JPS6321232A - Production of perform for optical fiber - Google Patents

Production of perform for optical fiber

Info

Publication number
JPS6321232A
JPS6321232A JP16418086A JP16418086A JPS6321232A JP S6321232 A JPS6321232 A JP S6321232A JP 16418086 A JP16418086 A JP 16418086A JP 16418086 A JP16418086 A JP 16418086A JP S6321232 A JPS6321232 A JP S6321232A
Authority
JP
Japan
Prior art keywords
glass
preform
melt
optical fiber
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16418086A
Other languages
Japanese (ja)
Other versions
JPH0660028B2 (en
Inventor
Yasutake Oishi
泰丈 大石
Shigeki Sakaguchi
茂樹 坂口
Yukio Terunuma
照沼 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16418086A priority Critical patent/JPH0660028B2/en
Publication of JPS6321232A publication Critical patent/JPS6321232A/en
Publication of JPH0660028B2 publication Critical patent/JPH0660028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • C03B37/01268Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by casting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Abstract

PURPOSE:To produce the title preform for fluoride optical fiber for a low-loss optical transmission line by successively injecting the melt of fluoride clad glass and the melt of core glass into a bottomed cylindrical casting mold, and opening the bottom of the casting mold before solidification. CONSTITUTION:The melt 4 of the clad fluoride glass obtained by adding NH4 F4.HF to a mixture of fluorides such as ZrF4, BaF2, GdF3, and AlF3, and heating and melting the mixture is charged into a bottomed cylindrical casting mold A made of brass and plated with gold. The melt 5 of the core fluoride glass obtained by adding NH4F.HF to a mixture of fluorides such as ZrF4, BaF3, AlF3, and PbF3, and heating and melting the mixture is then charged. The bottom lid is opened before the materials are solidified, and the melt in the central part of the casting mold is discharged. A double-structure preform 6, wherein a core glass layer is formed on the inner surface of a clad glass tube, is formed in the casting mold, the preform is cooled to room temp. in an inert gas atmosphere having <=0<= dew point, then the upper and lower openings are closed with a resin, and a preform for fluorine optical fiber having extremely low transmission loss is produced.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、超低損失な光伝送路として期待されている7
ツ化物光フアイバ用のプリフォームの製造方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is expected to be used as an ultra-low loss optical transmission line.
The present invention relates to a method for manufacturing a preform for a tsuride optical fiber.

[従来技術・発明が解決しようとする問題点コフツ化物
ガラスは、石英系ガラスに比べ長波長の光をa;aでき
、また、レーリ散乱損失が石英系ガラスより小さい。し
たがって、フッ化物ガラスによシ光ファイバを作製すれ
ば、石英系光フアイバより低い伝送損失を有する光通信
庫路の実現が期待できる。
[Prior Art/Problems to be Solved by the Invention Aphthalate glass can emit light at longer wavelengths than silica glass, and has a smaller Rayleigh scattering loss than silica glass. Therefore, if an optical fiber is made of fluoride glass, it can be expected to realize an optical communication line with lower transmission loss than that of a silica-based optical fiber.

石英系光ファイバでは、プリフォームを作製する方法と
してVAD 法(気相軸付は法〕やMCVD法があ夛、
気相法を利用したプリフォーム合成法が採用されている
。しがしながら、フッ化物ガラスは酸化物ガラスと異な
p1粘度の温度変化が極めて急減であり、ガラス軟化温
度域で結晶化しやすいという特徴を有する。その為、石
英系光ファイバのプリフォームを形成するために用いら
れているVAD 法やVCD 法は適用不可能であり、
また、二重る′りは疏引き法の適用も困難である。
For silica-based optical fibers, there are many methods for manufacturing preforms, such as the VAD method (vapor phase shafting is the method) and the MCVD method.
A preform synthesis method using a gas phase method is adopted. However, unlike oxide glasses, fluoride glasses have the characteristic that the temperature change in p1 viscosity decreases extremely rapidly, and they tend to crystallize in the glass softening temperature range. Therefore, the VAD method and VCD method used to form silica-based optical fiber preforms cannot be applied.
In addition, it is difficult to apply the scouring method to double overlaps.

フッ化物光フアイバ用のプリフォーム作製方法として、
ビルドインキヤスティング法〔特願昭56−76684
(%開昭57−191240))−’Pローテーショナ
ルキャスティング法〔特願昭57−7409(特開昭5
8−125630):1が提案されているが、これらは
いずれも鋳型中でクラッド用ガラスが固化した状覇で溶
融したコア用ガラスを注入するものであるから、コア・
クラッド界面でクラッド用ガラスが再加熱さ4、結晶化
しやすいという欠点があった。
As a preform manufacturing method for fluoride optical fiber,
Build-in casting method [Patent application No. 56-76684
(% 1977-191240))-'P rotational casting method [Patent application 1987-7409
8-125630): 1 has been proposed, but in both of these methods, the molten core glass is injected while the cladding glass is solidified in the mold.
There was a drawback that the cladding glass was easily reheated4 and crystallized at the cladding interface.

この欠点を改善するものとして、鋳型中にクラッドガラ
ス用原料の融液な流し込み、この融液上にコアガラス用
原料を流し込み、@型の底部より未固化ガラス融液を一
定格流し出してコア・クラッド構造を形成する方法が提
案されている(特願昭59−213074)。
To improve this drawback, the raw material for clad glass is poured into the mold as a melt, the raw material for core glass is poured onto this melt, and the unsolidified glass melt is poured out from the bottom of the @ mold at a constant rate to form the core. - A method of forming a cladding structure has been proposed (Japanese Patent Application No. 59-213074).

しかし、これらのいずねの方法を用いても、コア径が小
さく、かつコア・クラツド径比が1対6以上ある垂−モ
ード光ファイバ用プリフォームな作製することは困鑓で
あった。
However, even if these methods are used, it is difficult to produce a preform for a vertical mode optical fiber having a small core diameter and a core/cladding diameter ratio of 1:6 or more.

フッ化物ガラスの有する超低損失な光透過特注は、大J
i;1&距離伝送方式に利用されることが有効であ)、
そのための単一モード光ファイバ用プリフォームの作興
方法が模索されていた7本発明の目的は、細径表コ゛ア
径を有し、かつ、十分な大きさのコア・クラツド径比を
有するフッ化物単一モード光フアイバか得られる光フア
イバ用プリフォームを提供することにある。
The ultra-low loss light transmission custom made with fluoride glass is available at Dai J.
i;1 & It is effective to be used for distance transmission method),
A method for producing a single mode optical fiber preform for this purpose has been sought.7 The object of the present invention is to produce a fiber optic fiber having a small diameter core diameter and a sufficiently large core/cladding diameter ratio. An object of the present invention is to provide a preform for an optical fiber obtained from a compound single mode optical fiber.

[間雇点を解決するための手段〕 本発明は、有底円筒形鋳型にクラッドガラス融液をキア
ステイングした後、該ガラス融液上にコアガラス融’f
fXfキアステイングレ、上記キアステイングしたガラ
ス融液全体が固化する前に、鋳型底・部を1週放し、鋳
よ中心部のガラス融液を流し出し円側にコアガラス層、
外側にクラ・7ドガラス層を有する円管状のガラスを形
成することを最も主要′JL特徴とする。
[Means for solving the labor problem] In the present invention, after the clad glass melt is cast into a bottomed cylindrical mold, the core glass melt is deposited on the glass melt.
fXf Chiasting Grease, before the entire chiastained glass melt solidifies, leave the bottom of the mold for one week, pour out the glass melt in the center of the casting, and add a core glass layer to the circle side.
The most important feature is to form a cylindrical glass having a clad glass layer on the outside.

従来の技術では、ガラス融液を一足量流し出しクラッド
ガラス管の甲にコアガラス融液が充填された母材とした
が、本発明では、コアガラス融液を充填せずにクラッド
ガラス管内壁にコアガラス層を形成するところが従来法
とは異なる。
In the conventional technology, a small amount of glass melt is poured out and the back of the clad glass tube is filled with core glass melt as a base material, but in the present invention, the core glass melt is not filled in the inside of the clad glass tube. This method differs from conventional methods in that a core glass layer is formed on the wall.

〔実施例〕〔Example〕

第1図体)〜(d)は本発明の実施例の工程図であシ、
この図において、Aは金メッキを施した黄銅製の有底円
筒形鋳型、1は鋳型Aの側壁部、2は鋳ff1Aの底部
、3はクラッドガラス融液、4は金ルツボ、5はコアガ
ラス融液、6はプリフォームである。
Figure 1) to (d) are process diagrams of embodiments of the present invention.
In this figure, A is a bottomed cylindrical mold made of gold-plated brass, 1 is the side wall of mold A, 2 is the bottom of casting ff1A, 3 is clad glass melt, 4 is a gold crucible, and 5 is core glass. 6 is a preform.

60ZrF  −32Bc−F  −4GaFs  −
6mob4 AlF3の組成に、ZrF4# BaF2
゜GdF  、 AlF3を秤量し、該フッ化物からな
る混合物60g(二NH4F  −HFを20.9加え
窒素雰囲気に保たれた電気炉中で金ルツボ4を用いてま
ず400℃で2時間加熱し、 Nf4F−1’によるフ
ッ素化処理を行い、次に、850℃まで昇温し2時間加
熱溶融した後、該クラッドガラス融液3を鋳ahにキア
ステイングする(第1図(a)参照χの場曾、ga4i
li部1は260℃に予加熱してあり、底部2はsoo
’c+=予加熱しである0次C二、60ZrF  −3
0BaF  −4GdF  −4AtFa−2 mob
 憾P bF 2の組成に秤量したフッ化物混合物30
g(二NH4F  −HFを10Ji’加えたものをク
ラッドガラスと同一プロセスによ9加熱溶融してできた
コアガラス融液5をg歴A中のクラッドガラス融液上に
キアステイングする(第1図(1))参照)、@WA内
部のガラス融液全体が固化する前に、鋳型底i2を鋳m
um部1からはずして鋳型底部を開放して鋳型中心部の
粘度の低いガラス融液を流し出す(81)1図<c>参
照)、その結果、クラッドガラスをキアステイングした
部分では、クラッドガラス融液が流れ出した後、上部か
らコアガラス融液が流れ落ち、クラッドガラス管内壁面
にクラッドガラス管と同心円状にコアガラス融液の一部
が付着して固化する為、クラッドガラス管ノ内側にコア
ガラス層のついた2層構造を有する円管状のガラス体6
(プリフォーム)が得られた(第1図(d)参照)、該
プリフォーム形状は、外径10uφ、内径7.5uφ、
母さ150uであった。
60ZrF-32Bc-F-4GaFs-
6mob4 In the composition of AlF3, ZrF4# BaF2
゜GdF and AlF3 were weighed, 60 g of a mixture consisting of the fluoride (20.9 g of diNH4F-HF was added, and the mixture was first heated at 400°C for 2 hours using a metal crucible 4 in an electric furnace maintained in a nitrogen atmosphere. Fluorination treatment with Nf4F-1' is carried out, and then the temperature is raised to 850°C and heated and melted for 2 hours, after which the clad glass melt 3 is cast ah (see Figure 1(a)). Baso, ga4i
The li part 1 is preheated to 260°C, and the bottom part 2 is soo
'c+ = preheated 0th order C2, 60ZrF -3
0BaF-4GdF-4AtFa-2 mob
A fluoride mixture weighed to the composition of P bF 2 30
A core glass melt 5 obtained by heating and melting 10Ji' of g(2NH4F-HF) in the same process as the clad glass is applied to the clad glass melt in history A (1st (see Figure (1))), before the entire glass melt inside WA solidifies, the mold bottom i2 is
The glass melt with low viscosity in the center of the mold is poured out by removing it from the um part 1 and opening the bottom of the mold (81) (see Figure 1 <c>). After the melt flows out, the core glass melt flows down from the top, and a part of the core glass melt adheres to the inner wall surface of the clad glass tube in a concentric circle with the clad glass tube and solidifies. Cylindrical glass body 6 having a two-layer structure with a glass layer
(preform) was obtained (see Fig. 1(d)), the shape of the preform was 10uφ in outer diameter, 7.5uφ in inner diameter,
The mother was 150u.

その後、該ガラス管を室温まで徐冷して、2つのプリフ
ォーム開口部をエポキシ樹脂でふさキ、プリフォーム内
壁面が外気と接するのを防いだ。
Thereafter, the glass tube was slowly cooled to room temperature, and the two preform openings were covered with epoxy resin to prevent the inner wall surface of the preform from coming into contact with the outside air.

上記のキアステインクからエポキシ樹脂による密閉まで
の工程は、水分露点で一80℃の低湿度窒素ガス雰囲気
に置換されたグローブボックス中で行われた。
The process from the above-mentioned Kiastain ink to sealing with epoxy resin was carried out in a glove box purged with a low-humidity nitrogen gas atmosphere with a water dew point of -80°C.

該プリフォームの外周を光学研摩した後、一方ノエホキ
シ樹脂を徐き、テフロンFip ?ユープをジアケット
して線引きした。なお、線引きは、プリフォーム内部を
乾燥窒素ガスで十分置換してガラス表面に残留して水分
を除いた後、内部を排気しながら行った、線引きの際、
プリフォームは滑らかに中実化されてファイバとなシ、
中実化されるときに、内面には結晶化々ど不整の発生は
認められなかった。以上の結果、コア径13μm%クラ
ッド140μm、コア・クラッド屈折率差0.491i
、カットオフ波長2.3μmであシ、最低損失が2.6
μmで1 dB/Rmのステップインデックス型フッ化
物単一モードファイバを2501)得ることができた。
After optically polishing the outer periphery of the preform, the noepoxy resin was removed and Teflon Fip? I jiaketed Yup and drew a line. In addition, during the wire drawing, the inside of the preform was sufficiently replaced with dry nitrogen gas to remove moisture remaining on the glass surface, and then the inside was evacuated.
The preform is smoothly solidified into a fiber.
When solidified, no irregularities such as crystallization were observed on the inner surface. As a result, the core diameter is 13 μm, the cladding is 140 μm, and the refractive index difference between the core and the cladding is 0.491i.
, cutoff wavelength is 2.3 μm, minimum loss is 2.6
We were able to obtain a step-index fluoride single mode fiber with a performance of 1 dB/Rm in μm (2501).

プリフォームを湿度が水分露点で0℃の音素雰囲気でi
換したグローブボックス内において上記手法で作置し一
猶引きしたところ、1引き時の中実化の際にプリフォー
ム内面で、結晶化による構造不整発生が一部で認められ
た。
The preform is placed in a phonetic atmosphere with a moisture dew point of 0°C.
When the preform was placed in a replaced glove box using the above method and pulled for a while, some structural irregularities due to crystallization were observed on the inner surface of the preform during solidification during the first pull.

これは、雰囲気中の水分がプリフォーム内−面と〜たと
えば ”−ZrF4−) H2O−Zr(OH)F3+’ )
IPというげ水分解反応を起し、内壁面に水酸化物の層
が生成でれる為、腺引きの際に結晶化が起りやすぐなっ
ている為である。
This means that the moisture in the atmosphere may contact the inner surface of the preform, for example "-ZrF4-) H2O-Zr(OH)F3+')
This is because the IP causes a water splitting reaction and a hydroxide layer is generated on the inner wall surface, so crystallization occurs more easily during gland extraction.

上記反応は高温で起シやすい為、特にキアステイングが
行な・われ、プリフォームが呈温まで冷却される空間の
雰囲気の湿度はできるだけ下げておくことが望ましい。
Since the above reaction is likely to occur at high temperatures, it is particularly desirable to keep the humidity of the atmosphere in the space where the chiasting is performed and the preform is cooled to its normal temperature as low as possible.

上記実施例”I:は、Z>−F4−  BaF2−  
GdF3− AtF3系ガラスを用いてプリフォーム8
作gしたが、ZrF  −BaF  −LaF3− A
tF3−NaF 系ガラス、Zrl;’  −nap”
2−  L’F3−ALF  −LiF 系ガラス、Z
l−F  −l3aF2−LaF  −YF3−  L
iF  −NaF  系ガラス、ZrF  −HfF 
 −BaF  −G(IF  −A7F3系ガラス又は
、ZrF  −HfF  −BaF2 −LaF3− 
YF  −AAF  −LiF −NaF系ガラスを用
いても実施例で示した手法によって、線引き時に不整の
発生したい平滑な内ll1)1iを有する妥リフォーム
を得ることができた、 また、グローブボックス内の不活性ガスとして、湿度が
水分露点で一80℃のアルゴンガス又はへリウムガスを
用いても、線引き時構造不整の発生しないプリフォーム
を作製することができた、[発明の効果〕 以上説明したように本発明による光フアイバ用プリフォ
ームの創造方法によれば、コア径が小さくかつコア・ク
ラツド径の十分太き外7ツ化物光ファイバ用プリフォー
ムが作製でき、これを線引きすれば、フッ化物単一モー
ド光ファイバが容易に得られるので、フッ化物光ファイ
バを用いた超低損失大容量光通信方式の実現に寄与でき
るという利点がある。
The above example "I: is Z>-F4- BaF2-
Preform 8 using GdF3-AtF3 glass
However, ZrF -BaF -LaF3-A
tF3-NaF glass, Zrl;'-nap”
2- L'F3-ALF -LiF series glass, Z
l-F-l3aF2-LaF-YF3-L
iF-NaF glass, ZrF-HfF
-BaF -G (IF -A7F3 glass or ZrF -HfF -BaF2 -LaF3-
Even when YF -AAF -LiF -NaF glass was used, it was possible to obtain a suitable reform with a smooth interior 11)1i where irregularities would not occur during line drawing by the method shown in the example. [Effects of the Invention] As explained above, even if argon gas or helium gas with a moisture dew point of -80°C was used as the inert gas, a preform without structural irregularities during wire drawing could be produced. According to the method for creating an optical fiber preform according to the present invention, a heptadide optical fiber preform with a small core diameter and a sufficiently thick core/cladding diameter can be produced, and by drawing it, a fluoride fiber can be produced. Since a single-mode optical fiber can be easily obtained, it has the advantage of contributing to the realization of ultra-low loss, high-capacity optical communication systems using fluoride optical fibers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例を示す工程図
である、 A・・・・・・鋳型、2・・・・・・底部、3・・・・
・・クラッドガラス融液、5・・・・・・コアガラス融
液、6・・・・・・円管状ガラス休(プリフォーム)。
FIGS. 1(a) to 1(d) are process diagrams showing one embodiment of the present invention. A... Mold, 2... Bottom, 3...
... Clad glass melt, 5 ... Core glass melt, 6 ... Cylindrical glass mold (preform).

Claims (2)

【特許請求の範囲】[Claims] (1)クラッドガラス融液を有底円筒形鋳型にキアステ
イングした後、該ガラス融液上にコアガラス融液をキア
ステイングし、上記ガラス融液全体が固化する前に、鋳
型有底を開放し鋳型中心部のガラス融液を流し出して内
側がコアガラスからなる円筒状ガラス体とし、これを室
温まで徐冷することを特徴とする光フアイバ用プリフオ
ームの製造方法。
(1) After the clad glass melt is chiastained into a bottomed cylindrical mold, the core glass melt is chiastained onto the glass melt, and the bottomed mold is opened before the entire glass melt solidifies. A method for manufacturing an optical fiber preform, characterized in that a glass melt at the center of a mold is poured out to form a cylindrical glass body with a core glass inside, and this is slowly cooled to room temperature.
(2)円筒状ガラス体を室温まで徐冷する工程を水分露
点で0℃以下の湿度を有する不活性ガス雰囲気で行うこ
とを特徴とする特許請求の範囲第1項記載の光フアイバ
用プリフオームの製造方法。
(2) The preform for an optical fiber according to claim 1, wherein the step of slowly cooling the cylindrical glass body to room temperature is performed in an inert gas atmosphere having a humidity of 0° C. or less at a water dew point. Production method.
JP16418086A 1986-07-12 1986-07-12 Method for manufacturing preform for optical fiber Expired - Fee Related JPH0660028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16418086A JPH0660028B2 (en) 1986-07-12 1986-07-12 Method for manufacturing preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16418086A JPH0660028B2 (en) 1986-07-12 1986-07-12 Method for manufacturing preform for optical fiber

Publications (2)

Publication Number Publication Date
JPS6321232A true JPS6321232A (en) 1988-01-28
JPH0660028B2 JPH0660028B2 (en) 1994-08-10

Family

ID=15788231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16418086A Expired - Fee Related JPH0660028B2 (en) 1986-07-12 1986-07-12 Method for manufacturing preform for optical fiber

Country Status (1)

Country Link
JP (1) JPH0660028B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201040A (en) * 1987-02-16 1988-08-19 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ Halide glass optical fiber
EP0326401A2 (en) * 1988-01-29 1989-08-02 Kokusai Denshin Denwa Kabushiki Kaisha Method and apparatus for manufacturing preform for fluoride glass fiber
FR2750129A1 (en) * 1996-06-20 1997-12-26 Alsthom Cge Alcatel METHOD FOR MANUFACTURING OPTICAL FIBER PREFORM IN FLUORINATED GLASS
US6094507A (en) * 1997-03-17 2000-07-25 Nec Corporation Figure location detecting system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201040A (en) * 1987-02-16 1988-08-19 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ Halide glass optical fiber
JPH0445467B2 (en) * 1987-02-16 1992-07-24 Buriteitsushu Terekomyunikeeshonzu Plc
EP0326401A2 (en) * 1988-01-29 1989-08-02 Kokusai Denshin Denwa Kabushiki Kaisha Method and apparatus for manufacturing preform for fluoride glass fiber
FR2750129A1 (en) * 1996-06-20 1997-12-26 Alsthom Cge Alcatel METHOD FOR MANUFACTURING OPTICAL FIBER PREFORM IN FLUORINATED GLASS
EP0814063A1 (en) * 1996-06-20 1997-12-29 Alcatel Process for manufacturing a fluoride glass optical fibre preform
US5779756A (en) * 1996-06-20 1998-07-14 Alcatel Alsthom Compagnie Generale D'electricite Method of centrifuging a halide glass and forming an optical fiber preform
US6094507A (en) * 1997-03-17 2000-07-25 Nec Corporation Figure location detecting system

Also Published As

Publication number Publication date
JPH0660028B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
US4519826A (en) Optical fibers having a fluoride glass cladding and method of making
US5560759A (en) Core insertion method for making optical fiber preforms and optical fibers fabricated therefrom
JPS60246240A (en) Manufacture of fluorine glass optical fiber and optical element and device for carrying out same
US5160521A (en) Method for making optical fiber preforms
US4163654A (en) Method of manufacturing graded index optical fibers
US5573571A (en) Method for making optical fiber preforms and optical fibers fabricated therefrom
US5776222A (en) Method of eliminating light scattering bubbles in optical fiber preforms
US4289516A (en) Low loss optical fibers
US5055120A (en) Fluoride glass fibers with reduced defects
JPS6321232A (en) Production of perform for optical fiber
JPS62288127A (en) Manufacture of mother material for drawing glass fiber
USH1259H (en) Large fluoride glass preform fabrication
JP2566128B2 (en) Mold for manufacturing preform for optical fiber and method for manufacturing preform for optical fiber using this mold
US5779756A (en) Method of centrifuging a halide glass and forming an optical fiber preform
JP2502525B2 (en) Mold for manufacturing optical fiber preforms
JP2556569B2 (en) Method for manufacturing base material for fluoride glass fiber
JPS6311534A (en) Production of jacket pipe for drawing optical fiber
JPS6346012B2 (en)
JPS60176938A (en) Production of preform for optical fiber
JPS58125630A (en) Manufacture of infrared transmission optical fiber perform by rotary mold process
JPS629538B2 (en)
JPH0535096B2 (en)
Kortan et al. A novel method for fabricating optical fiber preforms
JPH03215332A (en) Production of metal-coated fluoride glass optical fiber
JPH0692661A (en) Apparatus for producing jacket tube for optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees