPS6086047A (en) Manufacture of glass preform for optical fiber
JPH01286932A (en) Production of optical fiber preform
CN113219588B (en) Method and device for manufacturing optical fiber combiner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070821

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080821

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080821

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090821

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090821

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100821

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100821

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110821

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 14

EXPY Cancellation because of completion of term