JPS5858293B2 - Manufacturing method of optical fiber base material - Google Patents

Manufacturing method of optical fiber base material

Info

Publication number
JPS5858293B2
JPS5858293B2 JP663680A JP663680A JPS5858293B2 JP S5858293 B2 JPS5858293 B2 JP S5858293B2 JP 663680 A JP663680 A JP 663680A JP 663680 A JP663680 A JP 663680A JP S5858293 B2 JPS5858293 B2 JP S5858293B2
Authority
JP
Japan
Prior art keywords
layer
quartz tube
optical fiber
cladding layer
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP663680A
Other languages
Japanese (ja)
Other versions
JPS56104741A (en
Inventor
明夫 川名
弘 横田
修三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP663680A priority Critical patent/JPS5858293B2/en
Publication of JPS56104741A publication Critical patent/JPS56104741A/en
Publication of JPS5858293B2 publication Critical patent/JPS5858293B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions

Description

【発明の詳細な説明】 気相化学反応法により石英管の内側にガラス膜を堆積さ
せる方法は、低損失で均一な光ファイバを製造できる方
法としてよく知られている。
DETAILED DESCRIPTION OF THE INVENTION A method of depositing a glass film on the inside of a quartz tube using a vapor phase chemical reaction method is well known as a method that can produce a uniform optical fiber with low loss.

またこの方法で光波長1.1μm以上の領域で低損失な
単一モードファイバを作製する方法として、石英管の内
側にクラッド層となる純SiO2を堆積させ、しかるの
ちコア層となる高屈折率のGe 、 PIのドーパント
剤を含むSiO2を形成させる方法がよく知られている
In addition, as a method for producing a single mode fiber with low loss in the optical wavelength region of 1.1 μm or more using this method, pure SiO2 is deposited as a cladding layer on the inside of a quartz tube, and then a high refractive index material as a core layer is deposited on the inside of a quartz tube. Methods of forming SiO2 containing Ge, PI dopant agents are well known.

しかしながら、この方法ではクラッド層として純SiO
2を用いるためガラス合成温度が1600℃と高く、石
英管に含まれるOH基が合成ガラスへ熱拡散し混入する
ため伝送損失が増加する欠点を有している。
However, this method uses pure SiO as the cladding layer.
Since 2 is used, the glass synthesis temperature is as high as 1600° C., and the OH groups contained in the quartz tube thermally diffuse and mix into the synthetic glass, resulting in an increase in transmission loss.

また合成温度が高いため気泡等の発生により短時間に多
量のガラス膜を堆積することが困難であり、OH基の拡
散混入を防止するため十分厚いクラッド層を形成するに
は長時間を要し生産性に欠ける欠点を有している。
In addition, due to the high synthesis temperature, it is difficult to deposit a large amount of glass film in a short time due to the generation of bubbles, etc., and it takes a long time to form a sufficiently thick cladding layer to prevent the diffusion and incorporation of OH groups. It has the disadvantage of lacking productivity.

本発明はかかる欠点を除去し、特に低損失の単一モード
伝送に適するファイバを生産性良く製造する方法を提供
するものである。
The present invention eliminates such drawbacks and provides a method for manufacturing fibers particularly suitable for low-loss single-mode transmission with high productivity.

本発明の方法では、まず石英管からのOH基の拡散を防
止する目的で純S i 02より低温度で合成すること
のできるP2O5を含むS t 02ガラス膜を石英管
の内側に堆積させる。
In the method of the present invention, first, an S t 02 glass film containing P2O5, which can be synthesized at a lower temperature than pure Si 02, is deposited inside the quartz tube in order to prevent the diffusion of OH groups from the quartz tube.

この組成のガラス膜では、気泡の発生なしに純SiO2
ガラス膜の3〜4倍の膜厚で合成することが可能である
In a glass film with this composition, pure SiO2 can be formed without generating bubbles.
It is possible to synthesize a film 3 to 4 times thicker than a glass film.

さらにその内側に光固有吸収がP2O5を含む5in2
より小さい純SiO2膜をクラッド層として堆積させた
のちコア層となるGeO2等を含む高屈折率のSiO2
膜を形成する。
Furthermore, inside it, the optical absorption is 5in2 containing P2O5.
After depositing a smaller pure SiO2 film as a cladding layer, a high refractive index SiO2 containing GeO2 etc. becomes the core layer.
Forms a film.

第1図には本発明の方法で得られる光ファイバの断面を
示す。
FIG. 1 shows a cross section of an optical fiber obtained by the method of the present invention.

14は出発母材である石英管からのジャケット層、11
と12はコアと純SiO2クラッドを示し、13は石英
管からのOH基拡散防止層である。
14 is a jacket layer from a quartz tube which is the starting base material; 11
and 12 indicate the core and pure SiO2 cladding, and 13 is an OH group diffusion prevention layer from the quartz tube.

このバリヤ一層13はドープ剤としてP2O,のみを含
むとき、屈折率がジャケット層14、クラッド層12よ
りも高屈折率となるためバリヤ層13を伝搬する光及び
コアからの光パワーのもれ出しが生ずることを防ぐため
14層と13層の屈折率差は小さいことが望ましい。
When this barrier layer 13 contains only P2O as a dopant, the refractive index is higher than that of the jacket layer 14 and the cladding layer 12, so light propagating through the barrier layer 13 and optical power leak from the core. In order to prevent this from occurring, it is desirable that the difference in refractive index between the 14th layer and the 13th layer be small.

我々は実験的にこの屈折率差が1.5X10−’以下に
することにより上述した伝送特性上の不都合を除去する
ことができることを見出している。
We have experimentally found that by setting this refractive index difference to 1.5.times.10@-' or less, the above-mentioned disadvantages in transmission characteristics can be eliminated.

また、バリヤ層13としてP2O3とF(あるいはB2
03)を含む場合は光ファイバの曲げ特性を考慮し、1
2層と屈折率が等しくなる様にドーパント濃度をそれぞ
れ制御することが望ましい。
In addition, as the barrier layer 13, P2O3 and F (or B2
03), consider the bending characteristics of the optical fiber and
It is desirable to control the respective dopant concentrations so that the two layers have the same refractive index.

単一モードファイバでは伝搬する光パワーはコア領域1
1に集中しておらずクラッド層へ光パワーが分散してい
るが、本発明の方法では、石英管からの不純物(OH基
)の熱拡散を防止する層と光パワーが伝搬するコア近傍
のクラッド層を分けOH基拡散バリヤ一層を低温度で短
時間に多量堆積することが可能なP2O,を含むSiO
2ガラス膜とし、光が伝搬するクラッド領域を光固有吸
収の小さい純5i02層としている。
In a single mode fiber, the propagating optical power is in the core region 1
However, in the method of the present invention, a layer that prevents thermal diffusion of impurities (OH groups) from the quartz tube and a layer near the core where the optical power propagates are distributed. SiO containing P2O, which can separate the cladding layer and deposit a large amount of OH group diffusion barrier layer at low temperature in a short time.
The cladding region through which light propagates is a pure 5i02 layer with low intrinsic absorption of light.

このことにより本発明の方法は従来の気相化学反応法(
内すす付)により作製される単一モードファイバの低生
産性り欠点を克服することができる。
As a result, the method of the present invention is similar to the conventional gas phase chemical reaction method (
It is possible to overcome the low productivity disadvantage of single mode fibers fabricated by internal soot coating.

以下に実施例を示す。Examples are shown below.

外径20朋ψ、長さ1200mmの市販の石英管にS
1c14180CC/mi n +P QC132CC
/min。
S on a commercially available quartz tube with an outer diameter of 20 mm and a length of 1200 mm.
1c14180CC/min +P QC132CC
/min.

02ガス11/min送り込み、石英管の外部に設置さ
れた1 2 CIrL/ m i nで移動する酸水素
バーナーで1500℃に加熱し、石英管からのOH基拡
散バリヤ一層として5iO2−P205組成のガラス膜
を30回堆積させた。
02 gas was fed at 11/min and heated to 1500°C with an oxyhydrogen burner moving at 12 ClrL/min installed outside the quartz tube. Glass films were deposited 30 times.

POCl3を含まないガス組成(SiC14180cc
/min、02ガス11/m1n)で純S i02ガラ
ス膜を堆積することを同様の方法で試みたが、酸水素バ
ーナで加熱する温度が1600℃に上昇し、石英管の熱
収縮変形が著しく進行するとともに、堆積回数が10回
を越えると堆積ガラス層内に微小な気泡が残存し、堆積
を続けることが不可能になった。
Gas composition not containing POCl3 (SiC14180cc
An attempt was made to deposit a pure Si02 glass film using a similar method using 02 gas (11/min, 02 gas 11/m1n), but the heating temperature with the oxyhydrogen burner rose to 1600°C, and the thermal shrinkage deformation of the quartz tube was significant. As the deposition progressed and the number of depositions exceeded 10, minute bubbles remained in the deposited glass layer, making it impossible to continue the deposition.

供給する5IC14の供給量を600C/m i n以
下に減らすと堆積回数を増やすことが可能であるが、堆
積時間が3倍以上に増える。
Although it is possible to increase the number of times of deposition by reducing the amount of 5 IC 14 supplied to 600 C/min or less, the deposition time increases by more than three times.

本発明の方法に従って、30層の5iO2−P206組
成ガラス膜を堆積させた後、さらに5iC1440cC
/mi n 。
After depositing 30 layers of 5iO2-P206 composition glass film according to the method of the present invention, an additional 5iC1440cC
/min.

02ガス0.611/minを送り込み1600℃に加
熱することにより純SiO2組成のクラッド層(15層
)を形成した。
A cladding layer (15 layers) having a pure SiO2 composition was formed by feeding 0.611/min of 0.02 gas and heating it to 1600°C.

しかるのち原料ガスをS 1c1440 QC/ mi
n *GeCl46CC/min 、0ガス0.611
/minに切り換え5i02 GeO2組成の高屈折率
ガラス膜を5回堆積させた。
After that, the raw material gas is S 1c1440 QC/mi
n *GeCl46CC/min, 0 gas 0.611
/min, and a high refractive index glass film having a composition of 5i02 GeO2 was deposited five times.

合成ガラス膜と石英管の複合管は、さらに酸水素バーナ
の加熱温度を1900℃に上げることにより中実化し、
約外径11mmψのロッドを得た。
The composite tube of synthetic glass membrane and quartz tube is made solid by raising the heating temperature of the oxyhydrogen burner to 1900℃.
A rod having an outer diameter of about 11 mmψ was obtained.

また本発明の方法で上述したプリフォームを作製するに
要する時間は、中実化工程を含めても、従来の方法で作
製する場合と比較して約1/3に短縮されている。
Furthermore, the time required to produce the above-mentioned preform by the method of the present invention, even including the solidifying step, is reduced to about 1/3 compared to the time required to produce the preform by the conventional method.

本発明のプリフォームでは、クラッド層の一部にP2O
5を含んだガラス層があるためプリフォーム全体のガラ
ス粘度が下がり、粘度依存性を持つ中実化に要する時間
は約1/2に短縮されている・このロッドは所定の外径
/コア径比を得るため、さらに別の石英管(外径201
n11Lψ、肉厚4扉0でジャケットされ、最終的に1
9mmψのプリフォームロッドに仕上げられた。
In the preform of the present invention, a part of the cladding layer contains P2O.
Because of the glass layer containing 5, the glass viscosity of the entire preform is reduced, and the time required for solidification, which is viscosity-dependent, is reduced to approximately 1/2. In order to obtain the ratio, another quartz tube (OD 201
n11Lψ, jacketed with wall thickness 4 doors 0, finally 1
Finished as a 9mmψ preformed rod.

干渉顕微鏡によりコア層とクラッド層の屈折率差を測定
したところ3.6XIO−3であった。
The refractive index difference between the core layer and the cladding layer was measured using an interference microscope and was found to be 3.6XIO-3.

このプリフォームは抵抗炉で加熱することにより外径1
25μmのファイバに紡糸された。
By heating this preform in a resistance furnace, the outer diameter of
Spun into 25 μm fiber.

このファイバのロスを光波長1.1〜1.6μmで測定
したところ1.55μm近傍で1.0 dB /Ax以
下の低損失値が得られた。
When the loss of this fiber was measured at an optical wavelength of 1.1 to 1.6 μm, a low loss value of 1.0 dB/Ax or less was obtained near 1.55 μm.

波長1.38μmにはOH基による光吸収が観測される
が、本発明の方法で作製したファイバでは1.5 dB
/Iar1と従来のP2O5を含まない純SiO2層
のみでクラッド層を形成したファイバと比較して約11
5以下に減少している。
Light absorption due to OH groups is observed at a wavelength of 1.38 μm, but in the fiber produced by the method of the present invention, the absorption is 1.5 dB.
/Iar1 and about 11 compared to a conventional fiber whose cladding layer is made of only a pure SiO2 layer that does not contain P2O5.
It has decreased to 5 or less.

これは本発明の方法により石英管からの不純物(OH基
)の熱拡散を防止する層と光パワーが伝搬するコア近傍
のクラッド層を分け、OH基拡散バリヤ一層として低温
度で短時間に多量堆積することが可能なP2O,を含む
SiO2ガラス膜を堆積させた結果である。
By the method of the present invention, a layer that prevents thermal diffusion of impurities (OH groups) from the quartz tube and a cladding layer near the core through which optical power propagates are separated, and a large amount of impurities (OH groups) can be produced in a short time at low temperature as an OH group diffusion barrier layer. This is the result of depositing a SiO2 glass film containing P2O, which can be deposited.

Oす基による光吸収の減少は、光フアイバ通信に使用さ
れる1:3μm、1゜55μmの光波長でのファイバの
損失を再測性良く安定に得ることに役立つ。
The reduction in optical absorption by the O group is useful for stably obtaining fiber loss with good repeatability at optical wavelengths of 1:3 μm and 1°55 μm used in optical fiber communications.

本発明の方法と、従来の方法で15本のシングルモード
ファイバを作製し、波長1.3μmの損失値を測定した
ところ、本発明の方法では平均値0.54dB//J標
準偏差0.15 dB /に2n、従来法では平均値0
.72dB/緻、標準偏差0.48 d B/l頃であ
った。
Fifteen single mode fibers were fabricated using the method of the present invention and the conventional method, and the loss value at a wavelength of 1.3 μm was measured. 2n in dB/, average value 0 in conventional method
.. It was 72 dB/f, with a standard deviation of about 0.48 dB/l.

一方、純SiO2層にもP2O,を含有させたシングル
モードファイバを作製し、本発明の方法で作製したファ
イバと比較したところ、P−0結合の赤外吸収端の影響
が波長1.55μmで見られた。
On the other hand, when we fabricated a single-mode fiber in which the pure SiO2 layer also contained P2O, and compared it with the fiber fabricated using the method of the present invention, we found that the influence of the infrared absorption edge of P-0 coupling at a wavelength of 1.55 μm It was seen.

本発明の方法で作製したファイバの波長1.55μmに
おける損失が平均値0.29dB、/b、標準偏差0.
09 dB /1cInであるのと比較して、クラッド
層全体にP2O5を含有させたシングルモードファイバ
の平均値0.38dB/1a11標準偏差0.14dB
/lanであり、伝送損失値が増加した。
The fiber produced by the method of the present invention has an average loss of 0.29 dB at a wavelength of 1.55 μm, and a standard deviation of 0.29 dB.
09 dB/1cIn, compared to a single mode fiber containing P2O5 throughout the cladding layer with an average value of 0.38 dB/1a11 standard deviation of 0.14 dB.
/lan, and the transmission loss value increased.

以上述べたように本発明で開示した方法により低損失の
シングルモードファイバを生産性良く製造することがで
きる。
As described above, a low loss single mode fiber can be manufactured with high productivity by the method disclosed in the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法で得られるファイバの断面図。 11・・・・・・コア層、12・・・・・・純SiO2
クラッド層、13・・・・・・バリヤ一層、14・・・
・・・(石英管)ジャケット層。
FIG. 1 is a cross-sectional view of a fiber obtained by the method of the present invention. 11...Core layer, 12...Pure SiO2
Cladding layer, 13... Barrier layer, 14...
...(quartz tube) jacket layer.

Claims (1)

【特許請求の範囲】[Claims] 1 気相化学反応法により石英管の内側にP2O5を含
むシリカガラス層を堆積し、その内側に純シリカガラス
膜をクラッド層として堆積し、しかるのちクラッド層よ
りも高屈折率のコア層となるガラス膜を堆積することを
特徴とする光フアイバ母材の製造方法。
1 A silica glass layer containing P2O5 is deposited on the inside of a quartz tube using a vapor phase chemical reaction method, and a pure silica glass film is deposited on the inside as a cladding layer, which then becomes a core layer with a higher refractive index than the cladding layer. A method for producing an optical fiber base material, comprising depositing a glass film.
JP663680A 1980-01-22 1980-01-22 Manufacturing method of optical fiber base material Expired JPS5858293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP663680A JPS5858293B2 (en) 1980-01-22 1980-01-22 Manufacturing method of optical fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP663680A JPS5858293B2 (en) 1980-01-22 1980-01-22 Manufacturing method of optical fiber base material

Publications (2)

Publication Number Publication Date
JPS56104741A JPS56104741A (en) 1981-08-20
JPS5858293B2 true JPS5858293B2 (en) 1983-12-24

Family

ID=11643847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP663680A Expired JPS5858293B2 (en) 1980-01-22 1980-01-22 Manufacturing method of optical fiber base material

Country Status (1)

Country Link
JP (1) JPS5858293B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322131B1 (en) * 1999-01-28 2002-02-04 윤종용 Optical fiber preform having OH barrier and method of fabricating the same
US8191816B2 (en) 2008-04-30 2012-06-05 Ricoh Company, Limited Roll-sheet feeding device and image forming apparatus

Also Published As

Publication number Publication date
JPS56104741A (en) 1981-08-20

Similar Documents

Publication Publication Date Title
JP3527707B2 (en) Optical fiber preform having OH blocking layer and method for manufacturing the same
SE443242B (en) OPTICAL INDEX GRADE FIBER AND PROCEDURES FOR ITS MANUFACTURING
US4306767A (en) Single-mode optical fiber
JPS5843336B2 (en) Manufacturing method of clad type optical glass fiber
JP5697065B2 (en) Manufacturing method of glass base material
CA1121160A (en) Method of manufacturing optical fibers
US4351658A (en) Manufacture of optical fibers
US4932990A (en) Methods of making optical fiber and products produced thereby
JPS5858293B2 (en) Manufacturing method of optical fiber base material
KR100878709B1 (en) A method for fabricating optical fiber using adjustment of oxygen stoichiometry
JPS635334B2 (en)
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
JP3258478B2 (en) High viscosity synthetic quartz glass tube for thermal CVD method and quartz glass preform for optical fiber using the same
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JPS6110037A (en) Production of parent material of optical fiber
JPH0742131B2 (en) Method for manufacturing glass base material for optical fiber
JPS5838368B2 (en) Optical fiber manufacturing method
JPS59141438A (en) Manufacture of optical fiber preform
JPH0240003B2 (en) TANITSUMOODO * HIKARIFUAIBAYOBOZAINOSEIZOHOHO
JPS6234700B2 (en)
JPS591222B2 (en) Optical fiber manufacturing method
DK158719B (en) PROCEDURE FOR MANUFACTURING OPERATING FIBERS FOR OPTICAL FIBERS
JPS62191434A (en) Production of parent material for optical fiber
JPS596258B2 (en) Method for manufacturing optical transmission fiber
JPS59141437A (en) Manufacture of optical fiber preform