JPH02275725A - Production of vitreous fine granule accumulation - Google Patents

Production of vitreous fine granule accumulation

Info

Publication number
JPH02275725A
JPH02275725A JP9537089A JP9537089A JPH02275725A JP H02275725 A JPH02275725 A JP H02275725A JP 9537089 A JP9537089 A JP 9537089A JP 9537089 A JP9537089 A JP 9537089A JP H02275725 A JPH02275725 A JP H02275725A
Authority
JP
Japan
Prior art keywords
glass
combustion
port
gas
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9537089A
Other languages
Japanese (ja)
Inventor
Toshio Danzuka
彈塚 俊雄
Hiroshi Yokota
弘 横田
Masumi Ito
真澄 伊藤
Masahiro Takagi
政浩 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9537089A priority Critical patent/JPH02275725A/en
Publication of JPH02275725A publication Critical patent/JPH02275725A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/08Recessed or protruding ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/22Inert gas details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/24Multiple flame type, e.g. double-concentric flame
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/46Comprising performance enhancing means, e.g. electrostatic charge or built-in heater

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Gas Burners (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To provide the subject production process so designed that vitreous fine granules formed in the inner layer are prevented from adherence to the inner wall of the projected part by heating a combustion-supporting gas and allowing the gas to flow onto the inner wall of a double flame burner of special structure. CONSTITUTION:The central part of a burner is provided with a boat (inner layer) for synthesizing vitreous fine granules comprising a raw gas injection boat 1, combustion gas injection boats 2, combustion controlling inert gas injection boats 3 and combustion-supporting gas injection boats 4, and on the outer periphery of the inner layer, a flame-forming boat (outer layer), projected by a length L, comprising inert gas injection boats 5, fuel gas injection boats 6, combustion-controlling inert gas injection boats 7 and combustion-supporting gas injection boats 8 is formed. And just in front of the entrance of the boats 4, a flow channel 10 with a heater 9 for the gas is set. Thence, a fuel gas and an oxygen gas heated to >=150 deg.C are injected from the boats 2 and the boats 4, respectively, to form a flame on the inner wall of the outer layer, and a raw gas is then introduced into the flame to form vitreous fine granules.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラス微粒子堆積体をVAD法(気相軸付法)
あるいはOVD法(外付法)などのスート合成法により
合成する方法に関し、特に高品質の要求される光フアイ
バ用プリフォームに用いられる中間製品に好適なガラス
微粒子堆積体の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is directed to the production of glass fine particle deposits using the VAD method (vapor deposition method).
Alternatively, the present invention relates to a method of synthesis using a soot synthesis method such as the OVD method (external deposition method), and particularly relates to a method of manufacturing a glass fine particle deposit body suitable for an intermediate product used in an optical fiber preform that requires high quality. .

[従来の技術〕 ガラス微粒子堆積体を製造する一方法として、燃焼バー
ナから燃焼ガス及びガラス原料ガスを混合噴出し、火炎
中での加水分解反応または酸化反応により粒状ガラスを
生成し、この粒状ガラスを回転する出発材の先端に堆積
させてガラス微粒子堆積体を形成させ、該堆積体の成長
に合わせて出発材を燃焼バーナと相対的に移動させるこ
とにより、ガラス微粒子堆積体を製造する■ΔD法があ
る。
[Prior Art] One method for manufacturing a glass particle deposit is to eject a mixture of combustion gas and glass raw material gas from a combustion burner, generate granular glass through a hydrolysis reaction or oxidation reaction in a flame, and produce granular glass. is deposited on the tip of a rotating starting material to form a glass fine particle deposit, and the starting material is moved relative to the combustion burner as the deposit grows, thereby producing a glass fine particle deposit ■ΔD There is a law.

また、出発材の外周部に燃焼バーナにより生成した粒状
ガラスを堆積させ、出発材または燃焼バーナを1回以上
トラバースすることによりガラス微粒子堆積体を製造す
るOVD法(例えば特開昭48−73522号公報参照
)がある。
In addition, the OVD method (for example, Japanese Patent Application Laid-open No. 73522/1983) involves depositing granular glass produced by a combustion burner on the outer periphery of the starting material and traversing the starting material or the combustion burner one or more times to produce a glass particle deposit. (see official bulletin).

こうしたスート合成法において、燃焼バーナにより生成
された粒状ガラスのガラス微粒子堆積体への堆積効率を
向上させる手段として、多重火炎方式のバーナが提案さ
れている。これは例えば実公昭60−4797号公報、
特公昭62−50418号公報に示されるように、同心
円状多重管バーナで、中心部に少なくともガラス原料噴
出ポート、燃料ガス噴出ポート、支燃性がスポートの各
ポートを持つガラス微粒子合成用ポートを有し、この外
周に上記ガラス微粒子合成用ポートの出口に対してガス
の流れ方向に長さしだけ突き出した、少なくとも燃料ガ
スポート、支燃性ガスポートを持つ火炎形成用ポートを
1組あるいは複数相打したバーナである。
In such a soot synthesis method, a multiple flame type burner has been proposed as a means for improving the efficiency of depositing granular glass produced by a combustion burner onto a glass fine particle deposit body. For example, this is published in Utility Model Publication No. 60-4797,
As shown in Japanese Patent Publication No. 62-50418, a concentric multi-tube burner is equipped with a glass particle synthesis port having at least a frit injection port, a fuel gas injection port, and a combustion supporting port in the center. one or more flame-forming ports having at least a fuel gas port and a combustion-supporting gas port protruding from the outer periphery by a length in the gas flow direction with respect to the outlet of the glass particle synthesis port. This is a trading burner.

従来、この多重火炎方式のバーナを使用することにより
粒状ガラスの堆積効率が改善されてきた。
Traditionally, the efficiency of granular glass deposition has been improved by using this multiple flame type burner.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の多重火炎方式のバーナは第2図に示すように、単
一火炎方式のバーナに比べて中心部(同図ではポート1
〜4)のガラス微粒子合成用ポート21(内層と呼び、
このポートにより形成される火炎を内側火炎と称する)
の外周に、ポート先端部を内層に対して長さLだけ突き
出させて、燃料ガス噴出ポート及び支燃性ガス噴出ポー
ト(同図ではポート5・−8)からなる火炎形成用ポー
ト22を1組あるいは複数組(これらのポート群を外層
、形成される火炎を外側火炎と称する)有しており、こ
の外側火炎の存在により、全体の火炎が大きくなり、合
成されるガラス微粒子堆積体全体が加熱されやすくなっ
た。また、突き出しff1Lの存在により内側火炎を安
定に長(することができ、ガラス原料の反応を安定に進
行させることが可能となった。
As shown in Figure 2, conventional multiple flame type burners have a central part (port 1 in the figure) compared to single flame type burners.
~4) port 21 for glass particle synthesis (called inner layer,
The flame formed by this port is called the inner flame)
A flame forming port 22 consisting of a fuel gas ejection port and a combustion-supporting gas ejection port (ports 5 and -8 in the figure) is installed on the outer periphery of the inner layer by a length L with the tip of the port protruding from the inner layer. The group of ports is called the outer layer, and the flame formed is called the outer flame.The presence of this outer flame increases the overall flame size, and the entire synthesized glass particle deposit increases. Easily heated. Furthermore, the presence of the protrusion ff1L made it possible to stably lengthen the inner flame, making it possible to stably advance the reaction of the glass raw materials.

しかし一方で第3図に示す如く、内側火炎1)中ではガ
ラス原料の反応により粒状ガラス20が生成され、外層
に囲まれた突き出し部りをガラス微粒子流れ13となっ
て流れる間にこの粒状ガラス20の一部が外周方向に拡
散し、外層ポートの最内壁12に同図中14として示す
ように付着する現象がみられる。粒状ガラスの堆積量は
経時的に増加するため、内01)1火炎1)及びガラス
微粒子流れ13の流れは次第に狭められ、あるいは周方
向の付着I4が不均一な場合には流れはバーナの中心軸
に対して非対称な流れとなり、定常で安定したガラス微
粒子堆積体を得ることができない場合があった。さらに
著しい場合は付着した粒状ガラスI4が突き出し部を詰
まらせ、バーすを破す員させることがあった。
However, as shown in FIG. 3, granular glass 20 is generated by the reaction of the glass raw materials in the inner flame 1), and as it flows as a flow of glass particles 13 through the protruding portion surrounded by the outer layer, this granular glass A phenomenon can be observed in which a portion of the material 20 diffuses in the outer circumferential direction and adheres to the innermost wall 12 of the outer layer port as shown as 14 in the figure. Since the amount of granular glass deposited increases over time, the flow of the flame 1) and the glass particle flow 13 will gradually become narrower, or if the circumferential deposition I4 is uneven, the flow will be directed to the center of the burner. In some cases, the flow was asymmetrical with respect to the axis, making it impossible to obtain a steady and stable glass particle deposit. In more severe cases, the adhering granular glass I4 could clog the protrusion, causing the bar to break.

〔課題を解決するための手段及び作用〕上記の課題を解
決するための本発明の構成は、気体のガラス原料を燃焼
バーナから噴出させて火炎中で加水分解反応または酸化
反応させて、これによって生成する粒状ガラスを回転す
る出発材の先端または心棒の外周に堆積させ、該出発材
または心棒を回転軸方向に粒状ガラスの堆積に合わせて
燃焼バーナと相対的に移動することにより、ガラス微粒
子堆積体を製造する方法において、同心円状の多重管バ
ーナであって、中心部に少なくともガラス原料噴出ポー
ト、燃料ガス噴出ポート、支燃性ガス噴出ポートを持つ
ガラス微粒子合成用ポートを有し、この外周にガラス微
粒子合成用ポートよりもガス噴出方向に長さLだけ突き
出して、少なくとも燃料ガス噴出ポートと支燃性ガス噴
出ポートを持つ火炎形成用ポートを1組あるいは複数相
打する多重火炎方式のガラス微粒子堆積体製造用バーナ
において、上記ガラス微粒子合成用ポートの最外層を流
れるガスを、該ガスのポート出口において150℃以上
になるように加熱することを特徴とするものである。
[Means and effects for solving the problems] The structure of the present invention for solving the above problems is to eject a gaseous glass raw material from a combustion burner and cause a hydrolysis reaction or an oxidation reaction in a flame. Glass fine particles are deposited on the tip of a rotating starting material or on the outer periphery of a mandrel, and the starting material or mandrel is moved in the direction of the rotation axis relative to a combustion burner in accordance with the deposition of the granular glass. In the method for manufacturing a burner, the burner is a concentric multi-tube burner, which has a glass particle synthesis port having at least a frit injection port, a fuel gas injection port, and a combustion-supporting gas injection port in the center, and the outer periphery of the burner. A multi-flame method glass in which one or more flame forming ports having at least a fuel gas injection port and a combustion-supporting gas injection port are installed in the glass by a length L in the gas injection direction beyond the glass particle synthesis port. The burner for producing fine particle deposits is characterized in that the gas flowing through the outermost layer of the port for synthesizing glass fine particles is heated to a temperature of 150° C. or higher at the outlet of the gas port.

また、好ましくはガラス微粒子堆積鉢合成用ポートの最
外層に支燃性ガスを流す構成とし、該支燃性ガスを加熱
するとより大きな効果が得られる。
Preferably, a structure is adopted in which a combustion-supporting gas is allowed to flow through the outermost layer of the port for synthesis of a glass particulate accumulating pot, and a greater effect can be obtained by heating the combustion-supporting gas.

本発明を具体的実施例に沿って説明する。第1図は本発
明の基本的な構成を示す概略図であり、燃焼バーナは同
心円状多重管バーナであって、バーナ中心部に原料ガス
噴出ポート1.燃焼ガス噴出ポート2.燃焼制御用不活
性ガス噴出ポート3及び支燃性ガス噴出ポート4からな
るガラス微粒子合成用ポート(内層)が構成され、この
外周部に長さしだけ突き出して不活性ガス噴出ポート5
.燃料ガス噴出ポート6、燃焼制御用不活性ガス噴出ポ
ート7及び支燃性ガス噴出ポート8からなる火炎形成用
ポート(外層)が構成されている。そして内層の支燃性
ガス噴出ポート4の入口直前にガス加熱用ヒータ9を持
った流路lOが設置され、内層の支燃性ガスの加熱がで
きるように構成されている。
The present invention will be explained along with specific examples. FIG. 1 is a schematic diagram showing the basic configuration of the present invention, in which the combustion burner is a concentric multi-tube burner, and the raw material gas injection port 1 is located at the center of the burner. Combustion gas injection port 2. A port for glass particle synthesis (inner layer) is composed of an inert gas injection port 3 for combustion control and a combustion-supporting gas injection port 4, and an inert gas injection port 5 protrudes from the outer periphery by a length.
.. A flame forming port (outer layer) is constituted by a fuel gas ejection port 6, an inert gas ejection port 7 for combustion control, and a combustion supporting gas ejection port 8. Immediately before the entrance of the combustion-supporting gas ejection port 4 in the inner layer, a flow path 1O having a gas heating heater 9 is installed, so that the combustion-supporting gas in the inner layer can be heated.

ガラス微粒子の生成は、第3図に示した従来法と同様に
燃料ガス噴出ポート2から一般に1)!。
Glass particles are generally generated from the fuel gas injection port 2 in the same way as in the conventional method shown in Figure 3 (1)! .

01)4等の燃料ガスが、支燃性ガス噴出ポート4から
缶が噴出され、火炎1)が外層の内壁の中に形成される
。この火炎1)の中に原料ガスとして、5iCel、S
目(CI!s、 5iHt Cbなトノカラス原料を、
まt:屈折率を変える場合にはドーパント原料としてG
eC1h、BCEs等が投入される。火炎中に投入され
た原料は、Si C14を代表例にとると下記(1)式 %式%(1) の加水分解反応によりガラス粒子5Iotが生成される
A fuel gas such as 01)4 is ejected from the combustion supporting gas ejection port 4 of the can, and a flame 1) is formed in the inner wall of the outer layer. In this flame 1), 5iCel, S
Eyes (CI!s, 5iHt Cb),
Mat: When changing the refractive index, use G as a dopant raw material.
eC1h, BCEs, etc. are input. Taking Si C14 as a representative example, the raw material introduced into the flame produces 5Iot of glass particles through a hydrolysis reaction according to the following formula (1).

rijf記のようにガラス粒子はガラス粒子流13を形
成して火炎中を流れ、ガラス微粒子堆積体に達する。こ
のときガラス粒子は拡散により外周方向に向かって拡が
っていくが、中には外層内壁12に達するものがある。
As described in Rijf, the glass particles form a glass particle stream 13 that flows through the flame and reaches the glass particle deposit. At this time, the glass particles spread toward the outer circumference due to diffusion, and some of them reach the inner wall 12 of the outer layer.

こうして、内壁12に付着する粒子が増加すると、付着
粒子堆積層14が形成され流路が狭められて、火炎の大
きさ、粒子流13の流れ方が微妙に変化し、ガラス微粒
子堆積体の合成に大きく影響し、安定な製造を行うこと
ができない。安定してガラス微粒子堆積体を合成するた
めには、かかる内壁12への粒子の付着を防止しつつ合
成する必要がある。
In this way, when the number of particles adhering to the inner wall 12 increases, an adhering particle accumulation layer 14 is formed, the flow path is narrowed, and the size of the flame and the flow direction of the particle flow 13 are subtly changed. This greatly affects the production process, making it impossible to perform stable manufacturing. In order to stably synthesize a glass particle deposit, it is necessary to perform synthesis while preventing particles from adhering to the inner wall 12.

本発明者等はこのガラス微粒子の内壁12への付着メカ
ニズムを詳細に検討した結果、ガラス微粒子が前述した
流れとともに発生する外周への拡散だζノでなく、内側
火炎1)の温度分布に起因する力受けるためであると判
明した。この火iti中で形成される0、1〜Q、57
zmの微細な粒子が、温度勾配のある流れの中で高温側
から低温側に力を受けて移動するのである(この現象は
サーモポレシス効果と一般に呼ばれている)。
As a result of a detailed study of the adhesion mechanism of the glass particles to the inner wall 12, the present inventors found that the glass particles were not caused by the above-mentioned diffusion to the outer periphery that occurs with the flow, but were caused by the temperature distribution of the inner flame 1). It turned out that it was to receive the power to do so. 0, 1 to Q, 57 formed in this fire iti
In a flow with a temperature gradient, fine particles of zm move from a high temperature side to a low temperature side under force (this phenomenon is generally called the thermoporesis effect).

通常火炎は燃料と支燃性ガスとの間で形成されるため、
火炎1)では中心部が高く周辺部で低い温度分布が形成
される。このため火炎内で生成されたガラス微粒子はサ
ーモホレシス効果により外周部に移動し、このサーモホ
レシス効果が大きいと内壁12に付着することになる。
Flames are usually formed between fuel and combustion-supporting gases, so
In flame 1), a temperature distribution is formed in which the temperature is high at the center and low at the periphery. Therefore, the glass particles generated within the flame move to the outer periphery due to the thermohoresis effect, and if this thermohoresis effect is large, they will adhere to the inner wall 12.

そこで本発明では外周部に流れるガス例えば支燃性ガス
を加熱することにより火炎1)の外周の温度を上げ、上
記→ノーモホレシス効果を小さくすることによりガラス
微粒子の外層内壁12への付着を防ぐものである。
Therefore, the present invention prevents glass particles from adhering to the inner wall 12 of the outer layer by increasing the temperature of the outer periphery of the flame 1) by heating a gas flowing around the outer periphery, such as a combustion-supporting gas, and reducing the above → nomophoresis effect. It is.

突き出し部(長さL)に沿って流れるガスとしては、燃
焼ガスでは壁面近くの温度はコントロールができない(
石英バイブが過熱され易い)という問題があり、支燃性
ガス或いは不活性ガスが好ましい。
As for the gas flowing along the protrusion (length L), the temperature near the wall surface cannot be controlled with combustion gas (
There is a problem that the quartz vibrator is easily overheated), so a combustion-supporting gas or an inert gas is preferable.

一方ガラス微粒子合成用ポートのガスの組合わせから考
えると、支燃性ガスポートを最外層に配置する方法が最
もシンプルで効果的である。
On the other hand, considering the combination of gases for the port for glass particle synthesis, the simplest and most effective method is to arrange the combustion-supporting gas port in the outermost layer.

不活性ガスを最外層に配置する場合、ガラス微粒子合成
用ポートの流路断面積が大きくなりやすく、ガラス微粒
子流の外周部への拡散が大きくなり、効率的に粒子を母
材に付着させることが難しくなる。
When an inert gas is placed in the outermost layer, the cross-sectional area of the flow path of the glass particle synthesis port tends to increase, which increases the diffusion of the glass particle flow to the outer periphery, making it possible to efficiently attach the particles to the base material. becomes difficult.

具体的には支燃性ガス加熱用ヒータ9を用いてガスの加
熱を行い、支燃性ガス噴出口での温度をモニターしつつ
5時間から7時間のスス付けを実施した結果、出口温度
が150℃以上になると内壁12への付着を防ぐ効果が
現れることが判った。出口温度の上限値は、ガラス微粒
子合成用ポートと火炎形成用ポートの突き出し部を構成
するバイブの耐熱性に係っている。通常この種のバイブ
材質としては石英ガラスが用いられるが、石英ガラスは
1000〜1200℃に加熱されると変形し易くなる。
Specifically, the combustion-supporting gas heating heater 9 was used to heat the gas, and as a result of sooting for 5 to 7 hours while monitoring the temperature at the combustion-supporting gas outlet, the outlet temperature was It was found that the effect of preventing adhesion to the inner wall 12 appears when the temperature exceeds 150°C. The upper limit of the outlet temperature depends on the heat resistance of the vibrator that constitutes the protruding portions of the glass particle synthesis port and the flame formation port. Usually, quartz glass is used as a material for this type of vibrator, but quartz glass becomes easily deformed when heated to 1000 to 1200°C.

火炎からの加熱も考慮すると、ガス出口温度の−1−限
は500℃程度が実用」〕好ましいと考えられる。
Considering the heating from the flame, it is considered preferable for the -1-limit of the gas outlet temperature to be approximately 500°C in practical use.

また、ガスの流し方として支燃性ガスの外側に不活性ガ
スを流し、この不活性ガスを加熱しても同様の効果が得
られる。
Furthermore, the same effect can be obtained by flowing an inert gas outside the combustion-supporting gas and heating the inert gas.

〔実施例〕〔Example〕

比較例1 同心円状多重管バーナであって、第1図に示すような8
爪管バーナで突き出しLが150mmのものを用いて、
ガラス微粒子堆積体の、合成を行った。ガスは、中心か
ら原料としてSt Cg4、燃料H1、不活性ガスN、
支燃性ガスへ、不活性ガス△r、燃料I■2、不活性ガ
スAr、支燃性ガス0!の順で流した。このときの流量
は5iCJ’s5f/分、内層H*141/分、外層)
1,801/分、内層0*30jl’/分、外層ots
ol/分、Ar15j2/分とした。この条件で内層支
燃性ガス0.は従来通り加熱せずに流し、ガラス微粒子
堆積体の合成を5時間行った。この結果バーナ外層の内
壁12には約2mmの厚さでガラス微粒子の堆積が見ら
れた。付nは先端から25〜35mmの部分であったが
、合成終了後その付着ガラス微粒子を完全に取り去るこ
とはできなかった。10本の母材を合成の後バーナ先端
内壁には約0.5a+mの厚さでガラス微粒子の固着が
残ってしまった。母材の外径は10本の母材において経
時的に太くなる状態が観察された。すなわち1本口の母
材に比べて10本1では約5mm太くなっており、安定
な製造ができないことがわかった。
Comparative Example 1 A concentric multi-tube burner with 8 tubes as shown in FIG.
Using a claw tube burner with a protrusion L of 150 mm,
A glass particle deposit was synthesized. The gases include St Cg4, fuel H1, inert gas N, and raw materials from the center.
To combustion-supporting gas, inert gas △r, fuel I■2, inert gas Ar, combustion-supporting gas 0! It was played in this order. The flow rate at this time is 5iCJ's 5f/min, inner layer H*141/min, outer layer)
1,801/min, inner layer 0*30jl'/min, outer layer ots
ol/min, Ar15j2/min. Under these conditions, the inner layer combustion supporting gas is 0. was run without heating as usual, and the glass fine particle deposit was synthesized for 5 hours. As a result, glass fine particles were found to be deposited on the inner wall 12 of the burner outer layer to a thickness of about 2 mm. The attachment point was a portion 25 to 35 mm from the tip, but the attached glass fine particles could not be completely removed after the synthesis was completed. After synthesizing 10 base materials, adhered glass particles remained on the inner wall of the burner tip to a thickness of about 0.5 a+m. It was observed that the outer diameter of the base material became thicker over time in 10 base materials. In other words, it was found that the base material with 10 strands is about 5 mm thicker than the base material with 1 strand, making stable production impossible.

実施例1 比較例1のバーナと同一の構成で、第1図に示すガス加
熱用ヒータ9を用いて、内層支燃性ガスバーナ出口で1
50℃になるように加熱した。
Example 1 With the same configuration as the burner of Comparative Example 1, using the gas heating heater 9 shown in FIG.
It was heated to 50°C.

なお、温度測定はバーナー人口側(ガス導入側)上り熱
電対を挿入して測定した。
The temperature was measured by inserting an upstream thermocouple on the burner population side (gas introduction side).

この結果、比較例1と同様の5時間の母材合成ヲ行った
が、バーナ内壁12にはガラス微粒子の付着は見られな
かった。また同様の方法で8本の1)材合成を行ったが
、内壁12へのガラス微粒子の固着はみられず、母材の
外径も±1mmの変動で安定していた。
As a result, although the base material was synthesized for 5 hours in the same manner as in Comparative Example 1, no adhesion of glass fine particles was observed on the burner inner wall 12. In addition, eight pieces of 1) material were synthesized using the same method, but no adhesion of glass particles to the inner wall 12 was observed, and the outer diameter of the base material was stable with fluctuations of ±1 mm.

また支燃性ガスの加熱温度を 100℃に設定したとこ
ろ、5時間の母材合成後、内壁12へのガラス微粒子付
着は比較例1に比べて減少したものの、約0.5−程度
の付着がみられた。加熱効果は現れているものの、完全
に効果を得るためには150℃以上の加熱が必要である
と考えられる。
Furthermore, when the heating temperature of the combustion-supporting gas was set at 100°C, after 5 hours of base material synthesis, the adhesion of glass particles to the inner wall 12 was reduced compared to Comparative Example 1, but the adhesion was approximately 0.5 - was seen. Although the heating effect has appeared, it is thought that heating to 150° C. or higher is necessary to fully obtain the effect.

以上の実施例では原料ガスと燃料ガスを完全に異なるポ
ートから噴出する場合について説明したが、互いに混合
して流す場合でも上記した本発明の効果を得ることがで
きる。
In the above embodiments, a case has been described in which the raw material gas and the fuel gas are ejected from completely different ports, but the effects of the present invention described above can be obtained even when they are mixed with each other and flowed.

本発明により合成されたガラス微粒子堆積体は、使用目
的により含有水分の脱水を行った後に、高温電気炉にて
約1600℃以上に加熱することにより透明ガラス化し
、ガラスロットとして用いることができる。
The glass fine particle deposit synthesized according to the present invention is dehydrated to remove moisture depending on the purpose of use, and then heated to a temperature of about 1600° C. or higher in a high-temperature electric furnace to become transparent vitrified and used as a glass lot.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は2重火炎バーナにおいて内
壁の支燃性ガスを150℃以上に加熱して流すことによ
り、内層で形成されるガラス微粒子の突き出し部内壁1
2への付着を防止することができ、安定なガラス微粒子
堆積体の合成を行なうことができ、高品質を要求される
光フアイバ用母材の合成に非常に適した母材を得ること
ができる。
As explained above, the present invention heats the combustion-supporting gas on the inner wall to 150° C. or more and flows it in a double flame burner, so that the protruding portion of the glass particles formed in the inner layer 1
2, it is possible to synthesize a stable glass particle deposit, and it is possible to obtain a base material that is very suitable for the synthesis of optical fiber base materials that require high quality. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を示す概略説明図、第2図は
本発明に係る多重火炎バーナの1例の構成を示す概略断
面図、第3図は内層で生成したガラス粒子が突き出し部
内壁に付着する様子の説明図である。 ■は原料ガス噴出ポート、2.6は燃料ガス噴出ポート
、3,5.7は不活性ガス噴出ポート、4,8は支燃性
ガス噴出ポート、9は支燃性ガス加熱用ヒータ、lOは
配管、1)は内層に形成される火炎、12は突き出し部
内壁、13はガラス微粒子流、14は突き出し部内壁へ
のガラス微粒子の付若部、20は粒状ガラス、21はガ
ラス微粒子合成用ポート、22は外側火炎合成用ポート
、■、は突き出し長さを表す。
FIG. 1 is a schematic explanatory diagram showing an embodiment of the present invention, FIG. 2 is a schematic sectional view showing the configuration of an example of a multiple flame burner according to the present invention, and FIG. It is an explanatory view of how it adheres to an inner wall. ■ is the raw material gas injection port, 2.6 is the fuel gas injection port, 3, 5.7 is the inert gas injection port, 4, 8 is the combustion-supporting gas injection port, 9 is the heater for heating the combustion-supporting gas, lO 1) is the pipe, 1) is the flame formed in the inner layer, 12 is the inner wall of the protruding part, 13 is the flow of glass particles, 14 is the part where the glass particles are attached to the inner wall of the protruding part, 20 is granular glass, and 21 is for synthesizing glass particles. The port 22 is an outer flame synthesis port, and ■ represents the protrusion length.

Claims (2)

【特許請求の範囲】[Claims] (1)気体のガラス原料を燃焼バーナから噴出させて火
炎中で加水分解反応または酸化反応させて、これによっ
て生成する粒状ガラスを回転する出発材の先端または心
棒の外周に堆積させ、該出発材または心棒を回転軸方向
に粒状ガラスの堆積に合わせて燃焼バーナと相対的に移
動することにより、ガラス微粒子堆積体を製造する方法
において、同心円状の多重管バーナであって、中心部に
少なくともガラス原料噴出ポート、燃料ガス噴出ポート
、支燃性ガス噴出ポートを持つガラス微粒子合成用ポー
トを有し、この外周にガラス微粒子合成用ポートよりも
ガス噴出方向に長さLだけ突き出して、少なくとも燃料
ガス噴出ポートと支燃性ガス噴出ポートを持つ火炎形成
用ポートを1組あるいは複数組有する多重火炎方式のガ
ラス微粒子堆積体製造用バーナにおいて、上記ガラス微
粒子合成用ポートの最外層を流れるガスを、該ガスのポ
ート出口において150℃以上になるように加熱するこ
とを特徴とするガラス微粒子堆積体の製造方法。
(1) A gaseous glass raw material is ejected from a combustion burner and subjected to a hydrolysis reaction or an oxidation reaction in a flame, and the resulting granular glass is deposited on the tip of a rotating starting material or on the outer periphery of a mandrel, and the starting material is Alternatively, in a method for manufacturing a glass fine particle deposit body by moving a mandrel in the direction of a rotational axis relative to a combustion burner in accordance with the deposition of glass particles, the method comprises a concentric multi-tube burner, in which at least a glass It has a glass particle synthesis port that has a raw material injection port, a fuel gas injection port, and a combustion-supporting gas injection port, and a length L protrudes from the glass particle synthesis port in the gas injection direction on the outer periphery of the glass particle synthesis port, and at least the fuel gas injection port is provided. In a burner for producing a glass particle deposit of a multiple flame type having one or more sets of flame forming ports each having an ejection port and a combustion-supporting gas ejection port, the gas flowing through the outermost layer of the glass particle synthesis port is A method for producing a glass particle deposit, which comprises heating the gas to a temperature of 150° C. or higher at the gas port exit.
(2)ガラス微粒子合成用ポートの最外層を流れるガス
が支燃性ガスであることを特徴とする請求項(1)に記
載のガラス微粒子堆積体の製造方法。
(2) The method for producing a glass particulate deposit according to claim (1), wherein the gas flowing through the outermost layer of the glass particulate synthesis port is a combustion-supporting gas.
JP9537089A 1989-04-17 1989-04-17 Production of vitreous fine granule accumulation Pending JPH02275725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9537089A JPH02275725A (en) 1989-04-17 1989-04-17 Production of vitreous fine granule accumulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9537089A JPH02275725A (en) 1989-04-17 1989-04-17 Production of vitreous fine granule accumulation

Publications (1)

Publication Number Publication Date
JPH02275725A true JPH02275725A (en) 1990-11-09

Family

ID=14135744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9537089A Pending JPH02275725A (en) 1989-04-17 1989-04-17 Production of vitreous fine granule accumulation

Country Status (1)

Country Link
JP (1) JPH02275725A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049975A1 (en) * 2000-12-19 2002-06-27 Pirelli S.P.A. Multi-flame deposition burner and method for manufacturing optical fibre preforms
JP2012020905A (en) * 2010-07-15 2012-02-02 Sumitomo Electric Ind Ltd Method for producing deposit of fine glass particles and method for producing glass body
WO2013002336A1 (en) * 2011-06-29 2013-01-03 メイリツコンポーネント株式会社 Burner
CN109071296A (en) * 2016-04-26 2018-12-21 住友电气工业株式会社 The synthetic method of glass granules

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049975A1 (en) * 2000-12-19 2002-06-27 Pirelli S.P.A. Multi-flame deposition burner and method for manufacturing optical fibre preforms
JP2012020905A (en) * 2010-07-15 2012-02-02 Sumitomo Electric Ind Ltd Method for producing deposit of fine glass particles and method for producing glass body
WO2013002336A1 (en) * 2011-06-29 2013-01-03 メイリツコンポーネント株式会社 Burner
CN109071296A (en) * 2016-04-26 2018-12-21 住友电气工业株式会社 The synthetic method of glass granules
CN109071296B (en) * 2016-04-26 2021-07-30 住友电气工业株式会社 Method for synthesizing glass microparticles

Similar Documents

Publication Publication Date Title
WO2009107392A1 (en) Burner for manufacturing porous glass base material
JP3543537B2 (en) Method for synthesizing glass fine particles and focus burner therefor
JP2002160926A (en) Burner for synthesizing glass fine particle and method of producing porous glass substance
JP2004035365A (en) Multiple pipe burner and method of manufacturing glass body using the same
JPH02275725A (en) Production of vitreous fine granule accumulation
JPH02164733A (en) Production of glass fine particle deposited body
JP3653902B2 (en) Glass base material synthesis burner and glass base material manufacturing method
JPH07138028A (en) Production of synthetic quartz glass member and burner for producing synthetic quartz glass
JP3567574B2 (en) Burner for synthesis of porous glass base material
JP4742429B2 (en) Method for producing glass particulate deposit
KR20040001769A (en) Outside vapor deposition apparatus used for making optical fiber
JP3953820B2 (en) Method for manufacturing optical fiber porous preform
JP3118822B2 (en) Method for manufacturing glass articles
JP3078590B2 (en) Manufacturing method of synthetic quartz glass
JP3176949B2 (en) Method for producing porous silica preform
JPH09132415A (en) Torch for synthesizing glass particulate
JPH0725563B2 (en) Method for manufacturing base material for optical fiber
JPS60260433A (en) Manufacture of base material for optical fiber
JPH04228443A (en) Burner for producing optical fiber preform
JPH04240125A (en) Manufacture of optical fiber preform
JPH04228440A (en) Production of glass article
KR850000908B1 (en) Method for manufacturing an optical fiber preform
JPS63123828A (en) Production of porous preform for optical fiber
JPH05330843A (en) Production of optical fiber preform
JPS604137B2 (en) Burner for manufacturing optical fiber base material