JPH02172838A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPH02172838A
JPH02172838A JP32540988A JP32540988A JPH02172838A JP H02172838 A JPH02172838 A JP H02172838A JP 32540988 A JP32540988 A JP 32540988A JP 32540988 A JP32540988 A JP 32540988A JP H02172838 A JPH02172838 A JP H02172838A
Authority
JP
Japan
Prior art keywords
glass
rod
burner
optical fiber
fiber preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32540988A
Other languages
Japanese (ja)
Other versions
JP2604454B2 (en
Inventor
Kiyoshi Yokogawa
清 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP63325409A priority Critical patent/JP2604454B2/en
Publication of JPH02172838A publication Critical patent/JPH02172838A/en
Application granted granted Critical
Publication of JP2604454B2 publication Critical patent/JP2604454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To stably and easily obtain the preform by vertically moving a perpendicularly installed glass rod back and forth while rotating the rod, then by spraying gaseous raw materials from a burner fixed perpendicularly to the rod to deposit fine glass particles thereon by each one layer. CONSTITUTION:A 'Pyrex(R)' glass tube is perpendicularly assembled in a housing tube B of a hermetic furnace 1 consisting of a spherical chamber of a reaction part A. The quadruple quartz tube burner 3 is horizontally fixed to the central side face of the chamber of the reaction part A and a discharge port 7 is disposed to the opposite part. The glass rod 2 for the core is passed through the center of the furnace and the upper part is fixed to a driving shaft. The glass rod is rotated at about 50rpm and while the glass rod is moved back and forth vertically at about 150mm/min speed, SiCl4 is fed together with an oxyhydrogen flame with gaseous O2 as a carrier gas into the reaction part from the burner 3 to deposit the fine Si glass particles by each one layer on the rod 2 to form the porous glass body 5. The glass body 5 is then heated to about 1500 deg.C in an atmosphere of He, etc., to form the transparent glass. The optical fiber preform is thus produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ファイバープリフォームの製造方法、特には
大形で構造特性のバラツキが小さく、かつ低損失で断線
の少ない、シングルモード型の光ファイバープリフォー
ムを安定的にかつ容易に製造する方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an optical fiber preform, and in particular to a single-mode optical fiber preform that is large in size, has small variations in structural characteristics, has low loss, and has few disconnections. The present invention relates to a method for stably and easily manufacturing renovation products.

[従来の技術と解決すべき課題] 従来、光ファイバープリフォームの製造方法には、コア
またはコアとクラッド層とからなるロッドを水平に設置
し、これを回転させ、気体状ガラス原料を左右に往復運
動している酸水素火炎バーナーに導入し、その火炎加水
分解で生成したガラス微粒子をロッド上に堆積させる、
いわゆる外付法によって多孔質ガラス層とし、これを加
熱溶融して透明ガラス化するという方法で行なわれてい
るが、この方法は作業のし易さ、バーナーの作業性、ガ
ラス微粒子の堆積し易さということから、通常は第2図
に示したように炉11の中にロッド12を横型に配置し
、バーナーをロッドに向けて配置し水平方向に反復B勤
している酸水素火炎バーナー13からの火炎をロッド1
2に当ててここにガラス微粒子をスート14として堆積
させるという方法で行なわれている。
[Conventional technology and issues to be solved] Conventionally, in the manufacturing method of optical fiber preforms, a core or a rod consisting of a core and a cladding layer is installed horizontally, and the rod is rotated to move the gaseous glass raw material back and forth from side to side. introduced into a moving oxyhydrogen flame burner, and the glass particles produced by the flame hydrolysis are deposited on the rod.
This is done by creating a porous glass layer using the so-called external coating method, and then heating and melting it to make it transparent. For this reason, normally a rod 12 is arranged horizontally in a furnace 11 as shown in FIG. Flame from rod 1
2, and glass fine particles are deposited there as soot 14.

しかし、このような横型の装置を用いる光ファイバープ
リフォームの製造方法には、目的とするプリフォームが
長尺化し、大形化してくるとあらかじめロッドを真直に
加工しておいても横にするだけで必らずロッドが撓みを
起すために両端と中央でセンターずれが起り、堆積厚さ
に差が生じ、この差はくり返し行なう過程で積算されて
大きな付着量の差となり、長手方向でのクラッド厚さの
バラツキになるという問題点がある。また、これにはロ
ッド上にガラス微粒子を堆積していくうちに繰り返しの
曲げがかかってスートが破壊するという欠点があり、さ
らにこの従来の装置ではバーナーが左右に8勤するため
に開口部15を大ぎ〈設けであることから外気が流入し
、ゴミが入り易く、これによってプリフォームが異物や
気泡を含むものになり、ファイバーの断線や伝送損失の
原因になるという不利があった。
However, when manufacturing optical fiber preforms using such horizontal equipment, as the desired preform becomes longer and larger, even if the rod is straightened in advance, it becomes difficult to simply turn it horizontally. As the rod inevitably bends, the center shifts between the ends and the center, resulting in a difference in the deposited thickness, and this difference is accumulated over the course of repeated repetitions, resulting in a large difference in the amount of deposit, and the cladding in the longitudinal direction. There is a problem in that the thickness varies. In addition, this method has the disadvantage that the soot is destroyed due to repeated bending as the glass particles are deposited on the rod.Furthermore, in this conventional device, the burner rotates eight times from side to side, so the opening 15 Due to the large size of the preform, it is easy for outside air to flow in and dirt to enter, which causes the preform to contain foreign matter and air bubbles, which has the disadvantage of causing fiber breakage and transmission loss.

[課題を解決するための手段] 本発明はこのような不利を解決した光ファイバープリフ
ォームの製造方法に関するものであり、これは気体状ガ
ラス原料を酸水素火炎バーナーに導入して火炎加水分解
させ、生成するガラス微粒子をコア用ガラスロッド表面
に外付法により均一に堆積させて多孔質ガラス体を製造
し、これを透明ガラス化して光ファイバープリフォーム
を製造する方法において、■ロッドを垂直に設置し、こ
れを回転させながら上下に往復運動させ、移動部の中央
に該ロッドと直角に固定したバーナーから火炎と共にガ
ラス微粒子を均一に吹付けて一層づつ該ガラス微粒子を
堆積させ、これを一体化したまま加熱し、透明ガラス化
することを特徴とするものであり、これはまた■この堆
積は中央に反応部A、上下に収納部Bをもったタテ型の
反応炉内で行なわれ、反応部にはバーナーの挿入口Cと
排気口りを設けてそれぞれを固定することを特徴とする
もの、さらには■収納部両端より不活性ガスを流し込み
、排気口から反応ガスと共に排気することによって多孔
質ガラス体を得ることを特徴とするものである。
[Means for Solving the Problems] The present invention relates to a method for manufacturing an optical fiber preform that overcomes these disadvantages, and includes introducing a gaseous glass raw material into an oxyhydrogen flame burner to cause flame hydrolysis, In the method of producing an optical fiber preform by uniformly depositing the generated glass particles on the surface of a core glass rod by an external method to produce a porous glass body, and then turning this into transparent glass to produce an optical fiber preform, the rod is installed vertically. This was rotated and reciprocated up and down, and a burner fixed at right angles to the rod at the center of the moving part sprayed glass particles uniformly with flame to deposit the glass particles one layer at a time and integrate them. It is characterized by being heated as it is and becoming transparent vitrified.This deposition is also carried out in a vertical reactor with a reaction section A in the center and storage sections B above and below. The burner is characterized by having an insertion port C and an exhaust port for fixing each, and also ■ Inert gas is poured from both ends of the storage part and exhausted together with the reaction gas from the exhaust port to create a porous structure. It is characterized by obtaining a glass body.

すなわち、本発明者らは大形で長手方向に寸法変化がな
いシングルモード型の光ファイバープリフォームを安定
的にかつ容易に得る方法について種々検討した結果、四
塩化けい素などの気体状ガラス原料を酸水素火炎中で加
水分解して得たガラス微粒子をコア用ガラスロッド上に
堆積し、得られた多孔質ガラス体を透明ガラス化する方
法において、ロッドの重力によるたわみや曲がりのない
状態でガラス微粒子を堆積させて堆積厚さが均一な多孔
質ガラス体を得るためにはロッドを炉内に垂直に配置し
、これを回転させて上下に反復8動させることがよいこ
と、またこのガラス微粒子の堆積もこのロッドと直角の
位置に固定した酸水素火炎バーナーからガラス微粒子を
ほぼ水平に吹きつけ、また固定された排気口より行なう
べきであることを見出すと共に、プリフォームの大型化
に伴なう反応炉を検討し、これについては反応部と母材
の上下8勤のための母材収納部を有した炉内に不活性ガ
スを導入すれば、外部からの異物流入による気泡発生を
防ぐことがで籾るということを確認して本発明を完成さ
せた。
That is, as a result of various studies on how to stably and easily obtain a large-sized, single-mode optical fiber preform with no longitudinal dimension change, the present inventors found that gaseous glass raw materials such as silicon tetrachloride In this method, glass particles obtained by hydrolysis in an oxyhydrogen flame are deposited on a glass rod for a core, and the resulting porous glass body is made into transparent vitrification. In order to deposit fine particles and obtain a porous glass body with a uniform deposition thickness, it is recommended that a rod be placed vertically in the furnace and rotated to move it up and down repeatedly. It was discovered that glass particles should be sprayed almost horizontally from an oxy-hydrogen flame burner fixed at right angles to this rod, and that the deposition should be carried out through a fixed exhaust port. In this case, introducing an inert gas into the reactor, which has a base material storage area for eight positions above and below the reaction area and the base metal, will prevent bubbles from being generated due to the inflow of foreign matter from the outside. The present invention was completed after confirming that rice can be harvested in this way.

以下にこれを詳述する。This will be explained in detail below.

本発明の方法で用いる反応炉は反応中のガス流の出口に
火炎の吹きつけに必要なバーナーロ、堆積面間の距離、
輻射熱などを考慮した口径の大きな反応部と、上下に8
動をくり返し、堆積中のロッドを外気から保護するだけ
の径の小さい収納部を有する反応炉からなり、炉内には
不活性ガスが供給されるが、この不活性ガスはフィルタ
ーを通した清浄な空気、窒素、ヘリウム、アルゴンなど
とすればよく、この供給は炉の上部および下部に設けた
ガス流入口から行なうと共に、排気口を反応炉の中央部
に設けてこれを固定して用いる。
The reactor used in the method of the present invention has a burnaro, a distance between the deposition surfaces necessary for blowing the flame at the outlet of the gas stream during the reaction, and a distance between the deposition surfaces.
A reaction part with a large diameter in consideration of radiant heat, and 8 on the top and bottom.
The reactor consists of a small-diameter housing that protects the rods during deposition from the outside air.Inert gas is supplied into the furnace, but this inert gas is purified by passing through a filter. Air, nitrogen, helium, argon, etc. may be used, and this supply is carried out through gas inlets provided at the upper and lower parts of the reactor, and an exhaust port is provided at the center of the reactor and is used by fixing it.

本発明の方法は気体状ガラス原料を酸水素火炎バーナー
中に導入し、この火炎加水分解によってガラス微粒子を
形成させるが、これは公知の方法で行なえばよい、した
がって、この気体状ガラス原料としては四塩化けい素、
トリクロロシランなどを含むガス化可能なけい素化合物
を使用すればよく、バーナーとしては中心部からこの気
体状ガラス原料を供給し、その周囲から酸素ガス、水素
ガスを供給するようにした同心円環状のものを使用すれ
ばよい。
In the method of the present invention, a gaseous glass raw material is introduced into an oxyhydrogen flame burner, and glass fine particles are formed by the flame hydrolysis, which may be performed by a known method. silicon tetrachloride,
It is sufficient to use a gasifiable silicon compound containing trichlorosilane, etc. The burner is a concentric ring-shaped burner that supplies this gaseous glass raw material from the center and supplies oxygen gas and hydrogen gas from the periphery. You can use something.

本発明の方法で得られるプリフォームが長手方向で寸法
が安定するということからガラス微粒子を堆積させるロ
ッドは予じめシングルモード用光ファイバーとして設計
されたコア部、または一部クラッド部からなるガラスロ
ッドを出発材とし、真直に芯出をしたものを用いる。こ
のロッドは炉内に垂直に設置したのち、操作中はガラス
微粉末を均一に堆積させるために例えば5〜80rpm
で回転させ、全長にわたってバラやねじれ、曲りのない
ことを確認したのち、ロッドの長さ方向全体にガラス微
粉末を均一に付着させるために上下に繰り返し反復して
移動させる必要がある。
Since the preform obtained by the method of the present invention is dimensionally stable in the longitudinal direction, the rod on which the glass particles are deposited is a glass rod consisting of a core portion or a partially clad portion designed in advance as a single-mode optical fiber. The starting material is one that is centered straight. This rod is installed vertically in the furnace, and during operation, the speed is set at 5 to 80 rpm, for example, in order to deposit the fine glass powder uniformly.
After rotating the rod to make sure that there are no irregularities, twists, or bends along its entire length, it is necessary to repeatedly move the rod up and down in order to uniformly adhere the fine glass powder to the entire length of the rod.

また、このロッドに対するガラス微粉末の吹きつけはガ
ラス微粉末をロッド全長に対して一層づつ均一にまた正
確に堆積させるということから、このロッドを前記した
ように上下に反復移動させながら、このロッドの真横か
らガラス微粉末が吹きつけられるように、とのロッドと
直角の位置に酸水素火炎バーナーを固定して行なわせる
ことが必要とされるが、このバーナーは1個または複数
本を上下に配置したものとすることかできる。
In addition, since the blowing of glass fine powder onto this rod allows the fine glass powder to be deposited layer by layer uniformly and accurately over the entire length of the rod, it is necessary to repeatedly move the glass powder up and down as described above. It is necessary to fix an oxyhydrogen flame burner at right angles to the rod so that the fine glass powder is blown from directly beside the rod. It can be assumed that the

つぎにこれを添付の図面にもとづいて説明する。Next, this will be explained based on the attached drawings.

第1図は本発明の方法による光ファイバープリフォーム
製造装置の縦断面図を示したものである。この装置は反
応部、収納部からなり、1本のもの、あるいは分割可能
なものを弔いるが、密閉炉1の中には出発母材であるロ
ッド2が垂直に保持されており、このロッド2は操炉中
、外部からの駆動によって5〜BOrpmで回転され、
同時に上下に反復的に移動させられているが、この移動
速度は出発部材の大きさや、スートの破壊状況をみなが
ら実験的に定めればよい。四塩化けい素などの気体状ガ
ラス原料と酸水素は酸水素火炎バーナー3に送られ、火
炎4がロッド上に吹きつけられており、この酸水素火炎
中での加水分解で生成され′たガラス微粉末がこのロッ
ド2の上に堆積し、多孔質ガラス体(スート)5が形成
される。ロッドは回転と共に上下に移動しているのでロ
ッド2の上には略々均一に多孔質ガラス体5が形成され
る。ロッドは垂直に保持されているので、長いロッドで
あっても中央部に偏在した重力がかからず、さらには多
孔質ガラス体を堆積してもたわんだり、曲がることもな
い。多孔質ガラス体には炎の中心軸とロッドの中心軸が
外れることがないので堆積量は一定し、長手方向に付着
量の差が生じることはないし、堆積厚さに変動が生じな
いという有利性が与えられる。また、この炉にはバーナ
ーおよび排気管を挿入する開口部があり、上、下部に不
活性ガス供給口6が設けられており、ここから不活性ガ
スが導入され、これらは排出口フから排気管を通して外
部に排出されるので、これによれば外部から流入される
異物の混入や発泡が無くなるというメリットが与えられ
る。
FIG. 1 shows a longitudinal sectional view of an optical fiber preform manufacturing apparatus according to the method of the present invention. This device consists of a reaction part and a storage part, and can be used as a single piece or as a piece that can be divided. Inside the closed furnace 1, a rod 2, which is the starting material, is held vertically. 2 is rotated at 5 to BO rpm by an external drive during furnace operation,
At the same time, it is repeatedly moved up and down, and the speed of this movement can be determined experimentally by considering the size of the starting member and the state of destruction of the soot. A gaseous glass raw material such as silicon tetrachloride and oxyhydrogen are sent to an oxyhydrogen flame burner 3, and a flame 4 is blown onto the rod, and the glass produced by hydrolysis in this oxyhydrogen flame is Fine powder is deposited on this rod 2 and a porous glass body (soot) 5 is formed. Since the rod moves up and down as it rotates, the porous glass body 5 is formed almost uniformly on the rod 2. Since the rods are held vertically, even if the rods are long, unevenly distributed gravity is not applied to the central part, and furthermore, even when porous glass bodies are deposited, the rods do not bend or bend. Porous glass bodies have the advantage that the central axis of the flame and the central axis of the rod do not deviate, so the amount of deposition remains constant, there is no difference in the amount of deposition in the longitudinal direction, and there is no variation in the thickness of the deposit. gender is given. In addition, this furnace has openings for inserting the burner and exhaust pipe, and inert gas supply ports 6 are provided at the top and bottom, through which inert gas is introduced, and these are exhausted from the exhaust port. Since it is discharged to the outside through the pipe, this has the advantage of eliminating the contamination of foreign matter and foaming that flow in from the outside.

[実施例] つぎに本発明の実施例をあげる。[Example] Next, examples of the present invention will be given.

実施例 第1図に示した密閉炉1として反応部の内径が280m
mφの球形パイレックスチャンバーを準備し、これに収
納部として内径180mmφ、長さ800mmのパイレ
ックスガラス管をスリ合わせ接合で垂直に組立てた。こ
の球形パイレックスチャンバーの中央部側面には4重管
石英バーナーを水平に固定し、その対向部には内径10
0mmφの排気口を作り、この中に外径98mmφの五
英管を挿入し、外気排気ダクトに接いだ。
Example As the closed furnace 1 shown in Fig. 1, the inner diameter of the reaction section was 280 m.
A spherical Pyrex chamber with a diameter of mφ was prepared, and a Pyrex glass tube with an inner diameter of 180 mmφ and a length of 800 mm was vertically assembled into the chamber as a storage part by slotted jointing. A quadruple-tube quartz burner is fixed horizontally on the side of the center of this spherical Pyrex chamber, and the inner diameter 10
An exhaust port with a diameter of 0 mm was made, and a five-English tube with an outer diameter of 98 mm was inserted into the port and connected to the outside air exhaust duct.

コア用ガラスロッドは外径17.7mmΦ、長さ 62
0會mであり、この両端に17mmΦx 200mmL
の石英ダミーガラスを溶着し、さらに上部には15mm
Φx ao。
The glass rod for the core has an outer diameter of 17.7mmΦ and a length of 62
0mm, 17mmΦ x 200mmL on both ends
A quartz dummy glass is welded to the top, and a 15mm
Φx ao.

mmLの石英棒を固定し、これを垂直にしたまま密閉炉
の中心に貫通させ、上部を駆動軸に固定した。この石英
ガラスロッドは1,3μ帯でのシングルモード用光フア
イバーコアとして設計されており、ゲルマニウムドープ
により屈折率差が0.34%で、コア径とシリカガラス
からなるクラッド層の比が0.205、ガラスロッド外
径を±100μm以下に仕上げである。また、このロッ
ドは重量秤量機能を有するタテ型引上機の回転部に石英
ガラスダミーを介して装置されており、このものは50
rpmで回転させなからロッドの偏心と上下B動による
中心軸の移動が±0.5mm以内となるようにされてい
る。また、ファイバー設計用測定機としては英国ヨーク
社製プリフォームアナライザーP−101型を用い、軸
の精度を決定するためには安立電機社製外径測定器を用
いた。
A mmL quartz rod was fixed and passed vertically through the center of the closed furnace, and the upper part was fixed to the drive shaft. This silica glass rod is designed as a single mode optical fiber core in the 1.3 μ band, and has a refractive index difference of 0.34% due to germanium doping, and a ratio of core diameter to cladding layer made of silica glass of 0.34%. 205, the outer diameter of the glass rod is finished to within ±100 μm. In addition, this rod is installed via a quartz glass dummy in the rotating part of a vertical pulling machine that has a weight weighing function.
Since it is not rotated at rpm, the movement of the central axis due to eccentricity of the rod and vertical B movement is within ±0.5 mm. Further, as a measuring device for fiber design, a Preform Analyzer model P-101 manufactured by York Co., Ltd., UK was used, and an outer diameter measuring device manufactured by Anritsu Electric Co., Ltd. was used to determine the accuracy of the shaft.

チャンバー内に装着後、ダミーが貫通するだけの孔を除
いて上下間孔部を塞ぎ、上下間孔部の近くから清浄な空
気を吹き込んで外気の流入を防いだのち、ガラスロッド
の全長を酸水素火炎でファイヤーポリッシュした。
After it is installed in the chamber, the hole between the top and bottom is closed except for the hole that the dummy passes through, clean air is blown from near the hole between the top and bottom to prevent outside air from entering, and the entire length of the glass rod is heated with acid. Fire polished with hydrogen flame.

つぎに4重管バーナーから酸水素火炎と共に四塩化けい
素を酸素ガスをキャリヤーとして送り込み、ガラスロッ
ドにシリカガラス微粒子を吹きつけ、この際ガラスロッ
ドは50rpmで回転させると共に上下に150mm/
分の速度で反復移動させてシリカガラス微粒子を一層づ
つ堆積させた。このときの酸水素量と四塩化けい素量は
スート径の増大と共に変えることとし、スタート時は四
塩化けい素量を少なくし、スート径の増大と共に四塩化
けい素量および酸水素量を増加させて最終的にはstc
I142og/分、H,50j2/分、0.25fi/
分となるようにした。この反応を12時間継続させ、全
長を約130回繰り返して付着させてシリカ微粒子の堆
積量が目標値に達したのちに反応を止め、得られた多孔
質ガラス体をしらべたところ、このものは外径が109
.0mmφ、総重量4,114gであり、スートの平均
密度は0.496g/ccであった。
Next, silicon tetrachloride is sent together with an oxyhydrogen flame from a quadruple tube burner, using oxygen gas as a carrier, and silica glass particles are sprayed onto the glass rod. At this time, the glass rod is rotated at 50 rpm and moved vertically by 150 mm/
The silica glass particles were deposited layer by layer by repeated movement at a speed of 1 minute. At this time, the amount of oxyhydrogen and silicon tetrachloride will be changed as the soot diameter increases. At the start, the amount of silicon tetrachloride will be small, and as the soot diameter increases, the amount of silicon tetrachloride and the amount of oxyhydrogen will be increased. and finally stc
I142og/min, H, 50j2/min, 0.25fi/
minutes. This reaction was continued for 12 hours, and the entire length was repeated about 130 times until the amount of deposited silica particles reached the target value, and then the reaction was stopped and the resulting porous glass body was examined. Outer diameter is 109
.. The diameter was 0 mm, the total weight was 4,114 g, and the average soot density was 0.496 g/cc.

ついで、この多孔質ガラス体をヘリウム、塩素混合ガス
を通した1、500℃に加熱されている電気炉体でゾー
ンメルトしたところ、外径が58.1mmφで透明であ
り、気泡、異物のないガラスインゴットが得られたので
、これを外径30mmφに熱加工し、定常部を線引機を
用いて直径125μmのガラスファイバーとしてその全
長での構造変動をしらべた。クラッド部の変動は設計し
たカットオフ波長(λC)の変動、モードフィールド径
(ω)の変動を調べることが最も一般的であることから
全要約120kmのファイバーを約10kmに切断し、
その10点をしらべたとどろ、このものは平均λ、:=
1.205μ、偏差(最大、最小値差)は23nmであ
り、また偏心は平均0.14μmというすぐれたもので
あった。
Next, this porous glass body was zone-melted in an electric furnace heated to 1,500°C through which a mixed gas of helium and chlorine was passed, and the result was that it had an outer diameter of 58.1 mm and was transparent, with no bubbles or foreign matter. A glass ingot was obtained, which was heat-processed to have an outer diameter of 30 mm, and the stationary portion was made into a glass fiber with a diameter of 125 μm using a wire drawing machine, and structural fluctuations over its entire length were examined. The most common way to determine variations in the cladding is to examine variations in the designed cutoff wavelength (λC) and mode field diameter (ω).
When I checked the 10 points, this one had an average of λ, :=
The deviation (maximum and minimum value difference) was 23 nm, and the eccentricity was excellent with an average of 0.14 μm.

比較例 第2図に示した横型外付装置を使用し、ここに実施例で
用いたコア用石英ロッドにシリカガラス微粒子を堆積さ
せて多孔質ガラス体を作り、これを実施例と同様に処理
してガラスインゴットとし、光ファイバーを作ったとこ
ろ、このもののカットオフ波長の平均値λ。は1.17
7μm1偏差は154nmであり、偏心は平均0.77
μm1最大2,7μmであった。
Comparative Example Using the horizontal external device shown in Figure 2, fine silica glass particles were deposited on the quartz rod for the core used in the example to create a porous glass body, which was then treated in the same manner as in the example. When an optical fiber was made from a glass ingot, the average cutoff wavelength of this material was λ. is 1.17
7μm1 deviation is 154nm, eccentricity is average 0.77
μm1 maximum was 2.7 μm.

また、この横型外付装置ではバーナー13の8勤に要す
る開口部16が巾40mm、長さ800mrnであり、
内部の塩酸ガスが外部に流出して臭気が部屋内に漂った
ので、これを抑えるために排気を強くしたところ、バー
ナーの炎が大きくゆれ、スートの堆積時間が15時間以
上かかり、ガラス化後の透明ガラスインゴットには多数
の気泡が発生していた。
In addition, in this horizontal external device, the opening 16 required for eight shifts of the burner 13 has a width of 40 mm and a length of 800 mrn.
Hydrochloric acid gas inside the room leaked out and an odor wafted into the room, so in order to suppress this, the exhaust was made stronger, but the flame of the burner fluctuated greatly, and it took more than 15 hours for the soot to accumulate, which caused the soot to accumulate after vitrification. Many air bubbles were generated in the transparent glass ingot.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法による光ファイバープリフォーム
製造装置の縦断面図、第2図は従来公知の方法による光
ファイバープリフォーム製造装置の縦断面図を示したも
のである。 ・・・密閉炉、 2・・・コア部、 3・・・酸水素火炎バーナー 4・・・酸水素火炎、 4・・・多孔質ガラス体、 6・・・不活性ガス導入口、 5・・・ガス排出口、 12・・・ロッド、 6 ・・・ 開口部。 第 艮 手 続 補 正 書 平成1年12月22日 2゜ 発明の名称 光ファイバープリフォームの製造方法 補正をする者 事件との関係 名称(2
FIG. 1 is a longitudinal cross-sectional view of an optical fiber preform manufacturing apparatus according to the method of the present invention, and FIG. 2 is a longitudinal cross-sectional view of an optical fiber preform manufacturing apparatus according to a conventionally known method. ... closed furnace, 2 ... core part, 3 ... oxyhydrogen flame burner 4 ... oxyhydrogen flame, 4 ... porous glass body, 6 ... inert gas inlet, 5. ...Gas exhaust port, 12...rod, 6...opening. No. 1 Amendment Procedures December 22, 1999 2゜Name of the invention Name related to the case concerning the person amending the manufacturing method of optical fiber preforms (2

Claims (1)

【特許請求の範囲】 1、気体状ガラス原料を酸水素火炎バーナーに導入して
火炎加水分解させ、生成するガラス微粒子をコア用ガラ
スロッド表面に外付法により均一に堆積させて多孔質ガ
ラス体を製造し、これを透明ガラス化して光ファイバー
プリフオームを製造する方法において、ロッドを垂直に
設置し、これを回転させながら上下に往復運動させ、移
動部の中央に該ロッドと直角に固定したバーナーから火
炎と共に原料ガスを均一に吹付けて一層づつガラス微粒
子を堆積させ、これを一体化したまま加熱し、透明ガラ
ス化することを特徴とする光ファイバープリフオームの
製造方法。 2、この堆積は中央に反応部、上下に収納部をもったタ
テ型の反応炉内で行なわれ、反応部にはバーナーの挿入
口と排気口を設けてそれぞれを固定することを特徴とす
る請求項1に記載の光ファイバープリフオームの製造方
法。 3、収納部の両端より不活性ガスを流し込み、排気口か
ら反応ガスと共に排気することによって多孔質ガラス体
を得ることを特徴とする請求項1に記載の光ファイバー
プリフオームの製造方法。
[Scope of Claims] 1. Gaseous glass raw materials are introduced into an oxyhydrogen flame burner and subjected to flame hydrolysis, and the resulting glass fine particles are uniformly deposited on the surface of a glass rod for a core by an external deposition method to form a porous glass body. In this method, a rod is installed vertically, the rod is rotated and reciprocated up and down, and a burner is fixed at right angles to the rod in the center of the moving part. A method for manufacturing an optical fiber preform, which is characterized in that glass particles are deposited layer by layer by uniformly spraying raw material gas together with flame from a flame, and the glass particles are heated while being integrated to form transparent glass. 2. This deposition is carried out in a vertical reactor with a reaction section in the center and storage sections above and below, and the reaction section is characterized by having a burner insertion port and an exhaust port and fixing each of them. A method for manufacturing an optical fiber preform according to claim 1. 3. The method of manufacturing an optical fiber preform according to claim 1, wherein the porous glass body is obtained by injecting an inert gas from both ends of the storage part and exhausting it together with the reaction gas from an exhaust port.
JP63325409A 1988-12-23 1988-12-23 Manufacturing method of single mode optical fiber preform Expired - Lifetime JP2604454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63325409A JP2604454B2 (en) 1988-12-23 1988-12-23 Manufacturing method of single mode optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63325409A JP2604454B2 (en) 1988-12-23 1988-12-23 Manufacturing method of single mode optical fiber preform

Publications (2)

Publication Number Publication Date
JPH02172838A true JPH02172838A (en) 1990-07-04
JP2604454B2 JP2604454B2 (en) 1997-04-30

Family

ID=18176521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63325409A Expired - Lifetime JP2604454B2 (en) 1988-12-23 1988-12-23 Manufacturing method of single mode optical fiber preform

Country Status (1)

Country Link
JP (1) JP2604454B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047564A (en) * 1996-07-18 2000-04-11 Heraeus Quarzglas Gmbh Method of producing quartz glass bodies
US6324871B1 (en) 1996-08-13 2001-12-04 Sumitomo Electric Industries, Ltd. Process for producing optical fiber preform
WO2002102729A1 (en) * 2001-06-14 2002-12-27 Sumitomo Electric Industries, Ltd. Device and method for producing stack of fine glass particles
JP2013082605A (en) * 2011-09-30 2013-05-09 Fujikura Ltd Method of manufacturing optical fiber base material and method of manufacturing optical fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718330A (en) * 1980-07-10 1982-01-30 Toshiba Corp Method of and apparatus for soldering semiconductor device
JPS57183330A (en) * 1981-04-30 1982-11-11 Nippon Sheet Glass Co Ltd Production of basic material for optical-communication glass fiber
JPS62187121A (en) * 1986-02-10 1987-08-15 Furukawa Electric Co Ltd:The Device for producing synthetic glass
JPS63176326A (en) * 1987-01-12 1988-07-20 Sumitomo Electric Ind Ltd Production of preform for optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718330A (en) * 1980-07-10 1982-01-30 Toshiba Corp Method of and apparatus for soldering semiconductor device
JPS57183330A (en) * 1981-04-30 1982-11-11 Nippon Sheet Glass Co Ltd Production of basic material for optical-communication glass fiber
JPS62187121A (en) * 1986-02-10 1987-08-15 Furukawa Electric Co Ltd:The Device for producing synthetic glass
JPS63176326A (en) * 1987-01-12 1988-07-20 Sumitomo Electric Ind Ltd Production of preform for optical fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047564A (en) * 1996-07-18 2000-04-11 Heraeus Quarzglas Gmbh Method of producing quartz glass bodies
US6324871B1 (en) 1996-08-13 2001-12-04 Sumitomo Electric Industries, Ltd. Process for producing optical fiber preform
WO2002102729A1 (en) * 2001-06-14 2002-12-27 Sumitomo Electric Industries, Ltd. Device and method for producing stack of fine glass particles
EP1405833A1 (en) * 2001-06-14 2004-04-07 Sumitomo Electric Industries, Ltd. Device and method for producing stack of fine glass particles
EP1405833A4 (en) * 2001-06-14 2012-02-22 Sumitomo Electric Industries Device and method for producing stack of fine glass particles
JP2013082605A (en) * 2011-09-30 2013-05-09 Fujikura Ltd Method of manufacturing optical fiber base material and method of manufacturing optical fiber
US10246366B2 (en) 2011-09-30 2019-04-02 Fujikura Ltd. Method of manufacturing optical fiber base material and method of manufacturing optical fiber

Also Published As

Publication number Publication date
JP2604454B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
US3980459A (en) Method for manufacturing optical fibers having eccentric longitudinal index inhomogeneity
JP2612949B2 (en) Manufacturing method of optical fiber preform base material
JPS61155225A (en) Manufacture of optical wave guide tube
JPH02172838A (en) Production of optical fiber preform
EP1167307B1 (en) Method of modifying the index profile of an optical fiber preform in the longitudinal direction
JP4079204B2 (en) Quartz glass tube for optical fiber preform and manufacturing method thereof
JP2793617B2 (en) Manufacturing method of optical fiber preform
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
JPH03103333A (en) Apparatus for producing optical fiber preform
JPH04231336A (en) Production of optical fiber preform
JP4565221B2 (en) Optical fiber preform
JPS60263103A (en) Base material for optical fiber and its production
JPS6136134A (en) Method and apparatus for producing preform for stress-imparted polarization-keeping optical fiber
JP3340471B2 (en) Manufacturing method of optical fiber preform
JPS6296336A (en) Production of optical fiber preform and apparatus therefor
KR100619342B1 (en) Method of manufacturing optical fiber in mcvd
JPH0460930B2 (en)
JPS6144725A (en) Method of treating quartz porous glass layer
TWI380966B (en) Optical fiber base material, optical fiber and method of fabricating thereof
JP2618260B2 (en) Method for producing intermediate for optical fiber preform
JPS6065742A (en) Production of porous glass base material for optical fiber by vad method
JP2517095B2 (en) Optical fiber preform manufacturing method
JPS63156032A (en) Formation of suit for preform
JPS6140843A (en) Optical fiber
JPS5849493B2 (en) Method for manufacturing rod-shaped base material for optical transmission fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

EXPY Cancellation because of completion of term