JPS593030A - Manufacture of base material for infrared optical fiber - Google Patents

Manufacture of base material for infrared optical fiber

Info

Publication number
JPS593030A
JPS593030A JP10837782A JP10837782A JPS593030A JP S593030 A JPS593030 A JP S593030A JP 10837782 A JP10837782 A JP 10837782A JP 10837782 A JP10837782 A JP 10837782A JP S593030 A JPS593030 A JP S593030A
Authority
JP
Japan
Prior art keywords
optical fiber
core
base material
wire
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10837782A
Other languages
Japanese (ja)
Inventor
Nariyuki Mitachi
成幸 三田地
Tadashi Miyashita
宮下 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10837782A priority Critical patent/JPS593030A/en
Publication of JPS593030A publication Critical patent/JPS593030A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • C03B37/01268Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by casting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Abstract

PURPOSE:To manufacture a base material for an infrared optical fiber having a core-clad waveguide structure, by erecting a fine wire at the center of a casting mold, pouring a melt for a clad, pulling out the wire, and filling molten glass for a clad into the resulting small cavity. CONSTITUTION:A casting mold is composed of an outer frame 1 divided into a plurality of parts 2, 2', 2'' and a ring 3 for clamping the frame 1. A fine metallic wire 6 of platinum or the like is erected at the center of the inner hollow 5 of the mold with a bottom cover 4 in-between, and molten glass for a clad is poured into the hollow 5. The wire 6 is heated beforehand by directly supplying an electric current or by other method, and it is pulled out immediately after pouring the molten glass. Molten glass for a core is filled into the resulting small cavity and annealed so as to prevent the production of stress. After finishing the molding, the parts 2, 2', 2'' are detached to obtain a base material for an infrared optical fiber. By this method, a fluoride glass base material for an optical fiber capable of transmitting infrared rays having about 2-6mum wavelengths can be manufactured.

Description

【発明の詳細な説明】 本発明は、2〜6μm帯の赤外線を伝送することができ
る7ツ化物ガラス光フアイバ用母材の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a base material for a heptadide glass optical fiber capable of transmitting infrared rays in the 2-6 μm band.

従来の光フアイバ用母材は二酸化珪素(Sin、 )系
ガラスを主構成素材としているが、このガラス素材は5
i−0結合の振動に起因する赤外吸収を有する。このた
め、レーリー散乱損失と赤外吸収損失との谷間に存在す
る低損失の波長域は可視域から近赤外域(波長0.6〜
1.7μm)に限られ、それより長波長の波長領域にお
いては低損失の光ファイバを得ることができなかった。
Conventional optical fiber base materials mainly consist of silicon dioxide (Sin) glass, but this glass material
It has infrared absorption due to vibration of i-0 bond. For this reason, the low-loss wavelength range that exists between Rayleigh scattering loss and infrared absorption loss is from the visible range to the near-infrared range (wavelengths from 0.6 to
1.7 μm), and it was not possible to obtain a low-loss optical fiber in a wavelength region longer than that.

一方、これまでの技術知識によれば、レーリー散乱は波
長の4乗に逆比例して低減するので、酸化珪素に比べて
赤外吸収端が長波長側に位置するガラス素材で母材(プ
リフォーム)を形成できれば、このようなプリフォーム
を線引きして光ファイバを作製することにより、いっそ
う低損失化を図ることができる〇 一方、 長距sの伝送は単一モード光ファイバで行う必
要があり、そのときに2μmより長波長の赤外光を伝送
するならば、従来の石英系単一モード光ファイバのコア
径の2倍以上にフッ化物系単一モード光ファイバのコア
径を設定でき、そのファイバ間の結合は極めて容易にな
る。
On the other hand, according to existing technical knowledge, Rayleigh scattering decreases in inverse proportion to the fourth power of the wavelength. If it is possible to form a preform (reform), it is possible to further reduce loss by drawing such a preform to create an optical fiber.On the other hand, long-distance transmission must be performed using a single mode optical fiber. At that time, if infrared light with a wavelength longer than 2 μm is to be transmitted, the core diameter of the fluoride-based single-mode optical fiber should be set to at least twice the core diameter of the conventional silica-based single-mode optical fiber. This makes coupling between the fibers extremely easy.

従って、赤外線透過材料に最適な単一モード光ファイバ
用プリフォームの形成法の出現が要望されている。
Therefore, there is a need for a method for forming a single mode optical fiber preform that is optimal for infrared transmitting materials.

通信用の光ファイバは屈折率の高いコアを、より屈折率
の低いクラッドで被覆する導波構造を有しているが、現
在、導波構造を有する赤外線伝送用光ファイバとして知
られているものとしては、hgatによるクラッドとA
g(07Br)によるコアとの組合わせ、T/(BrI
)によるコアとプラスチツタクラッドとの組合わせ等に
よる多結晶質光ファイバがあるが、これらの多結品質光
ファイバの場合には、粒界散乱損失の影響のため極低損
失光ファイバの作製は本質的に不可能である。またO、
at4液体コアと810.クラッドとによる光ファイバ
も知られているが、長尺光ファイバの作製およびその接
続の点で大きな問題がある。
Optical fibers for communications have a waveguide structure in which a core with a high refractive index is covered with a cladding with a lower refractive index, and currently, optical fibers with a waveguide structure for infrared transmission are known. As for cladding and A by hgat
Combination with core by g(07Br), T/(BrI
) There are polycrystalline optical fibers made by combining a core with a plastic cladding, etc. However, in the case of these polycrystalline optical fibers, it is difficult to create ultra-low loss optical fibers due to the influence of grain boundary scattering loss. Essentially impossible. Also O,
at4 liquid core and 810. Optical fibers with cladding are also known, but there are major problems in producing long optical fibers and connecting them.

また7ツ化物ガラスは前記各種のファイバ材料がもつ欠
点を解消し、2〜6μmの赤外線波長域で極低損失光フ
ァイバを実現できる可能性が高い材料として注目されて
いるが、導波構造を有する光フアイバ用プリフォームの
製造方法については、わずかに多モード系光ファイバの
作製について紹介されており(S、Mitaohi、e
tal:Jpn、J、Appl、Phys・1(198
1)、LaB5.S、Mitaohi、etal:El
eotron、Letters17(1981)、59
1 ) 、単一モード光ファイバの製造方法については
特に紹介されていない。またフッ化物ガラスは一般に二
酸化珪素系ガラスと比較すると、ガラス変形温度付近に
おいて、粘性変化が急激であるので、二酸化珪素系光フ
アイバ用プリフォームの製造方法である肉付は法または
軸付は法を、そのまま適用できないことは明らかである
In addition, heptamide glass is attracting attention as a material that eliminates the drawbacks of the various fiber materials mentioned above and has a high possibility of realizing ultra-low loss optical fibers in the infrared wavelength range of 2 to 6 μm. Regarding the manufacturing method of optical fiber preforms, there is a slight introduction to the production of multimode optical fibers (S., Mitaohi, e.
tal: Jpn, J, Appl, Phys・1 (198
1), LaB5. S, Mitaohi, etal: El
eotron, Letters 17 (1981), 59
1) There is no particular introduction to the manufacturing method of single mode optical fiber. In addition, compared to silicon dioxide glass, fluoride glass generally exhibits a rapid viscosity change near the glass deformation temperature. It is clear that it cannot be applied as is.

本発明は前述した現状に鑑みてなされたもので、その目
的は、先行技術の欠点を解決し、波長2〜6μmの赤外
線を伝送することができ、かつ極低損失化の可能なフッ
化物ガラスを素材とする赤外ファイバ用母材を製造でき
る方法を提供することにある。
The present invention has been made in view of the above-mentioned current situation, and its purpose is to solve the shortcomings of the prior art, to create a fluoride glass that can transmit infrared rays with a wavelength of 2 to 6 μm, and has an extremely low loss. An object of the present invention is to provide a method for manufacturing an infrared fiber base material made of.

このような目的を達成するために、本発明による赤外光
ファイバ母材の製造方法では、複数個に分割し得る縦割
れ構造を有する鋳型の′内部に円柱形中空部を有し、こ
の円柱形中空部の中心に細線を位置せしめ、溶融したク
ラッド用ガラス融液を細線の周囲に流し込み、この細線
を引き抜いて生じた細い中空部にコア用ガラス融液を充
てんしてQコアークラッドの導波構造を有する赤外光フ
ァイバ用母材を得ることを特徴とする。
In order to achieve such an object, in the method for manufacturing an infrared optical fiber preform according to the present invention, a mold having a vertical crack structure that can be divided into a plurality of pieces has a cylindrical hollow part inside the mold, and the cylindrical hollow part is formed inside the mold. A thin wire is positioned in the center of the hollow part of the shape, and the molten glass melt for the cladding is poured around the thin wire.The thin hollow part created by pulling out this thin wire is filled with the glass melt for the core to guide the Q core cladding. The present invention is characterized by obtaining a preform for an infrared optical fiber having a wave structure.

本発明によ、る母材の製造方法は、基本的には金属製の
細線を鋳型の中心部に立て、用いるガラスツカラス転#
温度付近に予加熱し、ここにクラッド融液を流し込み、
即座に金属細線を引き抜く。
The method for manufacturing the base material according to the present invention basically involves placing a thin metal wire in the center of the mold, and
Preheat to around temperature, pour the cladding melt here,
Pull out the thin metal wire immediately.

このときに金属細線に電流を流すことによる直接加熱で
引き抜く方法は有効である。次に細線を引き抜いて生じ
た細孔にコアガラス融液を流し込みアニールして、鋳型
よりコアークラッドの導波溝−造を有する赤外光ファイ
バ用母材を得る。
At this time, it is effective to draw out the thin metal wire by direct heating by passing an electric current through it. Next, a core glass melt is poured into the pores formed by drawing out the thin wire and annealed, thereby obtaining a base material for an infrared optical fiber having a core clad waveguide groove structure from the mold.

本発明において使用される鋳型を図面を参照して説明す
る。第1図は鋳型の側面図を示し、第2図は第1図のx
 −x’線における鋳型の断面図を示す。
The mold used in the present invention will be explained with reference to the drawings. Figure 1 shows a side view of the mold, Figure 2 shows the x in Figure 1.
A cross-sectional view of the mold along the -x' line is shown.

鋳型の外枠1は第2図で示される外枠分割体2゜2’ 
、 2’として示される複数個(第2図の例では8個)
に分割し得る縦割れ構造を有し、外枠分割体2 、2’
 、 2’を緊締するリング8、外枠分割体2’2’ 
、 !’の下端部を収容し、細線6を垂直に保持する底
蓋4から構成され、リング8により外枠分割体2.2’
、2’を緊締することにより、中空部5を形成する。外
枠分割体は第2図に示した8個の分割体のほかに、2個
または4個以上の適宜個数の分割体とすることができる
。外枠1を形成するこれらの分割体2 、2’ 、 2
’は金属製、例えば黄銅製または非金属製、例えば炭素
極とすることができ、フッ化物ガラスに対して耐食性を
もち、しかも離型性が良好であることを要する。
The outer frame 1 of the mold is an outer frame divided body 2゜2' shown in Fig. 2.
, 2' (eight in the example in Figure 2)
It has a vertical cracking structure that can be divided into two outer frame divided bodies 2 and 2'.
, ring 8 tightening 2', outer frame divided body 2'2'
, ! It consists of a bottom cover 4 that accommodates the lower end of the thin wire 6 and holds the thin wire 6 vertically, and the outer frame divided body 2.2' is
, 2' are tightened to form a hollow portion 5. In addition to the eight divided bodies shown in FIG. 2, the outer frame divided bodies may be two or four or more divided bodies as appropriate. These divided bodies 2, 2', 2 forming the outer frame 1
' can be made of metal, for example brass, or non-metallic, for example carbon electrode, and must have corrosion resistance against fluoride glass and good mold releasability.

本発明を第1図および第2図に示した鋳型を用いて実施
する場合について説明する。
A case will be described in which the present invention is implemented using the mold shown in FIGS. 1 and 2.

第1図および第2図で示された黄銅製鋳型の円柱形中空
部の中心に、金線または白金線を垂直に立てこれを用い
るガラス転移温度付近で予加熱しておく。これと並行し
て、金るつぼにてコア用7ツ化物ガラス、クラッド用7
ツ化物ガラスを溶融する。まずクラッド融液を前記の黄
銅製鋳型の中空部と中心の白金線との間にキャスティン
グし、すばやく中心に立てた金線または白金線を下方に
°引き抜く。この際にあらかじめ電流を流して、金線ま
たは白金線を加熱してクラッド融液と金線との固化付着
を防止することは極めて有効である。
A gold wire or platinum wire is vertically placed in the center of the cylindrical hollow part of the brass mold shown in FIGS. 1 and 2 and preheated to around the glass transition temperature. At the same time, in a gold crucible, we produced 7-hide glass for the core and 7-hide glass for the cladding.
Melting tsulfide glass. First, the cladding melt is cast between the hollow part of the brass mold and the platinum wire in the center, and the gold wire or platinum wire placed in the center is quickly pulled out downward. At this time, it is extremely effective to apply an electric current in advance to heat the gold wire or platinum wire to prevent the cladding melt from solidifying and adhering to the gold wire.

白金線を引き抜きながら上部からコア融液を流し込んで
、細いコア部分を有するコアークラッドの導波構造を有
する母材を得る。これをアニールして応力の発生を防止
し、成形完了後、外枠分割体2 、2’ 、 2’を外
して、C4B図に示すようなコア用ガラス部位とクラッ
ド用ガラス部位とからなる光フアイバ用母材を得る。
While drawing the platinum wire, a core melt is poured from above to obtain a base material having a core clad waveguide structure having a thin core portion. This is annealed to prevent the generation of stress, and after the molding is completed, the outer frame divisions 2, 2', and 2' are removed to form a light beam consisting of a core glass part and a cladding glass part as shown in Figure C4B. Obtain a base material for fiber.

次に本発明をその実施例について説明するが、本発明は
これによりなんら限定されるものではないO 実施例1 組成が59.2 モル%ZrF、(25り)−81,0
%ル%BaF。
Next, the present invention will be explained with reference to examples thereof, but the present invention is not limited thereto.
%Le%BaF.

(18,759)−8,8モル%GdF、<2.049
)−6モル%JiJF。
(18,759)-8,8 mol% GdF, <2.049
)-6 mol% JiJF.

C0,9859)からなるクラッド用混合物に10yの
11(4F−HFを秤量混合し、乳鉢で粉砕混合した。
10y of 11 (4F-HF) was weighed and mixed into a cladding mixture consisting of C0,9859), and the mixture was ground and mixed in a mortar.

これを金るつぼに導入し、電気炉を用いて400°Cで
80分間加熱し溶融した。これと並行し′て、組成が6
1.7%/l/%ZrF、(25g)−132−4モル
%BaF。
This was introduced into a metal crucible, and heated and melted at 400°C for 80 minutes using an electric furnace. In parallel with this, the composition is 6
1.7%/l/% ZrF, (25 g) -132-4 mol% BaF.

(18,8g)−8,9モル%GdF、(2g)−2モ
ル%AIF8(o、s2g)からなるコア用混合物に1
09のNH,F・HFを秤量混合し乳鉢で粉砕混合した
(18,8 g)-8,9 mol% GdF, (2 g)-2 mol% AIF8 (o, s2 g)
09 NH, F and HF were weighed and mixed and ground and mixed in a mortar.

これを金るつぼに導入し、電気炉を用いて400°Cで
80分間加熱し、原料の完全なフッ素化を行い、次に9
00°Cで2時間加熱溶融した。
This was introduced into a metal crucible and heated at 400°C for 80 minutes using an electric furnace to completely fluorinate the raw material, and then
The mixture was heated and melted at 00°C for 2 hours.

第1図および第2図に示したように鋳型の中央に2.5
鴎φの金線を垂直に立て、これを800°Cであらかじ
め加熱し、ここに、まずクラッド用ガラス融液を流し込
んだ。直後に、金線をすばやく引き抜きながらコア融液
をキャスティングして、中央部にコア用ガラス融液を充
てんした。この際に金線を高速回転させると、引き抜き
が容易にできることがわかった。
2.5 in the center of the mold as shown in Figures 1 and 2.
A gold wire of φ was placed vertically and heated in advance at 800°C, into which a glass melt for cladding was first poured. Immediately thereafter, the core melt was cast while quickly pulling out the gold wire, and the central part was filled with the glass melt for the core. At this time, it was found that if the gold wire was rotated at high speed, it could be easily pulled out.

その後に80時間にわたってアニールし、その後に24
時間かけて室温に戻した。その結果、クラッドガラスの
外径は9謔φで、コア径Q、5.tmφの長さ120謔
の母材が得られた。
This is followed by an 80 hour annealing followed by a 24 hour annealing.
It took some time to return to room temperature. As a result, the outer diameter of the clad glass was 9 mm, the core diameter was Q, 5 mm. A base material having a length of tmφ of 120 mm was obtained.

この母材を線引きして得た光ファイバのコアとクラッド
の比屈折率差は0.38%であり、またクラッド−コア
径比は8.6で、多モード用のフッ化物光フアイバ用母
材が得られた。
The relative refractive index difference between the core and cladding of the optical fiber obtained by drawing this base material was 0.38%, and the cladding-core diameter ratio was 8.6. material was obtained.

実施例2 組成が59.2 % ル%ZrF4(259)−81,
0モル%BaF。
Example 2 Composition is 59.2% ZrF4(259)-81,
0 mol% BaF.

(18,759)−8,8モル%GdF (LO49)
−6モル%A!F8(0,9859)からなるクラッド
用混合物に109のNH,F−HFを秤量混合し、乳鉢
で粉砕混合した。これを金るつぼに導入し、電気炉を用
いて400°Cで80分間加熱し、原料の完全なフッ素
化を行い、次に900°Cで80分間加熱し、溶融した
。これと並行して、組成が60.48 % ル%ZrF
、(2f+9)−81,68モル%BaF (IL8g
)−8,8+ % ル%GdF8(29)−4モル%A
4F、(0,6449)からなるコア用混合物に10g
のNH4F−HFを秤量し、乳鉢で粉砕混合したbこれ
を金るつぼに導入し、電気炉を用いて400°Cで80
分間加熱し中原料の完全なフッ素化を行い、次に900
°Cで2時間加熱溶融した。
(18,759)-8,8 mol%GdF (LO49)
-6 mol% A! 109 NH and F-HF were weighed and mixed into a cladding mixture consisting of F8 (0,9859), and the mixture was ground and mixed in a mortar. This was introduced into a metal crucible and heated at 400°C for 80 minutes using an electric furnace to completely fluorinate the raw material, and then heated at 900°C for 80 minutes to melt it. In parallel with this, the composition is 60.48% ZrF
, (2f+9)-81,68 mol% BaF (IL8g
)-8,8+ %le%GdF8(29)-4mol%A
4F, 10g in a core mixture consisting of (0,6449)
NH4F-HF was weighed, ground and mixed in a mortar, introduced into a metal crucible, and heated at 400°C for 80°C using an electric furnace.
Complete fluorination of the medium material is achieved by heating for 900 min.
The mixture was heated and melted at °C for 2 hours.

第1図および第2図に示したように、鋳型の中央に1.
2鴎φの白金線を垂直に立て、これを800°Cであら
かじめ加熱し、ここに、まずクラッド用ガラス融液を流
し込んだ。この際に白金線に電流を流して白金線を加熱
し、引き抜きながらコア融液をキャスティングして、中
央部にコア用ガラス融液を充てんした。その後に30時
間にわたってアニールし、24時間かけて室温に戻した
As shown in Figures 1 and 2, 1.
A platinum wire with a diameter of 2 mm was erected vertically and was preheated at 800°C, into which a glass melt for cladding was first poured. At this time, an electric current was applied to the platinum wire to heat it, and the core melt was cast while being pulled out, so that the center portion was filled with the core glass melt. Thereafter, it was annealed for 30 hours and returned to room temperature for 24 hours.

その結果、クラッドガラスの外径は9關φで、コア径は
1.2鴎φの長さ120簡の母材が得られた。
As a result, a base material was obtained in which the outer diameter of the clad glass was 9 mm, the core diameter was 1.2 mm, and the length was 120 mm.

この母材を線引きして得た光ファイバのコア径は20μ
m、クラツド径は150μmで、比屈折率差は0.17
%であり、25μm帯で単一モードとなるフッ化物光フ
アイバ用母材が得られた。
The core diameter of the optical fiber obtained by drawing this base material is 20μ
m, the cladding diameter is 150 μm, and the relative refractive index difference is 0.17.
%, and a fluoride optical fiber base material was obtained which had a single mode in the 25 μm band.

応用例1 実施例1および実施例2で得られた母材に、それぞれテ
フロンFEPコート管を被覆し、通常のゾーンメルトに
よるロッド線引きを行い、第8図および第4図に示すよ
うな外径200μm1クラツド径150μ濯、コア径4
2μ講、比屈折率差0.88%の多モード光ファイバお
よび外径200μM、クラッド径150μm1コア径2
0μm1比屈折率差’0.17%の単一モード光ファイ
バ(カットオフ波長2.2μm)が得られた。これらの
光7アイパはいずれも波長帯2.6μ司帯で、1. O
dB^以下の低損失な窓を有する赤外線伝送用光ファイ
バであった。これはコアークラッドの界面が光学的にス
ムーズに融着し、問題となるファークラッドの界面不整
による散乱損失が減少して低損失な光ファイバが得られ
ていることを示している。
Application Example 1 The base materials obtained in Example 1 and Example 2 were coated with Teflon FEP coated tubes, and rod drawing was performed using normal zone melting to obtain an outer diameter as shown in Figures 8 and 4. 200 μm 1 cladding diameter 150 μm, core diameter 4
2 μ course, multimode optical fiber with relative refractive index difference of 0.88%, outer diameter 200 μM, cladding diameter 150 μm 1 core diameter 2
A single mode optical fiber (cutoff wavelength 2.2 μm) with a relative refractive index difference of 0 μm1 of 0.17% was obtained. All of these 7-eye lights have a wavelength band of 2.6 μm, and 1. O
It was an optical fiber for infrared transmission with a low loss window of dB^ or less. This indicates that the interface between the core clad and the core clad is optically smoothly fused, and the scattering loss caused by the irregularity of the far clad interface, which is a problem, is reduced, resulting in a low-loss optical fiber.

本発明の製造方法を用いることにより、中心部に立てる
金線、白金線の径を変えて、コア径を自由に制御できる
ことがら、多モードから単一モードまでの階段状屈折率
分布を有するフッ化物光ファイバが作製できた。
By using the manufacturing method of the present invention, the core diameter can be freely controlled by changing the diameter of the gold wire or platinum wire erected at the center. A compound optical fiber has been fabricated.

以上説明したように、本発明の赤外光ファイバ母材の製
造方法によれば、コアークラッドの界面が光学的にスム
ーズな状態で導波構造を形成でき、また比屈折率差、ク
ラツド径/コア径比も任意の範囲に設定できる。従って
ステップ型の屈折率分布を゛持つ多モードおよび単一モ
ードの赤外線伝送用7ツ化物光フアイバの母材を極めて
簡単に製造その結果、赤外線を用いた温度センサーやイ
メージ伝送等に利用できるのみならず、コア径の大きな
単一モード光ファイバの作製が容易となり、ファイバ間
の結合が容易にできる長距離伝送に応用できるという利
点がある。
As explained above, according to the method for manufacturing an infrared optical fiber preform of the present invention, a waveguide structure can be formed with the core-clad interface in an optically smooth state, and the relative refractive index difference, cladding diameter/ The core diameter ratio can also be set within any range. Therefore, it is extremely easy to manufacture base materials of heptadide optical fibers for multi-mode and single-mode infrared transmission with a step-type refractive index distribution, and as a result, they can be used for temperature sensors, image transmission, etc. using infrared rays. However, it has the advantage that it is easy to manufacture a single mode optical fiber with a large core diameter, and it can be applied to long-distance transmission where fibers can be easily coupled.

【図面の簡単な説明】[Brief explanation of drawings]

#!IFIfJは本発明を実施する際に使用する鋳型の
一具体例を示す側面図、 第2図は第1図のx −x’線における断面図、第8図
および第4図は本発明の製造方法により得られた母材の
一例を示す断面図と屈折率分布を示す図である。 l・・・外枠、2 、2’ 、 2’・・・外枠分割体
、8・・・リング、4・・・底蓋、5・・・中空部、6
川白金線または金線、1.10・・・プリフォーム断面
、8.11・・・屈折率分布に対応するプリフォーム上
の位置、9・・・実施例1で得られた多モードファイバ
の屈折率分布、12・・・実施例2で得られた単一モー
ドファイバの屈折率分布。 第1図 第3図 第4図
#! IFIfJ is a side view showing a specific example of a mold used in carrying out the present invention, FIG. 2 is a sectional view taken along the line x-x' in FIG. 1, and FIGS. FIG. 1 is a cross-sectional view showing an example of a base material obtained by the method and a diagram showing a refractive index distribution. l... Outer frame, 2, 2', 2'... Outer frame division body, 8... Ring, 4... Bottom cover, 5... Hollow part, 6
Kawasaki wire or gold wire, 1.10... Preform cross section, 8.11... Position on preform corresponding to refractive index distribution, 9... Multimode fiber obtained in Example 1 Refractive index distribution, 12...Refractive index distribution of the single mode fiber obtained in Example 2. Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 複数個に分割し得る縦割れ構造を有する鋳型の内部
に円柱形中空部を有し、この円柱形中空部の中心に細線
を位置せしめ、溶融したクラッド用ガラス融液を細線の
周囲に流し込み、この細線を引き抜いて生じた細い中空
部にコア用ガラス融液を充てんして、コアークラッドの
導波構造を有する赤外光ファイバ用母材を得ることを特
徴とする赤外光ファイバ母材の製造方法。
1. A mold with a vertical crack structure that can be divided into multiple pieces has a cylindrical hollow part inside it, a thin wire is placed in the center of this cylindrical hollow part, and the molten glass melt for cladding is poured around the thin wire. An infrared optical fiber preform, characterized in that a thin hollow formed by drawing out this thin wire is filled with core glass melt to obtain an infrared optical fiber preform having a core-clad waveguide structure. manufacturing method.
JP10837782A 1982-06-25 1982-06-25 Manufacture of base material for infrared optical fiber Pending JPS593030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10837782A JPS593030A (en) 1982-06-25 1982-06-25 Manufacture of base material for infrared optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10837782A JPS593030A (en) 1982-06-25 1982-06-25 Manufacture of base material for infrared optical fiber

Publications (1)

Publication Number Publication Date
JPS593030A true JPS593030A (en) 1984-01-09

Family

ID=14483222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10837782A Pending JPS593030A (en) 1982-06-25 1982-06-25 Manufacture of base material for infrared optical fiber

Country Status (1)

Country Link
JP (1) JPS593030A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787691A1 (en) * 1996-01-31 1997-08-06 AT&T Corp. Method for making core holes in cast optical fiber preforms
US7677059B2 (en) * 2003-08-13 2010-03-16 Nippon Telegraph And Telephone Corporation Tellurite optical fiber and production method thereof
CN109207999A (en) * 2017-06-29 2019-01-15 刘志红 A kind of production technology of glass fluxing technique copper wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787691A1 (en) * 1996-01-31 1997-08-06 AT&T Corp. Method for making core holes in cast optical fiber preforms
US7677059B2 (en) * 2003-08-13 2010-03-16 Nippon Telegraph And Telephone Corporation Tellurite optical fiber and production method thereof
CN109207999A (en) * 2017-06-29 2019-01-15 刘志红 A kind of production technology of glass fluxing technique copper wire

Similar Documents

Publication Publication Date Title
US4519826A (en) Optical fibers having a fluoride glass cladding and method of making
US4343638A (en) Method for manufacturing glass fibers from an infrared ray-transmitting glass fiber material
JPH0447285B2 (en)
US4163654A (en) Method of manufacturing graded index optical fibers
US4289516A (en) Low loss optical fibers
US5776222A (en) Method of eliminating light scattering bubbles in optical fiber preforms
JPS593030A (en) Manufacture of base material for infrared optical fiber
EP0787691B1 (en) Method for making core holes in cast optical fiber preforms
JP2694860B2 (en) Method for manufacturing fluoride glass preform
JP2566128B2 (en) Mold for manufacturing preform for optical fiber and method for manufacturing preform for optical fiber using this mold
JPS58125627A (en) Preparation of infrared transmission optical fiber preform by inside casting
JP2502525B2 (en) Mold for manufacturing optical fiber preforms
JPS59137329A (en) Manufacture of preform for single-mode optical fluoride fiber
JPS60176938A (en) Production of preform for optical fiber
JPH0431333A (en) Production of fluoride optical fiber
JPS6121175B2 (en)
KR100390329B1 (en) Method of manufacturing an optical fiber
JPS6126502B2 (en)
JPS56149337A (en) Manufacture of preform for optical fiber transmitting infrared ray
JPS6321232A (en) Production of perform for optical fiber
JP2556569B2 (en) Method for manufacturing base material for fluoride glass fiber
JPS6188206A (en) Image fiber and its manufacture
JPS59232927A (en) Manufacture of preform for optical fluoride fiber
JPS6191032A (en) Production of optical fiber preform
JPH0218294B2 (en)