JPS63139030A - Production optical fiber of base material - Google Patents

Production optical fiber of base material

Info

Publication number
JPS63139030A
JPS63139030A JP28209386A JP28209386A JPS63139030A JP S63139030 A JPS63139030 A JP S63139030A JP 28209386 A JP28209386 A JP 28209386A JP 28209386 A JP28209386 A JP 28209386A JP S63139030 A JPS63139030 A JP S63139030A
Authority
JP
Japan
Prior art keywords
burner
axis
glass
eccentric
starting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28209386A
Other languages
Japanese (ja)
Inventor
Yuichi Oga
裕一 大賀
Toshio Danzuka
彈塚 俊雄
Hiroo Kanamori
弘雄 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP28209386A priority Critical patent/JPS63139030A/en
Publication of JPS63139030A publication Critical patent/JPS63139030A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/18Eccentric ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce the titled base material without suddenly increasing the bulk density in the vicinity of the surface of a starting member by bringing the eccentric axis of an eccentric multi-tubed burner close to the central axis of the starting member and by depositing fine glass particles on the peripheral surface of the member. CONSTITUTION:The eccentric axis (c) of an eccentric multi-tubed burner 5 is brought close to the central axis of a starting member 7. The burner 5 is composed of a first layer 1, a second layer 2, a third layer 3 and a fourth layer 4 arranged in order from the center and the centers of the layers 1-3 do not coincide with the center of the outer periphery of the burner. Starting materials for glass are fed into a flame generated from the burner 5 and the burner 5 is relatively moved parallel to the axis of the starting member 7 to deposit fine glass particles 6 on the side vicinity of the columnar or cylindrical starting member 7 rotating on its axis as the axis of rotation.

Description

【発明の詳細な説明】 〔差菓上のオI」用分野〕 本発明は元ファイバ母材の製造方法に関するもので、特
に円柱状もしくは円筒状出発材の外周部にガラス微粒子
(スート)堆積体を形成して高品質のガラス母材を製造
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of use in confectionery] The present invention relates to a method for producing a starting fiber base material, and in particular to a method for producing a starting material having a columnar or cylindrical shape. The present invention relates to a method of manufacturing a high quality glass preform by forming a glass body.

〔従来の技術〕[Conventional technology]

元ファイバ母材のiJI m方法として、第6図及び第
7図に示すように、回転する石英糸ガラス出発材7の外
8部に、ガラス微粒子合成用燃焼バーナ5の火炎6中に
導入したガラス原料を、火炎6中にて加水分解反応等全
させることにより生成せしめたS io、  等のガラ
ス微粒子全堆積させ、所定鴛堆積後に堆積を止め、出発
材7とガラス微粒子地槓体8からなる複合体のガラス母
材を高温炉中で加熱処理し、ガラス倣粒子堆積体80部
分を焼結することによジ、出発材である石英糸ガラス母
材の外周部に更に透明ガラス層全形成する方法がある。
As shown in FIGS. 6 and 7, the original fiber base material was introduced into the flame 6 of the combustion burner 5 for synthesizing glass particles into the outer 8 part of the rotating quartz fiber glass starting material 7. Glass particles such as Sio, which are generated by subjecting the glass raw material to a complete hydrolysis reaction in a flame 6, are completely deposited, and the deposition is stopped after a predetermined amount has been deposited. By heating the glass base material of the composite in a high-temperature furnace and sintering 80 portions of the glass imitation particle deposits, a transparent glass layer is further formed on the outer periphery of the quartz fiber glass base material, which is the starting material. There is a way to form it.

第6図では出発材7の軸を歩直に、又第7図では出発材
7の1ltH全水平に設けて行う例を示してあり、バー
ナ5は出発材7の軸と平行に相対的に1回ないし複数回
移動させる。
Fig. 6 shows an example in which the axis of the starting material 7 is set straight, and Fig. 7 shows an example where the axis of the starting material 7 is provided completely horizontally. Move once or multiple times.

従来この柚の方法における燃焼用バーナ5′としては、
第51囚及びm)に夫々径方向及び軸方向断面図を示す
工う11甲心軸二に対し同心円状の噴出口金石する多重
管バーナが用いられている。該同心円状多重管バーナの
各環状の噴射ポート即ち各層からは、夫々原料カス、燃
料ガス及び助燃ガス等が噴出きれる。例えば第51囚及
び(5)の4重管バーナにおいて、第IJd1’から原
料ガスとして5iCt4、第2層2′から燃料ガスとし
てH,、CH,等、第3WJ3から不活性ガスとしてA
r%第4層4′から助燃ガスとして02が噴射きれる。
Conventionally, the combustion burner 5' in this Yuzu method is as follows:
A multi-tube burner with a spout concentric with respect to the 11th core shaft 2 is used. From each annular injection port, that is, each layer of the concentric multi-tube burner, raw material waste, fuel gas, auxiliary combustion gas, etc. are ejected, respectively. For example, in the 51st cell and the quadruple tube burner (5), 5iCt4 is the source gas from the IJd1', H, CH, etc. is used as the fuel gas from the second layer 2', and A is the inert gas from the 3rd WJ3.
02 can be injected as the auxiliary combustion gas from the r% fourth layer 4'.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上記のように燃焼バーナ5′として同心円状多
重管バーナを用いてガラス微粒子堆積体8をノヒ成する
と、火炎6がバーナ中心に対して軸対称に形成されるた
め、上記母材の熱容量の違いから、第6図及び第7図の
火炎乙の3部分では高温となり、b部分では比較的低温
となる。このため同心円状多重管バーナ5′によって形
成されたガラス微粒子堆積体8のカサ密度分布は第8図
に示す如く、ガラス微粒子堆私囲先端、即ち出発材表面
近傍でカサ密1f(f/ff7)が非常に大きくなって
いる。これは、ガラス微粒子堆積体のカサ@度が堆積面
の温度に依存しているため、温度が高くなると堆積体が
硬くなり、その結果カサ密度が大きくなる几めである。
By the way, when the glass particulate deposit body 8 is blown using a concentric multi-tube burner as the combustion burner 5' as described above, the flame 6 is formed axially symmetrically with respect to the center of the burner, so that the heat capacity of the base material is Because of the difference, the three parts of the flame A in FIGS. 6 and 7 have high temperatures, and the part b has a relatively low temperature. Therefore, the bulk density distribution of the glass fine particle deposit 8 formed by the concentric multi-tube burner 5' is as shown in FIG. 8, with a bulk density of 1f (f/ff7 ) has become very large. This is because the bulkiness of the glass particle deposit depends on the temperature of the deposition surface, and as the temperature increases, the deposit becomes harder, resulting in an increase in bulk density.

このように出発材表面近傍でガラス微粒子堆積体のカサ
密度が非常に大きくなると、該ガラス倣粒子堆積体部分
を焼結することにより、出発材外周に透明ガラス層を形
成するとき、出発材である石英系ガラス材表面あるいは
透明ガラス層内に気泡が発生しやすく、またガラス微粒
子堆積体に割れが生じるという問題点があった。
If the bulk density of the glass particle deposit becomes very large near the surface of the starting material, when forming a transparent glass layer around the outer periphery of the starting material by sintering the part of the glass patterned particle deposit, There have been problems in that bubbles tend to occur on the surface of certain quartz-based glass materials or in the transparent glass layer, and cracks occur in the glass particle deposit.

史にフッ素のような屈折率制御添加物を添加する場合、
径方向に均一添加できないという問題があった。
When adding refractive index controlling additives such as fluorine to the
There was a problem that it could not be added uniformly in the radial direction.

そこで本発明は、出発材表面近傍の急激なカサ密度増加
を抑え、焼結後において出発材母材ガラス表面あるいは
透明ガラス層内に残留する気泡を排除するとともに、屈
折率制御路加物を均一に添加でさる元ファイバ母材の製
造方法全提供せんとするものでるる。
Therefore, the present invention suppresses the rapid increase in bulk density near the surface of the starting material, eliminates air bubbles remaining on the starting material base material glass surface or in the transparent glass layer after sintering, and uniformly distributes the refractive index control material. We will provide a complete method of manufacturing the original fiber base material by adding it to the base material.

〔問題点全解決するための手段〕[Means to solve all problems]

本発明者らは上記問題点を解決すべく鋭意検討の結果、
多重管バーナとして、その外側ポートに対し中心ポート
の中心軸(以下こn’4偏心軸という)が偏心した構造
のものを、該偏心軸が出発材中心軸方向に接近するよう
に設けて用いることで、出発材母材表面近傍での急激な
カサ密度増加をなくすことができることを見出した0 本発明は自らの軸を回転軸として回転している’AJ的
に円柱状もしくは円筒状の出発材の片端近傍から、該出
発材の外周部上にガラス倣粒子合成用燃焼バーナの火炎
内にガラス原料を供給することにより生成させたガラス
微粒子を堆積てせ始め、該バーナを出発材の軸と平行に
相対的に移動させることにより、該出発材の外周部にガ
ラス微粒子堆積体を形成していく方法に於て、前記燃焼
バーナとしてその外周に対し内側ポートが偏心した多重
管バーナを用い、該偏心多重管バーナの偏心軸が出発材
中心軸に接近するように設けて行うことを特徴とする元
ファイバ母材の裏道方法である。
As a result of intensive studies to solve the above problems, the present inventors found that
A multi-tube burner with a structure in which the central axis of the central port (hereinafter referred to as the n'4 eccentric axis) is eccentric with respect to the outer port is used, and the eccentric axis is installed so that it approaches the central axis of the starting material. It has been found that the sudden increase in bulk density near the surface of the starting material base material can be eliminated by the present invention. Fine glass particles produced by supplying a glass raw material into the flame of a combustion burner for synthesizing glass imitative particles begin to be deposited on the outer circumference of the starting material from near one end of the material, and the burner is connected to the axis of the starting material. In the method of forming a glass fine particle deposit on the outer periphery of the starting material by relatively moving parallel to the This method is characterized in that the eccentric shaft of the eccentric multi-tube burner is installed close to the central axis of the starting material.

第11囚及び中)は本発明に用いる偏心釜M管バーナー
の一例の径方向及び軸方向断面図であって、中心より第
1層1、第2層2、第5励ろ、第4層4からなっており
、第1〜3j競1〜3はその中心がバーナ外周の中心に
対して偏心している。第11囚及びのノにおいて一点鎖
線イ1口。
Figure 11 and middle) are radial and axial cross-sectional views of an example of the eccentric kettle M-tube burner used in the present invention, showing the first layer 1, the second layer 2, the fifth layer, and the fourth layer from the center. 4, and the centers of Nos. 1 to 3J are eccentric with respect to the center of the outer periphery of the burner. Dot-dashed line A for the 11th prisoner and No.

ハは中心ポート1の中心軸でろり、ハが偏心軸である。C is the central axis of the central port 1, and C is the eccentric axis.

以上の説明には4重管をVす示したが、噴出ポートの層
数は任意に選択できることは言うまでもない。
In the above explanation, the quadruple pipe is shown as V, but it goes without saying that the number of layers of ejection ports can be selected arbitrarily.

本発明の方法では、第6図及び第7図の従来の構成にお
ける、燃焼バーナ5に代えて、第11囚及び(B)に例
示したような偏心多重管バーナを用いるもので、第2図
及び第3図に示すように偏心多重管バーナ5の偏心軸/
’%が出発材7の中心軸方向に接近するように設けて、
ガラス微粒子堆積体8の形成を行う。こnにより、出発
材表面近傍の熱容fitt−小さくし、かつガラス微粒
子堆積体外側の熱谷fjkを大きくすることができるの
で、ガラス微粒子堆積体の温度分布が径方向に均一とな
るようにガラス微粒子堆積体を製造できる。その結果、
出発母材表面近傍での急激なカサ密度の増加を抑え、第
4図に示すように径方向に均一なカサ′!I!度分布が
実現できるのである。これにより得られた複合体を焼結
して、ガラス微粒子堆積体部分を透明ガラス層とすると
、出発材母材表面あるいは透明ガラス層内に残留する気
泡のない元ファイバガラス母材が得られる。又、ガラス
微粒子堆積体の割れもなくなる。さらにガラス微粒子堆
積体を焼結するときにフッ素等の屈折率制御用添加剤を
径方向に均一に添加することがでさる0 〔実施例〕 実施例 第2図の構成において、燃焼バーナ5として第11囚及
びΦ)に示した偏心4重管バーナを、外側ポートに対し
その偏心軸ノ・が出発材7の中心軸と接近するように設
置して、不発明によるガラス微粒子堆積体の形成を行っ
た。カラス原料としては、5iCt4 、燃焼ガスとし
てH2、助燃ガスとして02、不活性ガスとしてAri
用いた。
In the method of the present invention, instead of the combustion burner 5 in the conventional configuration shown in FIGS. 6 and 7, an eccentric multi-tube burner as illustrated in FIG. and the eccentric shaft of the eccentric multi-tube burner 5 as shown in FIG.
'% is provided so that it approaches the central axis direction of the starting material 7,
A glass particle deposit 8 is formed. This makes it possible to reduce the heat capacity fitt- in the vicinity of the surface of the starting material and to enlarge the thermal valley fjk on the outside of the glass fine particle deposit, so that the temperature distribution of the glass fine particle deposit becomes uniform in the radial direction. Glass fine particle deposits can be manufactured. the result,
By suppressing the sudden increase in bulk density near the surface of the starting base material, the bulk density is uniform in the radial direction as shown in Figure 4! I! It is possible to realize a degree distribution. When the composite thus obtained is sintered to form a transparent glass layer in the part of the glass particle deposit, an original fiber glass base material without any air bubbles remaining on the surface of the starting material base material or in the transparent glass layer can be obtained. Furthermore, cracks in the glass fine particle deposit are also eliminated. Furthermore, when sintering the glass fine particle deposit, it is possible to uniformly add a refractive index controlling additive such as fluorine in the radial direction. The eccentric quadruple tube burner shown in No. 11 and Φ) is installed with respect to the outer port so that its eccentric axis approaches the central axis of the starting material 7, and a glass fine particle deposit is formed according to the invention. I did it. As the glass raw material, 5iCt4, H2 as the combustion gas, 02 as the auxiliary combustion gas, and Ari as the inert gas.
Using.

各ガスの流量は5iC4= 1700 cc/ min
 、 H2=21 t/min、 02 = 25 t
/min、 Ar=161/minとし友。
The flow rate of each gas is 5iC4 = 1700 cc/min
, H2=21 t/min, 02=25 t
/min, Ar=161/min Toshitomo.

これにより得られた複合体のカサ密度分布は第4図に示
すとおり径方向に均一で、出発材ガラスロッド表面近傍
でのカサ密度の急激な変化を無くすことができた。
The bulk density distribution of the resulting composite was uniform in the radial direction as shown in FIG. 4, and it was possible to eliminate sudden changes in bulk density near the surface of the starting material glass rod.

さらに該複合体を透明ガラス化し友ところ、出発材表面
や透明ガラス層内に残留する気泡もなく、良好な高品質
ガラス体が得られ次。
Furthermore, when the composite was made into transparent glass, a high quality glass body was obtained with no air bubbles remaining on the surface of the starting material or in the transparent glass layer.

′!友、フッ素雰囲気で熱処理したところ、フッ素を径
方向に均−Vr−添加でさた。
′! When heat treated in a fluorine atmosphere, fluorine was evenly added in the radial direction.

以上の説明及び実施例では円筒状の偏心多重管バーナを
例示して述べたが円筒状に限ることなく、出発材の外周
に対してガラス微粒子全堆積させるのであれば角形であ
っても楕円状であっても、本発明の効果は損なわれない
In the above explanations and examples, a cylindrical eccentric multi-tube burner has been described as an example, but it is not limited to a cylindrical shape, and can be rectangular or elliptical as long as the entire glass particles are deposited on the outer periphery of the starting material. Even so, the effects of the present invention are not impaired.

また燃料ガスとしてHz z Ox t”例示して説明
したが、これ以外の例えばCH4,C3H,、Coなど
の燃料を用いても、本発明の効果は期待できる。
Further, although the explanation has been given by exemplifying "Hz z Ox t" as the fuel gas, the effects of the present invention can be expected even if other fuels such as CH4, C3H, Co, etc. are used.

〔発明の効果〕〔Effect of the invention〕

本発明は、偏心多重管バーナをその偏心軸を出発材中心
軸の方向に接近させるよう設けて行うことにより、出発
材表面近傍の急激なカサ密反増710’に抑えるに効果
的である0従って、ガラス微粒子堆積体を焼結すること
により、透明ガス、層を形成するとき、出発材である石
英系ガラス母材表面あるいは透明ガラス層内に気泡が残
留することのない元ファイバ用母材を製造することがで
きる。筐たフッ素のような屈折率制御祭別物を径方向に
均一に添加することができるに加え、ガラス微粒子堆積
体の割れも防止できる。
The present invention is effective in suppressing the sudden increase in bulk density near the surface of the starting material 710' by installing an eccentric multi-tube burner with its eccentric axis approaching the central axis of the starting material. Therefore, by sintering the glass particle deposit, when forming a transparent gas layer, no air bubbles remain on the surface of the starting quartz glass base material or in the transparent glass layer, which is the base material for the fiber. can be manufactured. In addition to being able to uniformly add a refractive index controlling agent such as fluorine in the radial direction, cracking of the glass particle deposit can also be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(8)及び(B)は本発明氏係わる偏心多重管バ
ーナの径方向断面図及び軸方向断面図、第2図及び第3
図は本発明の実施態様(!−概略説明する図、 第4図は本発明によジ実施例にて製造した出発材ロッド
とガラス微粒子堆積体の複合体の半径方向におけるカサ
’i#[(r/!3)  分布を示す図である。 第5回内及び(B)は従来法で用いている同心多重管バ
ーナの径方向及び軸方向断面図、第6図及び第7図はガ
ラス微粒子堆積体の製造方法を概略説明する図、 第8図は従来法によV製造した母材の半径方向における
カサ密度(f/m3)分布を示す図である。
Figures 1 (8) and (B) are radial and axial cross-sectional views of the eccentric multiple tube burner according to the present invention, Figures 2 and 3.
The figure shows the embodiment of the present invention (! - A diagram schematically explaining the present invention. (r/!3) distribution. Figure 5 and (B) are radial and axial cross-sectional views of the concentric multi-tube burner used in the conventional method, and Figures 6 and 7 are the glass FIG. 8 is a diagram illustrating the bulk density (f/m3) distribution in the radial direction of a base material manufactured by a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 自らの軸を回転軸として回転している実質的に円柱状も
しくは円筒状の出発材の片端近傍から、該出発材の外周
部上にガラス微粒子合成用燃焼バーナの火炎内にガラス
原料を供給することにより生成させたガラス微粒子を堆
積させ始め、該バーナを出発材の軸と平行に相対的に移
動させることにより、該出発材の外周部にガラス微粒子
堆積体を形成していく方法に於て、前記燃焼バーナとし
てその外周に対し内側ポートが偏心した多重管バーナを
用い、該偏心多重管バーナの偏心軸が出発材中心軸に接
近するように設けて行うことを特徴とする光ファイバ母
材の製造方法。
A glass raw material is supplied from near one end of a substantially cylindrical or cylindrical starting material rotating about its own axis into the flame of a combustion burner for glass particle synthesis onto the outer periphery of the starting material. In this method, the glass fine particles produced by this method are started to be deposited, and the burner is moved relatively parallel to the axis of the starting material to form a glass fine particle deposit on the outer periphery of the starting material. , an optical fiber preform characterized in that a multi-tube burner whose inner port is eccentric with respect to its outer periphery is used as the combustion burner, and the eccentric axis of the eccentric multi-tube burner is provided so as to approach the central axis of the starting material. manufacturing method.
JP28209386A 1986-11-28 1986-11-28 Production optical fiber of base material Pending JPS63139030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28209386A JPS63139030A (en) 1986-11-28 1986-11-28 Production optical fiber of base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28209386A JPS63139030A (en) 1986-11-28 1986-11-28 Production optical fiber of base material

Publications (1)

Publication Number Publication Date
JPS63139030A true JPS63139030A (en) 1988-06-10

Family

ID=17648030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28209386A Pending JPS63139030A (en) 1986-11-28 1986-11-28 Production optical fiber of base material

Country Status (1)

Country Link
JP (1) JPS63139030A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6588230B1 (en) * 1998-08-07 2003-07-08 Corning Incorporated Sealed, nozzle-mix burners for silica deposition
JP2011051825A (en) * 2009-09-01 2011-03-17 Maruwa Co Ltd Quartz burner and method for manufacturing the same
JP2020090427A (en) * 2018-12-07 2020-06-11 古河電気工業株式会社 Burner for porous body synthesis and method of manufacturing porous body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547237A (en) * 1978-09-29 1980-04-03 Fujitsu Ltd Production of glass base material for optical fiber
JPS5744613A (en) * 1980-07-01 1982-03-13 Stamicarbon Copolymer of alpha-methylstyrene and acrylonitrile and article obtained therefrom
JPS6044258A (en) * 1983-08-17 1985-03-09 Pilot Pen Co Ltd:The Vibrative tool machining device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547237A (en) * 1978-09-29 1980-04-03 Fujitsu Ltd Production of glass base material for optical fiber
JPS5744613A (en) * 1980-07-01 1982-03-13 Stamicarbon Copolymer of alpha-methylstyrene and acrylonitrile and article obtained therefrom
JPS6044258A (en) * 1983-08-17 1985-03-09 Pilot Pen Co Ltd:The Vibrative tool machining device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6588230B1 (en) * 1998-08-07 2003-07-08 Corning Incorporated Sealed, nozzle-mix burners for silica deposition
JP2011051825A (en) * 2009-09-01 2011-03-17 Maruwa Co Ltd Quartz burner and method for manufacturing the same
JP2020090427A (en) * 2018-12-07 2020-06-11 古河電気工業株式会社 Burner for porous body synthesis and method of manufacturing porous body

Similar Documents

Publication Publication Date Title
CA1233080A (en) Method of fabricating optical fiber preforms
JPH0686300B2 (en) Soot-like silica body and method for producing the same
JPS63139030A (en) Production optical fiber of base material
JPH0559053B2 (en)
JPH02164733A (en) Production of glass fine particle deposited body
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
JPS5852260Y2 (en) Torch for making step-type optical fiber base material
JPS604978Y2 (en) Glass particle synthesis torch
JPS6259063B2 (en)
JP3221059B2 (en) Method for producing glass particle deposit
JPS60260433A (en) Manufacture of base material for optical fiber
JPH0867524A (en) Production of preform of optical fiber
JPS6044258B2 (en) synthesis torch
JPS596818B2 (en) Manufacturing method of sooty glass rod for optical transmission
JPS61186240A (en) Production of piled material of glass fine particles
KR860001979B1 (en) Making method for preform of optical fiber
JPH0258218B2 (en)
JPS5939735A (en) Production of soot body of pulverized glass particle and its burner
JPS6261542B2 (en)
JPS61281039A (en) Production of optical fiber
JPS5915092B2 (en) Method of manufacturing optical transmission glass
JPS59152234A (en) Preparation of parent material for optical fiber
JPS6011241A (en) Manufacture of base material for optical fiber
JPS62162640A (en) Production of preform for optical fiber
JPS6172645A (en) Manufacture of optical fiber preform