JPS58213645A - Piling of oxide powder by vapor-phase axial deposition - Google Patents

Piling of oxide powder by vapor-phase axial deposition

Info

Publication number
JPS58213645A
JPS58213645A JP9601182A JP9601182A JPS58213645A JP S58213645 A JPS58213645 A JP S58213645A JP 9601182 A JP9601182 A JP 9601182A JP 9601182 A JP9601182 A JP 9601182A JP S58213645 A JPS58213645 A JP S58213645A
Authority
JP
Japan
Prior art keywords
powder
core
layer
oxide powder
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9601182A
Other languages
Japanese (ja)
Inventor
Kazunori Senda
千田 和憲
Tamotsu Kamiya
保 神谷
Kazuaki Yoshida
和昭 吉田
Takeyuki Kikuchi
菊池 健之
Kunio Ogura
邦男 小倉
Yasuro Furui
古井 康郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP9601182A priority Critical patent/JPS58213645A/en
Publication of JPS58213645A publication Critical patent/JPS58213645A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To prevent insufficiently reacted oxide powder from attaching to a powder layer for core and a powder layer for clad, by setting a sealing means at the boundary between a spray zone for a device to prepare powder for core and a spray zone for a device to prepare powder foc clad. CONSTITUTION:The reaction container 1 is divided into the reaction chamber 2 having the device 4 to prepare powder for core and the reaction chamber 3 having the device 5 to prepare powder for clad by the sealing means 12 consisting of the partitioning plates 13 and 14 with the through holes 17 and 18. The powder piling device 8 set in the container 1 is rotated on the shaft line, moved in the shaft direction, simultaneously a sealing gas is sent from the feed system 16 to the sealing chamber 15 divided by the partitioning plates 13 and 14, and leaked through the through holes 17 and 18 into the reaction chambers 2 and 3. Glass-based oxide powder is sprayed from the device 4 to the piling face of the piling device 8, so that the bar powder layer 19 for core is formed, and glass- based oxide powder from the device 6 is sprayed to it to form the powder layer 20 for clad.

Description

【発明の詳細な説明】 本発明は気相軸付法における酸化物粉末の堆積方法を改
良したものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method of depositing oxide powder in a vapor deposition method.

光フアイバ用母材を製造する際の1手段として採用され
ている気相軸付法では、火炎加水分解用の多重管バーナ
を粉末生成器とし、該粉末生成器により生成したガラス
系酸化物粉末を、周方向に回転しながら軸方向へ移動し
ている粉末堆積器の堆積面へ堆積させ、これにより形成
した棒状の粉末・層を熱処理によりガラス化している。
In the gas-phase axial method, which is adopted as a method for manufacturing base materials for optical fibers, a multi-tube burner for flame hydrolysis is used as a powder generator, and the glass-based oxide powder produced by the powder generator is is deposited on the deposition surface of a powder depositor that moves in the axial direction while rotating in the circumferential direction, and the rod-shaped powder layer thus formed is vitrified by heat treatment.

□通常、こうして光フアイバ用母材をつくるとき、コア
用粉末層とその外周のクラッド用粉末層、とを同時に堆
積形成することがらり、もちろんこの際、粉末生成器は
うア用およびり2ツド用の2器が用いられ、両粉末生成
器は適当な間隔をおいて所定位置に配置されるとともに
粉末堆積器に対する噴射角度も設定される。
□Normally, when making an optical fiber base material in this way, a powder layer for the core and a powder layer for the cladding on the outer periphery are deposited at the same time. Two powder generators are used, and both powder generators are placed in a predetermined position with an appropriate distance between them, and the spray angle relative to the powder depositor is also set.

ところで、高屈折率のコアとこれよ、りも低屈折率のク
ラッドとからなる光ファイバは、上記のような母材製造
工程において成分調整されるのであり、それ故、各粉末
生成器を介して生成されるコア用酸化物粉末(例えば5
i02−Ge’02−”P20g  )とクラッド用酸
化物粉末(例えば8 i 02 、S i 02−P2
051.S 102Pt Oi  Bt On )との
組成は互いに異なっているが、上記において2つの粉末
生成器によりそれぞれコア用粉末層、クラッド用粉末層
を同時形成する際、コア用−粉末生成器による粉末の噴
射領域と、クラッド用粉末生成器による粉末の噴射領域
とが一部で重なり合ったり、両器の火炎(酸水素炎)か
相互に影響したり、さらには火炎の外へ飛び出した反応
不充分の粉末が堆積されるといったことが起こりがちで
あり、これの対策をもたない上記従来法では、コア、り
2ツド相互の屈折率分布が乱れたり、発泡が生じるなど
の問題を惹起している。
By the way, the composition of an optical fiber consisting of a core with a high refractive index and a cladding with a lower refractive index is adjusted in the base material manufacturing process as described above. Oxide powder for the core (e.g. 5
i02-Ge'02-''P20g) and cladding oxide powder (e.g. 8 i02, S i02-P2
051. S 102Pt Oi Bt On ) are different in composition from each other, but when the core powder layer and the cladding powder layer are simultaneously formed using the two powder generators in the above, the powder injection by the core-powder generator If the area and the powder injection area from the cladding powder generator partially overlap, or if the flames of both devices (oxyhydrogen flame) affect each other, or if powder is insufficiently reacted and flies out of the flame. The above-mentioned conventional method, which does not have a countermeasure against this problem, causes problems such as disturbance of the refractive index distribution between the core and the resin and formation of bubbles.

本発明は気相軸付法におけるコア用粉末−り     
□ラッド用粉末の両噴射領域境界にシール手段を設けて
上記従来法の問題を解消したもので、以下その具体的方
法を図示の実施例により説明する0 第1図における反応容器(1)内は下位の反応室(2)
と上位の反応室(3)とに区分されており、一方の反応
室(2)内にはコア用粉末生成器(4)とその排気系(
5]が備えられ、他方の反応室(3)内にはクラッド用
粉末生成器(6)とその排気系(7)が備えられている
The present invention is a method for preparing powder for the core in the gas-phase shafting method.
□This method solves the problems of the conventional method described above by providing a sealing means at the boundaries of both injection areas of powder for rad, and the specific method will be explained below with reference to an example shown in the figure. is the lower reaction chamber (2)
and an upper reaction chamber (3), and one reaction chamber (2) contains a core powder generator (4) and its exhaust system (
5], and the other reaction chamber (3) is equipped with a cladding powder generator (6) and its exhaust system (7).

さらに反応容器(11内には第1図の軸心線Yを中心に
回転し、該軸心11Yに沿って移動する粉末堆積器(8
)が装備されており、該粉末堆積器(8]はその一端(
図示での下端]が堆積面(9)となっている。
Furthermore, a powder depositor (8) that rotates around the axis Y in FIG. 1 and moves along the axis Y in the reaction vessel (11) is provided.
), and the powder depositor (8) is located at one end (
The lower end in the figure is the deposition surface (9).

もちろん上記両粉末生成器+4) (61は、粉末堆積
器(8)の軸心線Yと交差する所定角度を保持している
。、 また、これら両粉末生成器+41 (61はいずれも多
重管構造のバーナからなり、気相のガラス原料、気相の
ドープ剤、キャリアガス、酸素、水素などが同時噴射で
きるようになっている。
Of course, both powder generators +4) (61 maintains a predetermined angle intersecting the axis Y of the powder depositor (8).) Also, both powder generators +41 (61 are multi-pipe tubes) It consists of a structured burner that can simultaneously inject vapor phase glass raw material, vapor phase dopant, carrier gas, oxygen, hydrogen, etc.

本発明では上述した第1図の装置を介して後述する所定
の気相軸付法を実施するが、この際、コア用粉末生成器
(4)による噴射1領域四と、クラッド用粉末生成器(
6)による噴射領域aυとの境界にこれら両領域(IQ
(lυを仕切るためのシール手段aりが設けられる。
In the present invention, a predetermined gas phase axis method, which will be described later, is carried out using the apparatus shown in FIG. (
6), these two areas (IQ
(A sealing means a is provided to partition lυ.

このシール手段azは2つの仕切板(1:l (141
により区画して形成されたシール室Q!9と、該シール
室a9に連結されたシールガス−供給系aQとからなり
、上記両社切板aaQの板面には、後述するコア用粉末
層が通過し得る透孔aI)(ト)がそれぞれ穿設されて
いる。
This sealing means az has two partition plates (1:l (141
Seal chamber Q! 9 and a sealing gas supply system aQ connected to the sealing chamber a9, and the plate surface of the cut plate aaQ of both companies has through holes aI) (g) through which the core powder layer described later can pass. Each is drilled.

また、両透孔劫(至)の孔径と後記コア用粉末層の外径
とでは、透孔a1)Qlの方が大きく、とれら透孔(1
71011からはシール室ae内のシールガスが所定方
向へ漏出するようになっている。
In addition, between the hole diameter of both through holes (to) and the outer diameter of the core powder layer described later, the through hole a1)Ql is larger, and the through hole (1) is larger.
From 71011, the seal gas in the seal chamber ae leaks in a predetermined direction.

本発明では上述した第1図の装置により気相軸付法を実
施するのであり、これ番こ際しては反応容器(1)の各
部内を減圧するとか、A r 、He、N2などの不活
性ガスで置換しておき、そして粉末堆積器(8)の堆積
面(9)は、はじめ反応室(2)のa点に位置決めして
おく。
In the present invention, the vapor phase axis method is carried out using the apparatus shown in FIG. The atmosphere is replaced with an inert gas, and the deposition surface (9) of the powder depositor (8) is initially positioned at point a of the reaction chamber (2).

その後、コア用粉末生成器(4)を介してコア用ガラス
原料を火炎加水分解し、その反応生成物であるガラス系
酸化物粉末を回転状態にある上記粉末堆積器(8)の堆
積面へ堆積させてこれを連続的に行なうとともに該粉末
の堆積速度に応じて粉末堆積器(8)を軸方向(図示で
の上方)へ移動させるのであり、これにより棒状のコア
用粉末層四が形成される。
Thereafter, the core glass raw material is flame-hydrolyzed through the core powder generator (4), and the reaction product, glass-based oxide powder, is transferred to the deposition surface of the rotating powder depositor (8). The powder is deposited continuously, and the powder depositor (8) is moved in the axial direction (upward in the figure) according to the deposition rate of the powder, thereby forming the powder layer 4 for the rod-shaped core. be done.

一方、反応室(3)ではクラッド用粉末生成器(6)を
介してクラッド用ガラス原料を火炎加水分解しているの
であり、上記のようにして形成されたコア用粉末層a場
が当該反応室(3)のb点INりに達すると、上記粉末
生成器(6)からのクラッド用ガラス系酸化物粉末が吹
きつけられてコア用粉末層C11の外周にはクラッド用
粉末層(至)が堆積形成されるのでるる。
On the other hand, in the reaction chamber (3), the glass raw material for cladding is subjected to flame hydrolysis via the cladding powder generator (6), and the core powder layer a field formed as described above is used for the reaction. When point b IN of the chamber (3) is reached, the glass-based oxide powder for cladding from the powder generator (6) is blown onto the outer periphery of the core powder layer C11 to form a cladding powder layer (up to). is deposited and formed.

本発明では上記のようにして一7用粉末層Q轡とその外
周のクラッド用粉末層翰とを形成するのであるが、この
際両噴射領域Ql (11)を仕切るシール手段ぐっと
してシール室(11内へ不活性ガス(Ars Hes 
Nzなど)tたは塩素ガス(C4)を供給し、これによ
りシールガス層を形成する。
In the present invention, the powder layer Q for 17 and the powder layer for cladding on its outer periphery are formed as described above, but at this time, the sealing means for partitioning both the injection areas Ql (11) is tightly closed and the sealing chamber ( Inert gas (Ars Hes
Nz, etc.) or chlorine gas (C4) is supplied to form a sealing gas layer.

こうしてシールガス層を形成した場合、コア用粉末生成
器(4)からの酸化物粉末がクラッド用の噴射領域a0
側へ混入するといった事態が阻止され、もちろんクラッ
ド用粉末生成器(6)からの酸化物粉末がコア用の噴射
領域Ql側へ混入するといったこともなく、シたがって
上記のようにして得られた酸化物粉末俸(コア用粉末層
αりおよびクラッド用粉末層翰)を熱処理により透明ガ
ラス化して光フアイバ用母材とし、さらにこの母材を光
ファイバにまで加工した場合、そのコアおよびクラッド
相互の屈折率分布に乱れのない適正なものが得られるこ
ととなる。
When the sealing gas layer is formed in this way, the oxide powder from the core powder generator (4) is sprayed into the cladding injection area a0.
Of course, the oxide powder from the cladding powder generator (6) will not be mixed into the core injection region Ql side, and therefore, the oxide powder obtained as described above will not be mixed into the core injection region Ql side. When the oxide powder pellets (powder layer for the core and powder layer for the cladding) are made into transparent glass by heat treatment and used as a base material for an optical fiber, and this base material is further processed into an optical fiber, the core and cladding A proper refractive index distribution without any disturbance can be obtained.

しかも上記のシール手段(12は一方の噴射領域(II
から他方の噴射領域Qυへわたることになるコア用粉末
層α9の当該移行を妨げるものでなく、これの具体的手
段として形成されている透孔(171Q19も、ここか
ら各噴射領域(11(21へ向けてシール室QQ内のシ
ールガスが一部漏出されることになるので、これら透孔
αηα榎およびコア用粉末層01間の間隙より各酸化物
粉末が異なる噴射領域へ侵入するといったことはないの
であり、したがってコア用粉末層Qlの上記移行を可能
としたがために両酸化物粉末が混じり合うこともない。
Furthermore, the sealing means (12) is one of the injection regions (II
The through hole (171Q19) which is formed as a specific means for this does not prevent the transfer of the core powder layer α9 from one injection area to the other injection area Qυ. Since a part of the sealing gas in the sealing chamber QQ will leak toward Therefore, since the above-mentioned transfer of the core powder layer Ql is made possible, the two oxide powders do not mix together.

さらに各透孔叩(ト)から漏出したシールガスは、各噴
射領域QCj(11)において酸水素炎外へ逸散した反
応不充分の酸化物粉末がコア用粉末層α得、クラッド用
粉末層(イ)に何着するのを阻止するようになり、した
がって所定堆積後のガラス化時においては反応不充分の
粉末混入に起因した発泡現象はもちろんないことになる
Furthermore, the sealing gas leaked from each through-hole punch (G), the insufficiently reacted oxide powder which escaped to the outside of the oxyhydrogen flame in each injection region QCj (11) forms the core powder layer α and the cladding powder layer α. (a) This prevents any adhesion of the powder, and therefore, during vitrification after a predetermined deposition, there will of course be no foaming phenomenon caused by the incorporation of insufficiently reacted powder.

つぎに本発明の具体例について説明する。Next, specific examples of the present invention will be explained.

具体例1 この具体例ではグレー、デッドインデックス光ファイバ
の母材を製造することとし、主な条件をつぎのように定
めた。
Specific Example 1 In this specific example, a base material for a gray, dead-index optical fiber was manufactured, and the main conditions were determined as follows.

まず、コア用粉末生成器(4)ではその酸水素炎中に8
 i C24”、GaCl2 、POCA3を導入し、
これらを火炎加水分解反応させた後のS i 02− 
G e 02  P 20H系酸化物粉末を前足の通り
堆積させて外径60調のコア用粉末層Q暖をりくった。
First, in the core powder generator (4), 8
Introducing i C24'', GaCl2, POCA3,
S i 02- after flame hydrolysis reaction of these
G e 02 P 20H-based oxide powder was deposited along the front legs, and the powder layer Q for the core with an outer diameter of 60 mm was removed.

さらにクラッド用粉末生成器(6)では、その酸水素炎
中に5iC24を導入してこれを火炎加水分解反応させ
、これによる8i0□系酸化物粉末を上記コア用粉末層
CI鐸力外周に所定量だけ堆積させてクラッド用粉末層
翰を堆積形成した。
Furthermore, in the cladding powder generator (6), 5iC24 is introduced into the oxyhydrogen flame to undergo a flame hydrolysis reaction, and the resulting 8i0□-based oxide powder is placed on the outer periphery of the core powder layer CI. A fixed amount of powder was deposited to form a powder layer for cladding.

この際、シールガスとしてはArを用い、これを107
/mmでシール室as内へ供給し、こうしたシール手段
α2−により両噴射領域Ql(lυを仕切った。
At this time, Ar is used as the seal gas, and this is 107
/mm into the sealing chamber as, and both injection regions Ql(lυ) were partitioned off by such a sealing means α2-.

なお、仕切板(14α騰の透孔aη(ト)はその孔径を
65■とじた。
The diameter of the partition plate (through hole aη (g) of 14α) was 65cm.

上記におけるシール手段α4でいえることは、透孔(1
7)(ト)から各噴射領域α(1(111へ漏出するシ
ールガス流の強さであり、当該漏出シールゲスが所定値
以上の流速、流量であれば反応不充分の酸化−物粉末が
コア用粉末層CIL クラッド用粉末層(イ)へ何着す
るといったことは阻止できる。
What can be said about the sealing means α4 in the above is that the through hole (1
7) The strength of the seal gas flow leaking from (g) to each injection area α It is possible to prevent the cladding powder layer CIL from being deposited on the cladding powder layer (a).

もちろん外径60mmのコア用粉末層Qlに対する各透
孔aηα印の孔径65舗、シールガス供給量lO4/l
!iIRは上記の課題を満足させるものであった。
Of course, each through hole aηα has a hole diameter of 65 for the core powder layer Ql with an outer diameter of 60 mm, and the sealing gas supply amount is lO4/l.
! iIR satisfied the above-mentioned problems.

上記のようにしてつくられた酸化物粉末棒(コア用粉末
層a場、り2ラド用粉末層(イ))を、HeおよびC1
0の雰囲気下にある電気炉内で加熱して透明ガラス化し
、光フアイバ用母材とした。
He and C1
It was heated in an electric furnace in an atmosphere of 0 to make it transparent and vitrified, and used as a base material for optical fiber.

この母材段階では、その表面に発泡がみられず、良好な
状態のものが得られた。
At this base material stage, no foaming was observed on the surface, and a material in good condition was obtained.

さらに上記母材を加熱延伸により紡糸して光ファイバに
加工したところ、第2図実線で示すところの屈折率分布
が確認できた。
Furthermore, when the above-mentioned base material was spun into an optical fiber by heating and drawing, the refractive index distribution shown by the solid line in FIG. 2 was confirmed.

第2図における本発明(実線)では、従来例(同図点線
)に比べ、所定通りの適正な屈折率分布(呈している〇 具体例2 この具体例ではシングルモード光ファイバの母材を製造
することとし、主な条件をつぎのように定めた〇 つまりコア用粉末層Q1およびクラッド用粉末層(イ)
は具体例1と同一組成にして同様のものをつくったが、
これらの外径に関してはコア用粉末層Qlを12++o
nとしてその外周に所定量のクラッド用粉末層翰を堆積
させた。
The present invention (solid line) in Fig. 2 has a predetermined and appropriate refractive index distribution (exhibits a predetermined and appropriate refractive index distribution) compared to the conventional example (dotted line in the figure). In this specific example, a base material of a single mode optical fiber is manufactured. The main conditions were determined as follows. In other words, the powder layer for the core Q1 and the powder layer for the cladding (A)
A similar product was made with the same composition as in Example 1, but
Regarding these outer diameters, the core powder layer Ql is 12++o.
A predetermined amount of powder layer for cladding was deposited on the outer periphery as n.

また、透孔αη(ホ)の孔径は一15wnとし、シール
室a9内にはN2をシールガスとしてこれを800co
/−の流量で供給した。
In addition, the diameter of the through hole αη (e) is -15wn, and the sealing chamber a9 is filled with N2 as a sealing gas.
It was supplied at a flow rate of /-.

以下こうして得られた酸化物粉末棒を具体例1と同様の
手段で透明ガラス化し、これにより得られた母材を光フ
ァイバにまで加工した。
Thereafter, the oxide powder rod thus obtained was made into transparent glass by the same means as in Example 1, and the base material thus obtained was processed into an optical fiber.

もちろんこの具体例でも母材段階での発泡はみられず、
また、その屈折率分布も第3図実線の通りであって従来
例(同図点線)のごとき屈折率分布の乱れはなかった。
Of course, even in this specific example, no foaming was observed at the base material stage.
Further, the refractive index distribution was as shown by the solid line in FIG. 3, and there was no disturbance in the refractive index distribution as in the conventional example (dotted line in the same figure).

以上説明した通り、本発明の方法は軸方向に移動自在、
周方向に回転自在な粉末堆積器の軸心線と交差する所定
角度を保持してコア用粉末生成器とクラッド用粉末生成
器とを互いに離間させて配置しておき、周方向に回転し
ながら軸方向に移動せる上記粉末堆積器の堆積面には、
コア用粉末生成器からのガラス系酸化物粉末を吹きつけ
てその堆積面に棒状のコア用粉末層を形成するとともに
該コア用粉末層の外周には、クラッド用粉末生成器から
のガラス系酸化物粉末を吹きつけて・その外周面にクラ
ッド用粉末層を堆積形成する気相軸付法において、上記
コア用粉末生成器による噴射領域と、上記クラッド用粉
末生成器による噴射領域との境界には、上記コア用粉末
層の通過を許容するシール手段を設けて当該シール手段
により上記両噴射領域相互を仕切ることを特徴としてい
るから、そのシール手段を介した仕切り効果により、屈
折率分布に乱れのない、しかも発泡などが生じない光通
信用のガラス製品が得られることになる0
As explained above, the method of the present invention allows for free movement in the axial direction,
The core powder generator and the cladding powder generator are placed apart from each other by maintaining a predetermined angle intersecting the axis of the powder depositor that can freely rotate in the circumferential direction, and while rotating in the circumferential direction, The deposition surface of the powder depositor that can be moved in the axial direction includes:
Glass-based oxide powder from a core powder generator is sprayed to form a rod-shaped core powder layer on the deposited surface, and glass-based oxide powder from a cladding powder generator is sprayed on the outer periphery of the core powder layer. In the vapor phase deposition method, in which a cladding powder layer is deposited and deposited on the outer circumferential surface of the cladding powder layer by spraying a material powder onto the boundary between the injection area by the core powder generator and the cladding powder generator. is characterized by providing a sealing means that allows the passage of the core powder layer and partitioning the two injection regions from each other by the sealing means, so that the refractive index distribution is disturbed due to the partitioning effect through the sealing means. This means that glass products for optical communication that are free from bubbles and do not cause foaming etc. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の1実施例をその装置とともに略示
した説明図、第2図、第3図Cま本発明に係る光ファイ
バとその従来例とを対比した屈折率分布図である0 (4)  ・・・・・コア用粉末生成器(6)  ・・
・・・クラッド用粉末生成器(8)  ・・・・・粉末
堆積器 (9)  ・・・・・堆積面 Ql(lυ・・・・・噴射領域 0 ・・・・・シール手段 (13α勺・−・・・仕切板 O[有] ・・・・・シール室 αQ ・・・・・シールガス供給系 Qη(ト)・・・・・透孔 (lil  ・・・・・コア用粉末層 翰 ・・帝・・クラッド用粉末層 特許出願人 代理人 弁理士  井 藤   誠 第1頁の続き 0発 明 者 古井康部 内 0出 願 人 古河電気工業株式会社 東京都千代田区丸の内2丁目6 番1号
FIG. 1 is an explanatory diagram schematically showing one embodiment of the method of the present invention together with its apparatus, and FIGS. 2 and 3 are refractive index distribution diagrams comparing the optical fiber according to the present invention and its conventional example. 0 (4) ... Core powder generator (6) ...
...Powder generator for cladding (8) ...Powder depositor (9) ...Deposition surface Ql (lυ...Injection area 0 ...Sealing means (13α) ...Partition plate O [with] ...Seal chamber αQ ...Seal gas supply system Qη (g) ...Through hole (lil) ...Powder layer for core Powder bed patent applicant for cladding Patent attorney Makoto Ito Continued from page 1 0 Inventor Yasubumi Furui 0 Applicant Furukawa Electric Co., Ltd. 2-6 Marunouchi, Chiyoda-ku, Tokyo No. 1

Claims (4)

【特許請求の範囲】[Claims] (1)軸方向に移動自在、周方向に回転自在な粉末堆積
器の軸心線と交差する所定角度を保持してコア用粉末生
成器とり2ツド用粉末生成器とを互いに離間させて配置
しておき、周方向に回転しながら軸方向に移動せる上記
粉末堆積器の堆積面には、コア用粉末生成器からのガラ
ス系酸化物粉末を吹きつけてその堆積面に棒状のコア用
粉末層を堆積形成するとともに該コア用粉末層の外周に
は、クラッド用粉末生成器からのガラス系酸化物粉末を
吹きつけてその外周面にクラッド用粉末層を堆積形成す
る気相軸付法において、上記コア用粉末生成器による噴
射領域と、上記クラッド用粉末生成器による噴射領域と
の境界には、上記コア用粉末層の通過を許容するシール
手段を設けて当該シール手段によシ上記両噴射領域相互
を仕切ることを特徴とした気相軸付法における酸化物粉
末の堆積方法。
(1) The core powder generator and the two core powder generators are placed apart from each other by maintaining a predetermined angle intersecting the axis of the powder depositor, which is movable in the axial direction and rotatable in the circumferential direction. Then, glass-based oxide powder from the core powder generator is sprayed onto the deposition surface of the powder depositor, which can rotate in the circumferential direction and move in the axial direction. In the vapor phase axial method, in which a layer is deposited and a cladding powder layer is deposited and formed on the outer periphery of the core powder layer by spraying glass-based oxide powder from a cladding powder generator onto the outer periphery of the core powder layer. At the boundary between the injection area by the core powder generator and the injection area by the cladding powder generator, sealing means is provided to allow passage of the core powder layer, and the sealing means allows the core powder layer to pass through. A method for depositing oxide powder in a vapor phase deposition method characterized by partitioning the injection areas from each other.
(2)  シール手段として、両噴゛射領域の間にはシ
ールガス層を形成する特許請求の範囲第11項記載の気
相軸付法における酸化物粉末の堆積方法。
(2) A method for depositing oxide powder in a vapor phase deposition method according to claim 11, wherein a sealing gas layer is formed between both injection regions as a sealing means.
(3)  シール手段として、両噴射領域の間にはコア
用粉末層の移動方向と交差する2つの壁面供給して両噴
射領域間°のシールガス層を形成し、かつ、上記シール
室の各透孔からは、各噴射領域へ向けて漏出するガス流
を生せしめる特許請求の範囲第1項または第2項記載の
気相軸付法における酸化物粉末の堆積方法。
(3) As a sealing means, two wall surfaces intersecting the moving direction of the core powder layer are supplied between the two injection regions to form a sealing gas layer between the two injection regions, and each of the sealing chambers is 3. A method for depositing oxide powder in a vapor phase deposition method according to claim 1 or 2, wherein a gas flow is generated from the through hole toward each injection region.
(4)  シールガス層を不活性ガス1.塩素ガス等に
よシ形成する特許請求の範囲第2項または第3項記載の
気相軸付法における酸化物粉末の堆積方法。
(4) Seal gas layer with inert gas 1. A method for depositing oxide powder in a vapor phase deposition method according to claim 2 or 3, wherein the oxide powder is formed using chlorine gas or the like.
JP9601182A 1982-06-04 1982-06-04 Piling of oxide powder by vapor-phase axial deposition Pending JPS58213645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9601182A JPS58213645A (en) 1982-06-04 1982-06-04 Piling of oxide powder by vapor-phase axial deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9601182A JPS58213645A (en) 1982-06-04 1982-06-04 Piling of oxide powder by vapor-phase axial deposition

Publications (1)

Publication Number Publication Date
JPS58213645A true JPS58213645A (en) 1983-12-12

Family

ID=14153244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9601182A Pending JPS58213645A (en) 1982-06-04 1982-06-04 Piling of oxide powder by vapor-phase axial deposition

Country Status (1)

Country Link
JP (1) JPS58213645A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152234A (en) * 1983-02-14 1984-08-30 Nippon Telegr & Teleph Corp <Ntt> Preparation of parent material for optical fiber
JPS62223036A (en) * 1986-03-20 1987-10-01 Nippon Telegr & Teleph Corp <Ntt> Production of preform for optical fiber and apparatus therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727934A (en) * 1980-07-25 1982-02-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727934A (en) * 1980-07-25 1982-02-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152234A (en) * 1983-02-14 1984-08-30 Nippon Telegr & Teleph Corp <Ntt> Preparation of parent material for optical fiber
JPS62223036A (en) * 1986-03-20 1987-10-01 Nippon Telegr & Teleph Corp <Ntt> Production of preform for optical fiber and apparatus therefor

Similar Documents

Publication Publication Date Title
EP0138333B1 (en) Method of fabricating optical glass base material
US4414012A (en) Fabrication methods of doped silica glass and optical fiber preform by using the doped silica glass
US4249925A (en) Method of manufacturing an optical fiber
US4265649A (en) Method for preparing a preform for optical waveguides
FI68391C (en) CONTAINER CONTAINER FOIL FRAMEWORK FOR FRAMSTAELLNING AV ETT AEMNE FOER EN OPTISK VAOGLEDARE
US4414164A (en) Process and apparatus for producing preforms for optical fibers
GB2043623A (en) Process for the production of glass fibres
JPS58213645A (en) Piling of oxide powder by vapor-phase axial deposition
CA1107576A (en) Method of producing an optical fiber
US5676724A (en) Method of improving the geometrical shape of a tube used for making a preform by selectively etching the bore of the tube
JPH01141829A (en) Method for manufacturing transparent glass tube of interior-doping type for manufacture of optical fiber which is doped particularly by hare earth element
CA1130660A (en) Optical fiber manufacture
DE3160533D1 (en) Process for making a glass coating on the internal surface of a hollow object
US4341541A (en) Process for the production of optical fiber
US5337585A (en) Method for producing an optical fiber
KR100235556B1 (en) Method for producing grass preform for optical fiber using thermal spraying of quartz powder
JPS62162637A (en) Production of optical fiber preform
JPS5983953A (en) Preparation of parent material of optical fiber
JPS60231437A (en) Manufacture of optical glass base material
JPS61158836A (en) Production of parent material for optical glass
JPS59195547A (en) Manufacture of base material for optical fiber
JPS62162640A (en) Production of preform for optical fiber
JPS593028A (en) Manufacture of base material for optical fiber
JPS6259063B2 (en)
JPH01203238A (en) Production of optical fiber preform