JPS60200835A - Production of base material for optical fiber - Google Patents

Production of base material for optical fiber

Info

Publication number
JPS60200835A
JPS60200835A JP5618884A JP5618884A JPS60200835A JP S60200835 A JPS60200835 A JP S60200835A JP 5618884 A JP5618884 A JP 5618884A JP 5618884 A JP5618884 A JP 5618884A JP S60200835 A JPS60200835 A JP S60200835A
Authority
JP
Japan
Prior art keywords
starting material
glass
burner
base material
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5618884A
Other languages
Japanese (ja)
Other versions
JPS6363498B2 (en
Inventor
Hiroo Kanamori
弘雄 金森
Gotaro Tanaka
豪太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5618884A priority Critical patent/JPS60200835A/en
Publication of JPS60200835A publication Critical patent/JPS60200835A/en
Publication of JPS6363498B2 publication Critical patent/JPS6363498B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0148Means for heating preforms during or immediately prior to deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To reduce a transitional part and a transitional time in the early stage when a porous glass base material for an optical fiber is manufactured by a VAD method, by heating a starting member with a heat source other than a burner for synthesizing fine glass particles before depositing fine glass particles on the starting member. CONSTITUTION:When a porous glass base material for an optical fiber is produced by a VAD method, the surface of a starting member 2 is heated to about 1,200 deg.C with an oxyhydrogen burner 6 which is not used as a burner 1 for synthesizing fine glass particles. Starting materials for glass are then fed to the burner 1 to start the deposition of fine glass particles 4, and at the same time, the oxyhydrogen burner 6 is moved backward. The starting member 2 is required to have >=20mm. outside diameter.

Description

【発明の詳細な説明】 本発明は光フアイバ用ガラス母材の製造方法に関し、特
に、VAD法により光フアイバ用多孔質ガラス母材を形
成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a glass preform for optical fibers, and particularly to a method for forming a porous glass preform for optical fibers by a VAD method.

(技術的背景) VAD法は、量産性に富む光フアイバ母材の製造方法と
して知られている。第1図にVAD法の基本的な構成を
示す。ガラス微粒子合成用バーナー1に、5iC14、
GeCl4 といったガラス原料と、H2,0□ 等の
燃焼用ガスを供給する。
(Technical Background) The VAD method is known as a method for manufacturing optical fiber base materials that is highly mass-producible. Figure 1 shows the basic configuration of the VAD method. In the burner 1 for glass particle synthesis, 5iC14,
A glass raw material such as GeCl4 and a combustion gas such as H2,0□ are supplied.

ガラス原料は火炎中で、火炎加水分解反応によりガラス
微粒子となり、回転している出発材2の先端部付近に堆
積する。出発材をガラス微粒子の堆積量に応じて回転引
上装置3を用い上方に引き上げていくことにより、ガラ
ス微粒子の堆積体は、回転軸方向に成長していき、光フ
アイバ用多孔質ガラス母材4となる。なお、5は反応容
器である。
The glass raw material becomes fine glass particles through a flame hydrolysis reaction in the flame, and is deposited near the tip of the rotating starting material 2. By pulling the starting material upward using the rotary pulling device 3 according to the amount of deposited glass particles, the deposited body of glass particles grows in the direction of the rotation axis, forming a porous glass base material for optical fiber. It becomes 4. In addition, 5 is a reaction container.

従来、出発材2の形状としては、第2図(a)に模式的
に示した円板状のもの、或いは、第2図(b)に示した
棒状のものが多く用いられている。
Conventionally, the shape of the starting material 2 is often a disk-like shape as schematically shown in FIG. 2(a) or a rod-like shape as shown in FIG. 2(b).

前者は、ガラス微粒子堆積開始時、ガラス微粒子の堆積
面の面積が広く、ガラス微粒子の付着効率は良いという
利点を持つが、加工、成形が困難であり、実用に適して
いない。一方後者は、ガラス微粒子堆積面の面積が小さ
いため、初期のガラス微粒子付着効率が低いという欠点
はあるが、加工成形はごく簡単で広く実用に供せられて
いる。
The former has the advantage that the surface area on which the glass particles are deposited is wide at the start of glass particle deposition, and the adhesion efficiency of the glass particles is good, but it is difficult to process and mold, and is not suitable for practical use. On the other hand, the latter has the disadvantage that the initial glass particle adhesion efficiency is low because the area of the glass particle deposition surface is small, but processing and forming is extremely simple and it is widely used in practical use.

しかしながら、光フアイバ生産性を向上させるために、
多孔質ガラス体の寸法を大きくかつ多孔質ガラス体の成
長速度を早くしていくに従い、第2図(b)に示すよう
な棒状の出発材を用いる場合、次に示すような要求が生
じてくる。
However, to improve optical fiber productivity,
As the size of the porous glass body increases and the growth rate of the porous glass body increases, the following requirements arise when using a rod-shaped starting material as shown in FIG. 2(b). come.

すなわち、出発材2上にガラス微粒子が堆積し始めてか
ら、ガラス微粒子堆積体が所定の径に達し、多孔質ガラ
ス母材4として用いうる均一部分になるまでの過渡的部
分(第6図に斜線で示した)、及びこの過渡的部分を形
成するために要する過渡的時間が、多孔質母材の径が大
きくなるにつれて増加する。一方、多孔質ガラス体の成
長速度が早(なると、前記過渡的時間の多孔質ガラス体
形成に要する全時間中に占める割合が相対的に増加する
。そこでこの過渡的時間を短縮すること或いは過渡的部
分を減少させることが生産性向上の観点から要求される
わけである。
That is, there is a transitional period from when the glass particles begin to accumulate on the starting material 2 until the glass particle deposit reaches a predetermined diameter and becomes a uniform portion that can be used as the porous glass base material 4 (the diagonal line in FIG. 6). ), and the transition time required to form this transition portion increases as the diameter of the porous matrix increases. On the other hand, if the growth rate of the porous glass body is fast (as the growth rate of the porous glass body becomes faster), the proportion of the transient time in the total time required to form the porous glass body increases relatively. From the viewpoint of improving productivity, it is necessary to reduce the number of targets.

ところで、前記の要求に応えるためには、(1)出発材
へのガラス微粒子付着効率を向上させ、過渡的時間を短
縮する、(2)出発材の形状を多孔質ガラス体均一部分
すなわち第3図の4の先端形状に近づけ過渡的部分を小
さクシ、過渡的時間を短縮する等の対応策が考えられる
。このためには、第4図に示すように出発材の寸法(体
fR)を大きくすることにより、初期のガラス微粒子堆
積面の面積を増加させガラス微粒子付着効率を向上させ
るとともに、過渡的部分の体積も同時に減少させること
が望ましい。
By the way, in order to meet the above requirements, (1) improve the efficiency of glass particle adhesion to the starting material and shorten the transition time, (2) change the shape of the starting material to a porous glass uniform portion, that is, a third Possible countermeasures include making the transitional part smaller and shortening the transition time to approximate the tip shape of 4 in the figure. To this end, as shown in Figure 4, by increasing the dimensions (body fR) of the starting material, the area of the initial glass particle deposition surface is increased and the adhesion efficiency of glass particles is improved, and the transitional portion is It is desirable to reduce the volume at the same time.

しかしながら、出発材の寸法を大きくすると、ガラス微
粒子合成用バーナーの火炎により加熱されていた出発材
表面の温度が低下する。
However, when the size of the starting material is increased, the temperature of the surface of the starting material, which has been heated by the flame of the burner for glass particle synthesis, decreases.

出発材へガラス微粒子を付着させる際には、出発材表面
を十分加熱し、出発材表面温度を十分高くしておくこと
により、付着したガラス微粒子の粘性を下げ、十分に出
発材とカラス微粒子を融着させておく必要があるが、出
発材寸法の増加により、出発材表面温度が低下し、出発
材とガラス微粒子との付着力が減少し、出発材と多孔質
ガラス母材界面付近から多孔質ガラス母材が落下する等
の弊害が生じる。
When attaching glass particles to the starting material, the surface of the starting material should be sufficiently heated and the surface temperature of the starting material should be kept high enough to reduce the viscosity of the attached glass particles and allow the starting material and glass particles to be sufficiently bonded. However, as the size of the starting material increases, the surface temperature of the starting material decreases, and the adhesion force between the starting material and the glass particles decreases. This may cause problems such as the glass base material falling.

この欠点を防止するためには、ガラス微粒子を出発材上
に堆積させてい(前にガラス微粒子合成バーナーの火炎
により、十分出発材を加熱することが考えられる。しか
しながら、ガラス微粒子合成バーナーの火炎を強力にし
すぎると、バーナー先端部の消耗する場合がある。さら
に、本来ガラス微粒子合成バーナーは、ガラス原料を効
率良く反応させ、かつガラス微粒子を理想的に堆積させ
る構成をとっているため、出発材の加熱という目的には
効果的に設定することが難しい。
In order to prevent this drawback, it is possible to heat the starting material sufficiently by the flame of a glass particle synthesis burner before depositing the glass particles on the starting material. If the power is too strong, the tip of the burner may be worn out.Furthermore, the glass particle synthesis burner is originally designed to efficiently react glass raw materials and ideally deposit glass particles. It is difficult to set it effectively for the purpose of heating.

(発明の目的) 本発明の目的は以上詳述した諸点に鑑みて、出発材にガ
ラス微粒子が堆積する初期段階での過渡的部分、過渡的
時間を減少させかつ出発材とガラス微粒子の付着力を強
め、その結果生産性の向上した光フアイバ母材の製造方
法を提供することにある。
(Object of the Invention) In view of the points detailed above, the object of the present invention is to reduce the transient part and transient time in the initial stage of depositing glass particles on a starting material, and to reduce the adhesion between the starting material and the glass particles. It is an object of the present invention to provide a method for manufacturing an optical fiber base material, which increases productivity and improves productivity as a result.

(発明の構成) すなわち本発明は、光フアイバ用多孔質ガラス母材をV
AD法により製造するに際し、ガラス微粒子を出発材上
に堆積を開始する前に、該ガラス微粒子合成用バーナー
以外の熱源により、出発材を予め加熱しておくことを特
徴とする光フアイバ用母材の製造方法)・を等。
(Structure of the Invention) That is, the present invention provides a porous glass base material for optical fiber with V
A base material for an optical fiber, which is produced by the AD method and is characterized in that the starting material is preheated by a heat source other than a burner for synthesizing glass fine particles before starting to deposit glass fine particles on the starting material. manufacturing method), etc.

出発材の予め加熱温反は、ガラスの種類により異なるた
め一概に限定することはできないが、当該ガラス微粒子
が出発材と充分に融着できる温度とすることが必要であ
る。
The preheating temperature of the starting material cannot be absolutely limited because it varies depending on the type of glass, but it is necessary to set the temperature at which the glass fine particles can be sufficiently fused to the starting material.

本発明は、光ファイバの生産性を高めるために出発材に
ガラス微粒子が堆積する初期段階での過渡的部分、過渡
的時間を減少させ、かつ出発材とガラス微粒子の付着力
を強める目的で、ガラス微粒子を出発材に堆積してい(
前にガラス微粒子合成用バーナー以外の熱源により、出
発材を加熱しておくことを特徴とするものである0 以下に本発明を実施例に基づき説明する。
The present invention aims to reduce the transient part and transient time in the initial stage of depositing glass particles on a starting material in order to increase the productivity of optical fibers, and to strengthen the adhesion between the starting material and the glass particles. Glass particles are deposited on the starting material (
The present invention is characterized in that the starting material is previously heated by a heat source other than a burner for synthesizing glass fine particles.The present invention will be explained below based on Examples.

(実施例1) 第5図0)に示すごとく、ガラス微粒子合成バーナー1
以外に出発材2加熱用酸・水素バーナー6を設は出発材
20表面温度を1200℃程度に加熱したのち、ガラス
原料をガラス微粒子合成用バーナーに供給し、ガラス微
粒子4付着を開始した。加熱用バーナー6はM5図(b
)に示すようにガラス微粒子4付着開始と同時に後方へ
移動し、かつ消火することにより、多孔質ガラス母材形
成に支障をきたさないようにした。
(Example 1) As shown in Figure 5 0), a glass particle synthesis burner 1
In addition, an acid/hydrogen burner 6 for heating the starting material 2 was installed, and after heating the surface temperature of the starting material 20 to about 1200° C., the glass raw material was supplied to the burner for synthesizing glass fine particles, and deposition of the glass fine particles 4 was started. The heating burner 6 is shown in Fig. M5 (b
), the glass particles 4 were moved backward at the same time as the adhesion started, and the fire was extinguished so as not to interfere with the formation of the porous glass base material.

この結果、外径40叫φの出発材を用い、外径120■
φ、長さ600瓢の多孔質ガラス母材を得た。多孔質ガ
ラス母材合成に要した時間は8時間であり、そのうち過
渡的時間は25分間であった。一方、これと全く同じ条
件で加熱用バーナーを用いなかった場合は、多孔質母材
を長さ550m合成した時点で出発材のところから多孔
質ガラス母材が落下した。また、外径15+mnφの出
発材を用いた時は同じ寸法の多孔質母材を得るために8
時間30分を要し、そのうち過渡的時間は55分であっ
た。
As a result, using a starting material with an outer diameter of 40 mm, the outer diameter was 120 mm.
A porous glass base material having a diameter of 600 mm and a length of 600 mm was obtained. The time required to synthesize the porous glass base material was 8 hours, of which the transient time was 25 minutes. On the other hand, when the heating burner was not used under the same conditions, the porous glass base material fell from the starting material when the porous base material was synthesized to a length of 550 m. In addition, when using a starting material with an outer diameter of 15 + mnφ, in order to obtain a porous base material of the same size,
It took 30 minutes, of which the transient time was 55 minutes.

(実施例2) (実施例1)において加熱用酸・水素バーナーの代りに
メタンガスを燃焼源とするバーナーを用い、出発材表面
温度を1200℃程度に加熱したのち、(実施例1)と
同一条件で多孔質ガラス母材を合成した結果、やはり外
&120震φ、長さ600簡の多孔質ガラス母材を得る
ことができた。
(Example 2) In (Example 1), a burner using methane gas as a combustion source was used instead of the heating acid/hydrogen burner, and after heating the starting material surface temperature to about 1200°C, the same as (Example 1) was used. As a result of synthesizing a porous glass base material under these conditions, it was possible to obtain a porous glass base material with an outer diameter of 120 mm and a length of 600 mm.

燃焼源としてメタンガス使用は安価であるため、コスト
的に有利である。
The use of methane gas as a combustion source is inexpensive and therefore advantageous in terms of cost.

以上の実施例で判るように、多孔質ガラス母材合成時間
を短縮する目的で、初期の過渡的時間を短縮するために
、大径の出発材を用いることが有効であり、さらに該出
発材を用いる際には出発材を加熱用熱源で十分加熱して
おくことが有効である。
As can be seen from the above examples, it is effective to use a starting material with a large diameter in order to shorten the initial transition time for the purpose of shortening the synthesis time of the porous glass base material. When using , it is effective to sufficiently heat the starting material with a heating heat source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図+ VAD法による多孔質ガラス母材合成方法の
概略説明図。 第2図:出発材の形状を例示する図。 第3図および第4図:出発材先端近傍の多孔質カラス母
材形状の説明図で第3図は棒 状出発材の場合、第4図は太径出発材 の場合を示す。 第5図(a)、(b):本発明の実施例1の方法を説明
する図。 代理人 内 1) 明 代理人 萩 原 亮 − 特許庁長官 志賀 字数 昭和59年′115許願第56188 号3、補正をす
る者 事件との関係 特許出願人 住 所 大阪市東区北浜5丁目15番地氏 名 (31,#+;) (21”住友電気工業株式会社4、
代理人 f」: 所 東京都港区虎)門−丁[]16番2号虎ノ
門千代田ビル 電話(504)1894市氏 名 弁理
士(7179) 内 Ill 明(ほか1名) 5、補正命令の日付 自発補正 Z補正の対象 (1) 明細書の「特許請求の範囲」の欄。 (2) 明細書の「発明の詳細な説明」の欄a補正の内
容 (1) 明細書第1頁の「特許請求の範囲」を別紙のと
おシ訂正する。 12) 同第6頁第3行の「際し、」なる記載の後K「
出発材の外径を20wφ以上とし、かつ」なる記載を挿
入し、第15行〜第16行の「強める目的で、」なる記
載の後に「出発材を太径化した上で」なる記載を挿入す
る。さらに第19行と第20行の間に下記の記載を挿入
する。 「本発明者らの実験によれば、上記目的を満足する出発
材の外径としては、20IIII!φ以上が好ましいと
判明した。」 (3) 同第7頁第10行と第11行の間に下記の記載
を挿入する。 「なお、特に多孔質母材形成に支障をきたさない場合に
は、原料投入開始時に、加熱用バーナーを移動したシ消
火する必要はない。」+4) 同第8頁第14行目の「
短縮するために、」なる記載の後に「外径20肩φ以上
の」なる記載を特徴する 特許請求の範囲 光ファイバ用多孔質ガ2ス母材を’%’AD法によシ製
造するに際し、出発材の外径を20mφ以上とし、かつ
ガラス微粒子を出発材上に堆積を開始する前に、該ガラ
ス微粒子合成用バーナー以外の熱源によ)、出発材を予
め加熱しておくことを特徴とする光フアイバ用母材の製
造方法0
FIG. 1 + A schematic explanatory diagram of a porous glass base material synthesis method using the VAD method. FIG. 2: A diagram illustrating the shape of the starting material. 3 and 4: Explanatory diagrams of the shape of the porous glass base material near the tip of the starting material. FIG. 3 shows the case of a rod-shaped starting material, and FIG. 4 shows the case of a large diameter starting material. FIGS. 5(a) and 5(b): Diagrams explaining the method of Example 1 of the present invention. Agents 1) Akira Agent Ryo Hagiwara - Commissioner of the Japan Patent Office Shiga Character Number 1982 '115 Patent Application No. 56188 3 Relationship with the person making the amendment Case Patent Applicant Address Mr. 5-15 Kitahama, Higashi-ku, Osaka Name (31, #+;) (21” Sumitomo Electric Industries, Ltd. 4,
Agent F” Address: 16-2 Toranomon Chiyoda Building, Minato-ku, Tokyo Telephone: (504) 1894 City Name: Patent Attorney (7179) Ill Akira (and 1 other person) 5. Amendment Order Date Subject of spontaneous amendment Z amendment (1) “Claims” column of the specification. (2) Contents of amendment to column a of “Detailed Description of the Invention” of the specification (1) The “Scope of Claims” on page 1 of the specification will be corrected as attached. 12) On page 6, line 3 of the same page, after the statement “On occasion,” K “
The outer diameter of the starting material is 20wφ or more, and the statement "and" is inserted, and the statement "after increasing the diameter of the starting material" after the statement "for the purpose of strengthening" in lines 15 and 16 is inserted. insert. Furthermore, insert the following description between the 19th line and the 20th line. "According to experiments conducted by the present inventors, it has been found that the outer diameter of the starting material that satisfies the above objective is preferably 20III!φ or more." (3) Page 7, lines 10 and 11. Insert the following statement in between. ``In addition, if there is no particular hindrance to the formation of the porous base material, there is no need to extinguish the moved heating burner when starting to feed the raw materials.''
In order to shorten the claim, the claim is characterized by the statement ``with an outer diameter of 20 shoulder φ or more'' after the statement. , the outer diameter of the starting material is 20 mφ or more, and the starting material is preheated (by a heat source other than the burner for synthesizing glass particles) before starting to deposit the glass particles on the starting material. Method for manufacturing optical fiber base material 0

Claims (1)

【特許請求の範囲】[Claims] 光フアイバ用多孔質ガラス母材をVAD法により製造す
るに際し、ガラス微粒子を出発材上に堆積を開始する前
に、該ガラス微粒子合成用バーナー以外の熱源により、
出発材を予め加熱しておくことを特徴とする光フアイバ
用母材の製造方法。
When producing a porous glass base material for optical fiber by the VAD method, before starting to deposit glass particles on the starting material, using a heat source other than the burner for synthesizing glass particles,
A method for producing an optical fiber base material, which comprises heating a starting material in advance.
JP5618884A 1984-03-26 1984-03-26 Production of base material for optical fiber Granted JPS60200835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5618884A JPS60200835A (en) 1984-03-26 1984-03-26 Production of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5618884A JPS60200835A (en) 1984-03-26 1984-03-26 Production of base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS60200835A true JPS60200835A (en) 1985-10-11
JPS6363498B2 JPS6363498B2 (en) 1988-12-07

Family

ID=13020131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5618884A Granted JPS60200835A (en) 1984-03-26 1984-03-26 Production of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS60200835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629590A1 (en) * 1993-06-16 1994-12-21 Sumitomo Electric Industries, Limited Process for producing glass preform for optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629590A1 (en) * 1993-06-16 1994-12-21 Sumitomo Electric Industries, Limited Process for producing glass preform for optical fiber
US5597398A (en) * 1993-06-16 1997-01-28 Sumitomo Electric Industries, Ltd. Process for producing glass preform for optical fiber

Also Published As

Publication number Publication date
JPS6363498B2 (en) 1988-12-07

Similar Documents

Publication Publication Date Title
KR880001607B1 (en) Preparation for making of glass fiber preform
JPS60200835A (en) Production of base material for optical fiber
JP4742429B2 (en) Method for producing glass particulate deposit
JPH10167748A (en) Burner for synthesis of glass raw material and production of glass raw material
JPS60264338A (en) Manufacture of optical fiber preform
JPS61281025A (en) Production of deposited material of glass fine particles
JP3221059B2 (en) Method for producing glass particle deposit
JPS61281037A (en) Production of deposited glass soot
JPS62182131A (en) Production of piled material of glass fine particle
JPH0583499B2 (en)
JPS5650134A (en) Manufacture of multicomponent type glass fiber base material
JPS604978Y2 (en) Glass particle synthesis torch
JPS627641A (en) Production of deposited body of fine glass particle
JPH0233658B2 (en)
JPH04119940A (en) Production of glass body
JPH0435429B2 (en)
JPH01183431A (en) Production of deposited material of glass fine particle
JPS6116740B2 (en)
JPH04219339A (en) Production of preform for optical fiber
JPS60260433A (en) Manufacture of base material for optical fiber
JP3118723B2 (en) Method for producing porous glass preform for optical fiber
JPS5978947A (en) Method for depositing optical glass
JPS62162642A (en) Production of porous preform for optical fiber
JPS63310743A (en) Production of porous base material for optical fiber
JPS61266318A (en) Production of glass fine granular deposit