JPH0686300B2 - Soot-like silica body and method for producing the same - Google Patents

Soot-like silica body and method for producing the same

Info

Publication number
JPH0686300B2
JPH0686300B2 JP16224687A JP16224687A JPH0686300B2 JP H0686300 B2 JPH0686300 B2 JP H0686300B2 JP 16224687 A JP16224687 A JP 16224687A JP 16224687 A JP16224687 A JP 16224687A JP H0686300 B2 JPH0686300 B2 JP H0686300B2
Authority
JP
Japan
Prior art keywords
heat
soot
silica
resistant substrate
silica fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16224687A
Other languages
Japanese (ja)
Other versions
JPS649821A (en
Inventor
英一 篠宮
昇 鈴木
利勝 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP16224687A priority Critical patent/JPH0686300B2/en
Publication of JPS649821A publication Critical patent/JPS649821A/en
Publication of JPH0686300B2 publication Critical patent/JPH0686300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/62Distance

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は合成石英ガラスの前駆体となるすす状シリカ体
とその製造方法に係り、特に回転している耐熱性基体上
にすす状シリカ微粒子を堆積させて形成されるすす状シ
リカ体とその製造方法に関する。
TECHNICAL FIELD The present invention relates to a soot-like silica body that is a precursor of synthetic quartz glass and a method for producing the same, and particularly soot-like silica fine particles on a rotating heat-resistant substrate. TECHNICAL FIELD The present invention relates to a soot-like silica body formed by depositing and a method for producing the same.

「従来の技術」 従来より、四塩化珪素等のシリカ形成気相原料を火炎中
での酸化/加水分解反応により生成したすす状シリカ微
粒子を耐熱性基体上に堆積させてすす状シリカ体(以下
スート体という)を生成した後、該スート体を所定雰囲
気下で焼結する事により透明状の溶融ガラス体を得る、
いわゆる気相による合成石英ガラスの製造方法は公知で
ある。
“Prior Art” Soot-like silica particles have been conventionally deposited by depositing fine particles of soot-like silica produced by an oxidation / hydrolysis reaction of a silica-forming gas phase raw material such as silicon tetrachloride in a flame (hereinafter referred to as “soot-like silica body”). A soot body) and then sintering the soot body in a predetermined atmosphere to obtain a transparent molten glass body.
A method for producing so-called vapor phase synthetic quartz glass is known.

かかる合成石英ガラスの前駆体となるスート体の製造
は、同心円状の環状酸水素火炎バーナに四塩化珪素等の
珪素化合物と酸素及び水素を供給し、酸水素火炎中で珪
素化合物を酸化、加水分解させてすす状シリカ微粒子を
生成し、これを石英ガラス、炭素、炭化珪素、アルミナ
等のような、回転している耐熱性基体上に順次堆積させ
る事により、所定直径と所定長さのスート体を得る方法
が一般的である。
The soot body that is a precursor of such synthetic quartz glass is manufactured by supplying a silicon compound such as silicon tetrachloride and oxygen and hydrogen to a concentric annular oxyhydrogen flame burner, and oxidizing and hydrolyzing the silicon compound in an oxyhydrogen flame. By decomposing soot-like silica fine particles, which are successively deposited on a rotating heat-resistant substrate such as quartz glass, carbon, silicon carbide, alumina, etc., soot of a predetermined diameter and a predetermined length is obtained. The way to get a body is common.

そしてこのような製造方法は、耐熱性基体軸線に沿って
一列に配置した単数又は複数のバーナに対し耐熱性基体
を順次軸方向に移動させながら、該基体上にすす状シリ
カ微粒子を円錐状に積層してスート体を製造する技術
(特開昭56-104740号、特開昭58-9835号他、以下第1従
来技術という。)と、又すす状シリカ微粒子の耐熱性基
体への堆積速度を向上させる為に、耐熱性基体のすす状
シリカ微粒子堆積部位全長に亙って多数本のバーナを列
状に配置したバーナ列を用いるか、又は前記スート体軸
方向に沿ってスリット開口を有するリボン状バーナを用
い、該バーナ(列)により回転している耐熱性基体上
に、軸方向に均一にすす状シリカ微粒子を積層させる技
術(特開昭53-70449号、以下第2従来技術という。)に
大別されるが、これらの製造技術はいずれもバッチ式に
スート体を製造する方法である為、石英ガラスの生産性
を高める為にはスート体の大型化が必須の条件となる。
And such a manufacturing method is such that while the heat-resistant substrate is sequentially moved in the axial direction with respect to the burner or burners arranged in a row along the heat-resistant substrate axis, the soot-like silica fine particles are conically formed on the substrate. A technique for producing a soot body by laminating (JP-A-56-104740, JP-A-58-9835, etc., hereinafter referred to as the first prior art), and also a deposition rate of soot-like silica fine particles on a heat-resistant substrate. In order to improve the above, a burner row in which a large number of burners are arranged in a row over the entire length of the soot-like silica fine particle deposition site of the heat resistant substrate is used, or a slit opening is provided along the soot body axial direction. A technique in which a ribbon-shaped burner is used to uniformly deposit soot-shaped silica fine particles in the axial direction on a heat-resistant substrate rotated by the burner (row) (Japanese Patent Laid-Open No. 53-70449, hereinafter referred to as second conventional technique). .), But these manufacturing techniques Since is a process for producing a soot body to either batchwise, in order to enhance the productivity of the quartz glass becomes large is essential condition of the soot body.

「発明が解決しようとする問題点」 しかしながら、前記製造方法がバッチ式、言い変えれば
各耐熱性基体上に所定量のすす状シリカ微粒子の堆積終
了毎に、前記バーナよりの火炎を消火させ、一旦所定温
度以下に冷却した後、次工程の焼結溶融工程に移行する
方法を取ると、前記スート体は多孔質で透明ガラス体に
比較して大幅に熱容量が小さい為に、前記バーナよりの
火炎消火に伴ないスート体の表面が急激に冷却される。
その際、スート体が大型化、特に大口径化すればする程
冷却された表面と内部との温度差が大きくなり、冷却さ
れた表面の収縮によってスート体表面に引張応力が生じ
ひび割れを引き起こす事になる。
"Problems to be solved by the invention" However, the production method is a batch method, in other words, each time the deposition of a predetermined amount of soot-like silica fine particles on each heat-resistant substrate is completed, the flame from the burner is extinguished, Once cooled to a predetermined temperature or less and then transferred to the sintering / melting step of the next step, the soot body is porous and has a significantly smaller heat capacity than the transparent glass body. As the flame is extinguished, the surface of the soot body is rapidly cooled.
At that time, the larger the size of the soot body, especially the larger the diameter, the larger the temperature difference between the cooled surface and the inside, and the shrinkage of the cooled surface causes tensile stress on the surface of the soot body, causing cracking. become.

而も、前記スート体はすす状のシリカ微粒子を単に堆積
させて多孔質状に形成させている為にその機械的強度は
極めて脆く、前記半径方向の温度変化による引張応力が
発生すると容易にひび割れを引き起こす結果となる。従
って従来の製造方法では前記熱的衝撃により大口径のス
ート体を得ることは極めて困難であるとされていた。
Further, since the soot body is formed by simply depositing soot-like silica fine particles to form a porous form, its mechanical strength is extremely fragile and easily cracks when tensile stress is generated due to the temperature change in the radial direction. Will result in. Therefore, it has been considered extremely difficult to obtain a soot body having a large diameter by the thermal shock by the conventional manufacturing method.

又前記従来技術、特に第1の従来技術で製造されたスー
ト体においては、耐熱性基体と接する内側部位での堆積
密度が最も低くなり易い為に、而も耐熱性基体とスート
体とは熱膨張率が違う事から該内側部位におけるひび割
れが最も多く発生し易いという問題も派生していた。
Further, in the soot body manufactured by the above-mentioned conventional technique, particularly the first conventional technique, the deposition density at the inner portion in contact with the heat-resistant substrate is likely to be the lowest, so that the heat-resistant substrate and the soot body are heat-treated. Since the expansion rate is different, the problem that cracks are most likely to occur in the inner part is also derived.

かかる欠点を解消する為に、前記スート体の堆積部位の
半径方向の堆積密度を全域に亙って従来より大にする方
法が考えられるが、このような製造方法を採用すると前
記とは逆に内部応力の存在が大になり過ぎて、局所的な
変形やひび割れ等が発生し、尚前記問題の解決には至ら
ない。
In order to solve such a defect, a method of increasing the deposition density in the radial direction of the deposition site of the soot body over the entire region can be considered, but if such a manufacturing method is adopted, it is contrary to the above. The presence of internal stress becomes too large, and local deformation and cracks occur, which still cannot solve the above problems.

本発明は、かかる従来技術の欠点に鑑み、スート体の表
面や内側部位にひび割れ等が発生する事なく、容易に大
型且つ大口径化を図る事の出来るスート体とその製造方
法を提供する事を目的とする。
In view of the above-mentioned drawbacks of the prior art, the present invention provides a soot body and a method for manufacturing the soot body that can be easily made large and have a large diameter without causing cracks or the like on the surface or the inner portion of the soot body. With the goal.

「問題点を解決する為の手段」 先ず本発明者らは前述したような大型のスート体を得る
際に最大の障害となるひび割れの発生する原因について
種々検討し、その解決に至った経過を順を追って説明す
る。
"Means for Solving Problems" First, the present inventors examined various causes of cracking, which is the biggest obstacle in obtaining a large soot body as described above, and the progress leading to the solution is described. It will be explained step by step.

まずスート体の製造工程中においては、すす状シリカ微
粒子が生成される酸水素火炎中に耐熱性基体に担持され
たスート体が位置している為に、当然にシリカ微粒子堆
積中におけるスート体は高温に維持されている。
First, during the manufacturing process of the soot body, since the soot body supported on the heat-resistant substrate is located in the oxyhydrogen flame in which soot-like silica fine particles are generated, the soot body naturally deposits during the silica fine particle deposition. It is maintained at a high temperature.

しかし、すす状シリカ微粒子堆積終了後は、酸水素火炎
バーナの火炎消火に伴ってスート体の外表面は急激に冷
却される事になるが、スート体は多孔質空隙層の存在に
より熱伝導率が低く、表面の冷却が速やかに内部に伝達
されない為に、該スート体の内部は依然として保温され
た状態にある。
However, after the soot-like silica fine particles are deposited, the outer surface of the soot body is cooled rapidly as the oxyhydrogen flame burner flame extinguishes, but the soot body has a thermal conductivity due to the presence of the porous void layer. Is low and the cooling of the surface is not immediately transmitted to the inside, so the inside of the soot body is still in a state of being kept warm.

従って冷却された外表面では収縮が始まるが、保温状態
にある内部では収縮は始まらず、両者間の収縮率の差異
により収縮しようとする外表面に引張応力が発生するこ
とは避けられない。
Therefore, shrinkage starts on the cooled outer surface, but does not start inside the heat-retaining state, and tensile stress is unavoidably generated on the outer surface which is about to shrink due to the difference in shrinkage ratio between the two.

そして、この現象は外表面と内部の温度差が大きい程、
すなわちスート体が大口径になればなる程顕著なものと
なり、而もスート体は前述したようにその機械的強度が
極めて脆いために、前記引張応力に起因して外表面にひ
び割れを引き起こす結果となる。
And this phenomenon is as the temperature difference between the outer surface and the inside is larger,
That is, the larger the diameter of the soot body becomes, the more remarkable it becomes, and the mechanical strength of the soot body is extremely brittle as described above, so that the tensile stress causes the outer surface to crack. Become.

更に該スート体の内表面、すなわち耐熱性基体と接する
内側部位においては堆積密度が最も低くなり、而も耐熱
性基体との熱膨張率の違いのため冷却によって隙間が生
じる。すると前述したように機械的強度が極めて脆いた
め、該スート体の収縮による引張応力あるいは、該スー
ト体の回転運動によるごくわずかな衝撃によってひび割
れを起こす結果となる。
Further, the deposition density is lowest on the inner surface of the soot body, that is, the inner portion in contact with the heat-resistant substrate, and gaps are formed by cooling due to the difference in coefficient of thermal expansion from the heat-resistant substrate. Then, as described above, since the mechanical strength is extremely brittle, a tensile stress due to the contraction of the soot body or a slight impact due to the rotational movement of the soot body causes cracking.

さて、前記スート体はすす状のシリカ微粒子を堆積させ
て多孔質状に形成されている為、堆積中の熱的状態を支
配する条件を変化、言い変えれば前記すす状シリカ微粒
子堆積時に付与される単位時間当たりの熱エネルギーを
変化させる事によって、容易にスート体半径方向の堆積
密度分布を調整変化させる事が出来る。
Since the soot body is formed into a porous form by depositing soot-like silica fine particles, the conditions governing the thermal state during deposition are changed, in other words, the soot-like silica fine particles are provided at the time of deposition. It is possible to easily adjust and change the deposition density distribution in the radial direction of the soot body by changing the thermal energy per unit time.

即ち、酸水素火炎中で生成されたすす状シリカ微粒子は
充分な熱エネルギーを受けると軟化変形しその表面は粘
性を帯び、該粘性を帯びたすす状シリカ微粒子は互いに
融着しやすい性質を持つためすす状シリカ微粒子間の結
合面積は飛躍的に大きくなる。その結果、スート体の堆
積密度が増大すると共にすす状シリカ微粒子間の結合力
が大きくなり、スート体の機械的強度は増加する。
That is, the soot-like silica fine particles produced in the oxyhydrogen flame are softened and deformed when they are subjected to sufficient heat energy, and the surface thereof becomes viscous, and the viscous soot-like silica fine particles tend to be fused to each other. The bonding area between the soot-like silica fine particles increases dramatically. As a result, the deposition density of the soot body increases and the binding force between the soot-like silica particles increases, so that the mechanical strength of the soot body increases.

従って、すす状シリカ微粒子堆積工程中、所望部位に充
分な熱エネルギーを与える事によってその部位のすす状
シリカ微粒子相互の結合度は大きくなり、その分堆積密
度と共に機械的強度の増大につながる。
Therefore, during the step of depositing soot-like silica particles, by providing sufficient heat energy to a desired site, the degree of bonding between the soot-like silica particles at that site increases, which leads to an increase in the deposition density and mechanical strength.

そこで冷却によって引張応力が発生するスート体の内外
表面、すなわち耐熱性基体に接する内側部位と外表面の
堆積密度を高める事によって引張応力に耐え得る機械的
強度を有するスート体を得る事が出来、ひび割れの発生
を完全に防ぐ事が出来るものである。
Therefore, it is possible to obtain a soot body having mechanical strength capable of withstanding the tensile stress by increasing the deposition density of the inner and outer surfaces of the soot body where tensile stress is generated by cooling, that is, the inner portion and outer surface in contact with the heat resistant substrate, It is possible to completely prevent the occurrence of cracks.

従って本第一発明の要旨とする所は、 前記耐熱性基体に中空管体を用い、前記シリカ体の半径
方向におけるシリカ微粒子の堆積密度分布を、耐熱性基
体に接する内側部位より半径方向に徐々に漸減してその
中間域で最小に至り、次いで外表面部位に進むにつれ再
び増大するように設定、言い変えれば中間域に比してス
ート体の内外表面側の堆積密度を大に設定するととも
に、該シリカ体の外径を300m以上に形成した点にある。
Therefore, the gist of the first aspect of the present invention is that a hollow tube is used for the heat-resistant substrate, and the deposition density distribution of the silica fine particles in the radial direction of the silica body is set in the radial direction from the inner portion in contact with the heat-resistant substrate. It is set to gradually decrease and reach a minimum in the intermediate region, and then increase again as it progresses to the outer surface region, in other words, the deposition density on the inner and outer surface sides of the soot body is set to be larger than that in the intermediate region. In addition, the outer diameter of the silica body is 300 m or more.

この場合前記内側部位は耐熱性基体と直接接触し、該基
体との熱収縮率の差異によって生じる引っ張り応力が最
も大になる部位である為に、該内側部位の堆積密度を、
外表面部位の堆積密度より大に設定した方が本発明の効
果をより円滑に達成し得る。
In this case, since the inner portion is a portion that is in direct contact with the heat resistant substrate and the tensile stress generated by the difference in the heat shrinkage ratio with the substrate is the largest, the deposition density of the inner portion is
The effect of the present invention can be achieved more smoothly by setting the deposition density higher than the deposition density on the outer surface portion.

一方、本第2発明は前記第1発明に記載されたスート体
を円滑に製造する方法を提供するもので、その要旨とす
る所は、 前記シリカ微粒子堆積時に付与される単位時間当たりの
熱エネルギーを半径方向に沿って変化、具体的には前記
熱エネルギーを、耐熱性基体に接する内側部位より半径
方向に徐々に漸減してその中間域で最少に至り、次いで
外表面部位に進むにつれ再び増大するように変化させな
がら、耐熱性基体上にシリカ微粒子を順次堆積させる点
にある。
On the other hand, the second invention provides a method for smoothly producing the soot body described in the first invention, and the gist of the method is the thermal energy per unit time applied during the deposition of the silica fine particles. Along the radial direction, specifically, the thermal energy is gradually reduced in the radial direction from the inner portion in contact with the heat-resistant substrate, reaches a minimum in the intermediate region, and then increases again as it goes to the outer surface portion. That is, the silica fine particles are sequentially deposited on the heat resistant substrate while changing the above.

この場合前記熱エネルギーを変化させるには、耐熱性基
体の回転数の調整、シリカ微粒子を生成するバーナに供
給する可燃性ガス(水素ガス等)又は/及び支燃性ガス
(酸素ガス等)のガス流量の調整、或いは前記バーナと
シリカ微粒子堆積面間の距離の調整、その他の調整手段
の内、任意に一又は複数組組み合わせて用いる事によ
り、容易に且つ前記熱エネルギーの変化及び調整を行う
事が出来る。
In this case, in order to change the thermal energy, the rotation speed of the heat-resistant substrate is adjusted, and the combustible gas (hydrogen gas or the like) or / and the combustion-supporting gas (oxygen gas or the like) supplied to the burner for producing silica fine particles is used. The thermal energy can be easily changed and adjusted by adjusting the gas flow rate, adjusting the distance between the burner and the silica fine particle deposition surface, or using any one or a combination of other adjusting means. I can do things.

尚、本第2発明においても、前記スート体の同一積層部
位(内側部位、中間域、外表面)の軸方向における堆積
密度は極力均一にした方がよく、この為、耐熱性基体の
軸方向に延設するリボン状バーナ又はバーナ列により、
シリカ微粒子堆積部位のほぼ全長に亙ってシリカ微粒子
生成用の火炎を形成し、シリカ微粒子を耐熱性基体軸方
向に均一に積層可能に構成するとともに、特に前記火炎
と耐熱性該基体貫を軸線方向に沿って相対的に往復運動
させがらシリカ微粒子を堆積させる事により、一層前記
効果が円滑に達成し得る。
In the second aspect of the present invention as well, it is preferable to make the deposition density in the axial direction of the same laminated portion (inner portion, intermediate region, outer surface) of the soot body as uniform as possible. The ribbon-shaped burner or burner row extending to
A flame for producing silica fine particles is formed over almost the entire length of the silica fine particle deposition site so that the silica fine particles can be uniformly laminated in the axial direction of the heat resistant substrate, and in particular, the flame and the heat resistant substrate penetrate through the axis line. The effect can be achieved more smoothly by depositing silica fine particles while relatively reciprocating along the direction.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配置などは特に特
定的な記載がない限りは、この発明の範囲をそれのみに
限定する趣旨ではなく、単なる説明例に過ぎない。
[Embodiment] Hereinafter, a preferred embodiment of the present invention will be exemplarily described in detail with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention only thereto, but merely illustrative examples. Nothing more than.

第2図(A)(B)(C)は本発明の実施例に係るスー
ト体を製造する装置を示す概略図、第1図はかかる製造
装置により製造されたスート体の断面図を示す。
2 (A), (B) and (C) are schematic views showing an apparatus for producing a soot body according to an embodiment of the present invention, and FIG. 1 is a sectional view of the soot body produced by such a production apparatus.

第2図において、1は、多数の酸水素火炎バーナ1a…を
バーナ台11上に一列状に直立配置させて形成したバーナ
列で、各バーナ1a…の火炎開口を耐熱性基体2軸線と平
行な水平線上に位置せしめるとともに、耐熱性基体2上
に堆積させるスート体3長さに応じて前記バーナ列1の
全長、言い変えればバーナ1a…配設間隔と配設本数を適
宜選択している。
In FIG. 2, reference numeral 1 denotes a burner row formed by vertically arranging a large number of oxyhydrogen flame burners 1a on the burner base 11 in a single row. The flame openings of each burner 1a are parallel to the heat-resistant substrate 2 axis. The burner array 1 is positioned on the horizontal line, and the burner row 1 has the entire length, that is, the burner 1a ... Arrangement intervals and the number of the burner rows 1 are appropriately selected according to the length of the soot body 3 deposited on the heat resistant substrate 2. .

尚、前記バーナ列1に用いる酸水素火炎バーナ1a…は公
知の如く、水素と酸素を燃焼させて火炎4を形成すると
ともに、該火炎4中に四塩化珪素等のシリカ形成気相原
料を酸素等のキャリアガスとともに送り込み、火炎4中
で加水分解反応を生ぜしめ、すす状のシリカ微粒子3aを
生成させるものである。
As is well known, the oxyhydrogen flame burner 1a used for the burner array 1 burns hydrogen and oxygen to form a flame 4, and in the flame 4, a silica-forming gas phase raw material such as silicon tetrachloride is oxygen. It is sent together with a carrier gas such as, and causes a hydrolysis reaction in the flame 4 to generate soot-like silica fine particles 3a.

一方、耐熱性基体2はアルミナその他の耐熱性材料で中
空円筒状に形成され、そして該耐熱性基体2を、その周
面が前記各バーナ1a…により形成される火炎4中に位置
するように前記バーナ列1と平行に水平方向に延設して
配設させるとともに、例えば第2図(A)に示すように
後記する駆動手段により耐熱性基体2の軸心を中心とし
て回転可能にして且つ長さ方向に一定の振巾で往復運動
可能に構成し、これにより前記火炎4中に生成したすす
状シリカ微粒子が耐熱性基体2周面上に長さ方向に均一
な堆積密度で積層堆積させる事が出来る。
On the other hand, the heat-resistant substrate 2 is made of alumina or another heat-resistant material in the shape of a hollow cylinder, and the peripheral surface of the heat-resistant substrate 2 is positioned in the flame 4 formed by the burners 1a. The burner array 1 is arranged so as to extend in the horizontal direction in parallel with the burner array 1, and is made rotatable about the axis of the heat-resistant substrate 2 by a driving means described later as shown in FIG. 2 (A), for example. The soot-like silica fine particles generated in the flame 4 are stacked and deposited on the peripheral surface of the heat-resistant substrate 2 at a uniform deposition density in the length direction by the reciprocating motion with a constant amplitude in the length direction. I can do things.

尚、前記耐熱性基体2の往復運動は各バーナ1a…間の酸
水素火炎4の干渉によって起こる堆積層内外表面の形状
の不具合を除去すると共に、スート体3長さ方向の密度
を均一にする為に行われるもので、従ってその振幅は、
隣接する各バーナ1a…間距離と同程度に設定するのがよ
い。
The reciprocating motion of the heat-resistant substrate 2 eliminates the defects in the shape of the inner and outer surfaces of the deposited layer caused by the interference of the oxyhydrogen flame 4 between the burners 1a ... And makes the density of the soot body 3 uniform in the longitudinal direction. The amplitude is
It is recommended to set the distance to be the same as the distance between adjacent burners 1a.

又、前記耐熱性基体2の往復運動は、バーナ列1と耐熱
性基体2間が相対的に平行移動すれば良い訳であるか
ら、例えばバーナ列1側を往復運動させても良く、又バ
ーナ列1と耐熱性基体2の両者を夫々振幅を異ならせて
往復運動させてもよい。
Further, the reciprocating motion of the heat-resistant substrate 2 may be that the burner row 1 and the heat-resistant substrate 2 move relatively in parallel, so that, for example, the burner row 1 side may be reciprocated, or the burner may be reciprocated. Both the row 1 and the heat resistant substrate 2 may be reciprocated with different amplitudes.

さて本発明を円滑に達成するには、シリカ微粒子堆積工
程中に付与される単位時間当たりの熱エネルギー(火炎
4)量を堆積量に応じて半径方向に順次調整可能な調整
手段が必要である。
In order to smoothly achieve the present invention, it is necessary to have an adjusting means capable of sequentially adjusting the amount of thermal energy (flame 4) applied per unit time in the silica fine particle deposition step in the radial direction according to the amount of deposition. .

このような熱エネルギー調整手段としては、例えば第2
図(A)に示すように、前記各バーナ1a…と水素供給源
61又は/及び酸素供給源62間を接続する接続管63上に流
量調整弁64,65を取付け、該制御弁64,65により前記各バ
ーナ1a…に供給される水素源又は/及び酸素の供給量を
調整するようにしてもよく、又第2図(B)に示すよう
に、前記各バーナ1a…を保持するバーナ台11を、耐熱性
基体2軸線方向と直交する方向にのみ移動可能な、スラ
イダ70に組付け、該スライダ70により、すす状シリカ微
粒子堆積量に応じてバーナ1a…の火炎4開口とスート体
3側のすす状シリカ微粒子堆積面間の距離を離接可能に
構成してもよい。
As such heat energy adjusting means, for example, the second
As shown in Fig. (A), each of the burners 1a ... And the hydrogen supply source
61 or / and a supply pipe 63 connecting the oxygen supply sources 62 with flow rate adjusting valves 64, 65, and hydrogen sources or / and oxygen supplies to the burners 1a ... by the control valves 64, 65. The amount may be adjusted, and as shown in FIG. 2 (B), the burner base 11 holding each of the burners 1a ... Can be moved only in the direction orthogonal to the axial direction of the heat resistant substrate 2. The slider 70 is attached to the slider 70 so that the distance between the opening of the flame 4 of the burner 1a and the soot silica particle deposition surface on the soot body 3 side can be separated and contacted according to the amount of soot silica particle deposition. May be.

更に、第2図(C)に示すように、前記耐熱性基体2に
回転力を付与させる駆動手段51に変速機52(例えば直流
モータを駆動手段51として利用した場合においては電圧
調整器を変速機52として利用出来る)を付設し、該変速
機52の調整により、すす状シリカ微粒子の堆積量に応じ
て耐熱性基体2の回転数を調整してもよく、いずれにし
てもその他種々の調整手段により単位時間当たりの熱エ
ネルギー量を調整する事は可能であり、これにより半径
方向に所定の堆積密度分布を持ったスート体3を容易に
製造する事が可能となる。
Further, as shown in FIG. 2 (C), the transmission 52 is applied to the drive means 51 for applying the rotational force to the heat resistant substrate 2 (for example, when a DC motor is used as the drive means 51, the voltage regulator is changed to the speed change gear). (Which can be used as the machine 52), and by adjusting the transmission 52, the number of rotations of the heat-resistant substrate 2 can be adjusted according to the amount of the soot-like silica particles deposited. It is possible to adjust the amount of heat energy per unit time by means, which makes it possible to easily manufacture the soot body 3 having a predetermined deposition density distribution in the radial direction.

又、前記耐熱性基体2を往復運動する手段としては、例
えば駆動手段51の回転力を減速歯車53を介して軸方向に
所定範囲揺動可能なカム手段54に伝達し、該カム手段を
耐熱性基体2に連結する事により容易に耐熱性基体2の
往復運動を行う事が出来る。
As means for reciprocating the heat-resistant base body 2, for example, the rotational force of the driving means 51 is transmitted to the cam means 54 which can swing axially within a predetermined range through the reduction gear 53, and the cam means is heat-resistant. By connecting to the heat-resistant substrate 2, the heat-resistant substrate 2 can be easily reciprocated.

従ってかかる製造装置により製造されたスート体3は、
例えば第1図及び第3図に示す如く、耐熱性基体2に接
する内側部位31の堆積密度を最大とし、該内側部位31よ
り半径方向に外方に進むに連れに漸減してその中間域32
で最少に至り、更に外表面部位33に進むにつれ再び増大
するように堆積密度を設定する事が容易であり、これに
よりすす状シリカ微粒子堆積終了の際バーナ1a…の火炎
4消火による冷却に伴って発生する引張応力に耐え得る
機械的強度を有するスート体3を得る事が出来る。
Therefore, the soot body 3 manufactured by such a manufacturing apparatus is
For example, as shown in FIG. 1 and FIG. 3, the deposition density of the inner portion 31 in contact with the heat-resistant substrate 2 is maximized, and gradually decreases outward from the inner portion 31 in the radial direction, and the intermediate region 32 thereof is gradually reduced.
It is easy to set the deposition density so as to increase again as it goes to the outer surface part 33, and this makes it possible to cool the burner 1a ... It is possible to obtain the soot body 3 having a mechanical strength capable of withstanding the tensile stress generated as a result.

又、本実施例においては、耐熱性基体2のスート体3堆
積部位軸方向全域に亙ってバーナ列1、言い変えればす
す状シリカ微粒子を生成する火炎4が存在する為に、ス
ート体3の長さ方向に均一にすす状シリカ微粒子を堆積
させる事が出来る。
Further, in the present embodiment, the soot body 3 exists because the burner row 1, that is, the flame 4 that produces soot-like silica fine particles exists over the entire area of the soot body 3 deposition site of the heat resistant substrate 2 in the axial direction. The soot-shaped silica fine particles can be uniformly deposited in the length direction of the.

次にかかる実施例に基づく確認実験を詳述する。Next, a confirmation experiment based on such an example will be described in detail.

[実施例1] 先ず第2図(C)に示す製造装置を用いて、アルミナを
主成分とする直径80mm、長さ2000mmの棒状焼結体を耐熱
性基体2に用い、該耐熱性基体2と酸水素火炎4バーナ
1a…との間隔を160mmとして、酸水素火炎バーナ1a…を1
00mm間隔で耐熱性基体2長さ方向に12個直線状に配列し
た。この酸水素火炎バーナ1a…に酸素0.2Nm3/hをキャリ
アガスとして気体状四塩化珪素1500g/h、酸素を0.4Nm3/
h、水素を1.8Nm3/h、夫々供給し、その酸水素火炎4か
ら発生したすす状シリカ微粒子を前記耐熱性基体2に堆
積させた。この際、耐熱性基体2を65rpmで回転させる
と共に、バーナ1a…配列方向に320mm/minの速度で100mm
の振巾で往復運動させる。これによって、すす状シリカ
微粒子は耐熱性基体2長さ方向に均一に積層し、以下経
時と共にスート体は太径なものとなる。
Example 1 First, using a manufacturing apparatus shown in FIG. 2 (C), a rod-shaped sintered body containing alumina as a main component and having a diameter of 80 mm and a length of 2000 mm was used as the heat-resistant substrate 2, and the heat-resistant substrate 2 was used. And oxyhydrogen flame 4 burner
1mm with oxyhydrogen flame burner 1a ...
Twelve pieces of the heat resistant substrate 2 were arranged linearly in the longitudinal direction at intervals of 00 mm. Oxygen hydrogen flame burner 1a ... with oxygen 0.2Nm 3 / h as carrier gas, gaseous silicon tetrachloride 1500g / h, oxygen 0.4Nm 3 / h
Hydrogen and hydrogen were supplied at 1.8 Nm 3 / h, respectively, and soot-like silica fine particles generated from the oxyhydrogen flame 4 were deposited on the heat resistant substrate 2. At this time, the heat-resistant substrate 2 is rotated at 65 rpm, and the burner 1a ... 100 mm at a speed of 320 mm / min in the arrangement direction.
Reciprocate with the amplitude of. As a result, the soot-like silica fine particles are uniformly laminated in the length direction of the heat resistant substrate 2, and the soot body becomes thicker with the lapse of time.

そして該すす状シリカ微粒子堆積工程中に、まず耐熱性
基体2の回転数を65rpmに設定し、変速機52により該回
転数を0.47rpm/minの割合で15分間回転数を減少させ堆
積密度の高い層31を形成した。15分経過後58rpmになっ
た所で回転数を440分間このままで維持した。この結
果、耐熱性基体2の回転数は一定でもすす状シリカ微粒
子堆積に伴ってスート体の太さは増し、その周速度は上
昇するので結果として堆積密度は漸減する事となる。
Then, during the soot-like silica fine particle deposition step, first, the rotation speed of the heat-resistant substrate 2 is set to 65 rpm, and the rotation speed is reduced by the transmission 52 at a rate of 0.47 rpm / min for 15 minutes to reduce the deposition density. A high layer 31 was formed. After 15 minutes, at 58 rpm, the rotation speed was maintained for 440 minutes. As a result, the thickness of the soot body increases with the deposition of soot-like silica fine particles even when the rotation speed of the heat-resistant substrate 2 is constant, and the peripheral speed thereof increases, so that the deposition density gradually decreases.

更にその後、0.165rpm/minの割合で170分間回転数を減
少させ再び堆積密度を高め、28rpmになった所で、更に
0.025rpm/minの割合で40分間回転数を減少させ第2の高
密度層33を形成した所ですす状シリカ微粒子堆積を終了
した。
After that, at a rate of 0.165 rpm / min, the rotation speed was reduced for 170 minutes to increase the deposition density again, and at 28 rpm,
The rotation speed was reduced at a rate of 0.025 rpm / min for 40 minutes to form the second high-density layer 33, and the soot-like silica fine particle deposition was completed.

その結果第5図に示すような密度分布を持つシリカ体を
得る事が出来、バーナ1a…消火後も熱衝撃によるひび割
れを起こす事もなく外径300mmに及ぶ大口径のスート体
を製造する事が出来た。
As a result, it is possible to obtain a silica body having a density distribution as shown in Fig. 5, and to manufacture a soot body with a large outer diameter of 300 mm without cracking due to thermal shock even after burner 1a ... extinguishing fire. Was completed.

[実施例2] 次に第2図(A)に示す製造装置を用いて、前記実施例
と同様の条件ですす状シリカ微粒子を堆積するにあた
り、先ず耐熱性基体2の回転数は65rpm/minに固定し、
すす状シリカ微粒子堆積に伴って酸水素火炎バーナ1a…
に供給する酸素量及び水素量を調整した。
[Example 2] Next, when depositing soot-like silica fine particles under the same conditions as in the above example using the manufacturing apparatus shown in Fig. 2 (A), first, the rotation speed of the heat resistant substrate 2 was 65 rpm / min. Fixed to
Oxyhydrogen flame burner 1a ...
The amount of oxygen and the amount of hydrogen supplied to were adjusted.

まず、すす状シリカ微粒子堆積にあたり15分間、酸素を
0.5Nm3/h、水素を2.0Nm3/h夫々供給し第1の高密度層31
を形成した。その後120分経過した所で酸素を0.45Nm3/
h、水素を1.9Nm3/hに夫々減少し、更に200分経過後、酸
素を0.4Nm3/h、水素を1.8Nm3/h、に夫々減少し、堆積密
度を漸減させた。120分経過後再び堆積密度を高める
為、徐々に酸素量、水素量を増し、170分後に夫々酸素
0.6Nm3/h、水素2.7Nm3/hに増量し、更に40分間この状態
で堆積し続ける事によって第2の高密度層33を形成しす
す状シリカ微粒子堆積を終了した。
First, oxygen was added for 15 minutes to deposit soot-like silica particles.
0.5 nm 3 / h, 2.0 Nm hydrogen 3 / h respectively supplied to the first high density layer 31
Was formed. After 120 minutes, oxygen was added to 0.45 Nm 3 /
h, hydrogen respectively reduced to 1.9 nm 3 / h, was further after 200 minutes, oxygen respectively decreased 0.4 Nm 3 / h, hydrogen 1.8 Nm 3 / h, in, decreasing the deposition density. After 120 minutes, to increase the deposition density again, gradually increase the oxygen content and hydrogen content, and after 170 minutes, add oxygen respectively.
0.6 nm 3 / h, and increased hydrogen 2.7 Nm 3 / h, to complete the additional 40 minutes the formed sooty silica particles depositing a second high-density layer 33 by continuing to deposit in this state.

その結果、前記実施例で得られたスート体に類似の堆積
密度分布を持つ外径300mmに及ぶ大口径スート体を製造
する事が出来た。
As a result, it was possible to manufacture a large-diameter soot body having an outer diameter of 300 mm and a deposition density distribution similar to that of the soot body obtained in the above example.

次に前記確認実験1及び2に基づいて製造したスート体
を焼結溶融して合成石英ガラスを製造した所、従来に比
してガラス体内表面側に封じ込められた気泡の量も大幅
に減少し且つ内表面側の平面形状もほぼ平滑に形成出来
た。
Next, when a synthetic quartz glass was manufactured by sintering and melting the soot body manufactured based on the confirmation experiments 1 and 2, the amount of bubbles trapped on the surface side of the glass body was significantly reduced as compared with the conventional case. Moreover, the planar shape of the inner surface side could be formed to be almost smooth.

「発明の効果」 以上記載した如く本発明にして始めて、スート体3の表
面や内側部位にひび割れ等が発生する事なく、容易に大
型且つ大口径化を図る事の出来、その実用的価値は極め
て大である。
"Effects of the Invention" As described above, it is possible to easily increase the size and diameter of the soot body 3 without causing cracks or the like on the surface or the inner side of the soot body, and to obtain its practical value. It is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第2図(A)(B)(C)は本発明の実施例に係るスー
ト体を製造する装置を示す概略図、第1図はかかる製造
装置により製造されたスート体の断面図を示す。第3図
は第1図に示すスート体の堆積密度を示す分布図であ
る。
2 (A), (B) and (C) are schematic views showing an apparatus for producing a soot body according to an embodiment of the present invention, and FIG. 1 is a sectional view of the soot body produced by such a production apparatus. FIG. 3 is a distribution diagram showing the deposition density of the soot body shown in FIG.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】軸回転している耐熱性基体上にシリカ微粒
子を堆積させて形成されるすす状シリカ体において、 前記耐熱性基体に中空管体を用い、 前記シリカ体の半径方向におけるシリカ微粒子の堆積密
度分布を、 耐熱性基体に接する内側部位より半径方向に徐々に漸減
してその中間域で最小に至り、次いで外表面部位に進む
につれ再び増大するように設定するとともに、 該シリカ体の外径を300mm以上に形成した事を特徴とす
るすす状シリカ体
1. A soot-like silica body formed by depositing silica fine particles on an axially rotating heat-resistant substrate, wherein a hollow tubular body is used as the heat-resistant substrate, and silica in the radial direction of the silica body is used. The deposition density distribution of the fine particles is set so as to gradually decrease in the radial direction from the inner portion in contact with the heat-resistant substrate, reach the minimum in the intermediate region, and then increase again as it progresses to the outer surface portion. Soot-like silica body characterized by having an outer diameter of 300 mm or more
【請求項2】火炎内で加水分解或いは酸化させて生成さ
れたシリカ微粒子を、回転している耐熱性基体上に順次
堆積させながらすす状シリカ体を製造する方法におい
て、 耐熱性基体の軸方向に沿って、該基体と平行に配置した
リボン状バーナ又はバーナ列により、シリカ微粒子堆積
部位のほぼ全長に亙ってシリカ微粒子生成用の火炎を形
成し、該火炎と耐熱性該基体間を軸線方向に沿って相対
的に往復運動させつつ 前記シリカ微粒子堆積時に付与される単位時間当たりの
熱エネルギーを 耐熱性基体に接する内側部位より半径方向に徐々に漸減
してその中間域で最小に至り、次いで外表面部位に進む
につれ再び増大するように変化させながら、耐熱性基体
上にシリカ微粒子を順次堆積させる事を特徴とするすす
状シリカ体の製造方法
2. A method for producing a soot-like silica body by sequentially depositing silica fine particles produced by hydrolysis or oxidation in a flame on a rotating heat-resistant substrate, wherein the heat-resistant substrate has an axial direction. A ribbon-shaped burner or a row of burners arranged in parallel with the base forms a flame for forming silica fine particles over substantially the entire length of the silica fine particle deposition site, and the flame and the heat-resistant base line are aligned with each other. While gradually reciprocating along the direction, the thermal energy per unit time applied during the silica fine particle deposition is gradually reduced in the radial direction from the inner portion in contact with the heat resistant substrate, and reaches the minimum in the intermediate region, Then, a method for producing a soot-like silica body, characterized in that silica particles are successively deposited on a heat-resistant substrate while changing so that the number increases again as it goes to the outer surface site.
【請求項3】前記耐熱性基体の軸方向に沿って、該基体
と平行に複数本のバーナを列状に配列し、該バーナ列と
基体間を、各バーナの配列間隔とほぼ同程度の振幅量
で、相対的に往復運動させつつ、 前記シリカ微粒子堆積時に付与される単位時間当たりの
熱エネルギーを 耐熱性基体に接する内側部位より半径方向に徐々に漸減
してその中間域で最小に至り、次いで外表面部位に進む
につれ再び増大するように変化させながら、耐熱性基体
上にシリカ微粒子を順次堆積させる事を特徴とする請求
項2記載のすす状シリカ体の製造法
3. A plurality of burners are arranged in a row along the axial direction of the heat resistant base in parallel with the base, and the burner row and the base are arranged to have an interval substantially equal to the arrangement interval of the burners. While relatively reciprocating with the amount of amplitude, the thermal energy applied per unit time during the silica fine particle deposition is gradually reduced in the radial direction from the inner part in contact with the heat resistant substrate and reaches the minimum in the intermediate region. 3. A method for producing a soot-like silica body according to claim 2, characterized in that silica particles are successively deposited on the heat-resistant substrate while changing so as to increase again toward the outer surface site.
JP16224687A 1987-07-01 1987-07-01 Soot-like silica body and method for producing the same Expired - Fee Related JPH0686300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16224687A JPH0686300B2 (en) 1987-07-01 1987-07-01 Soot-like silica body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16224687A JPH0686300B2 (en) 1987-07-01 1987-07-01 Soot-like silica body and method for producing the same

Publications (2)

Publication Number Publication Date
JPS649821A JPS649821A (en) 1989-01-13
JPH0686300B2 true JPH0686300B2 (en) 1994-11-02

Family

ID=15750773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16224687A Expired - Fee Related JPH0686300B2 (en) 1987-07-01 1987-07-01 Soot-like silica body and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0686300B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777968B2 (en) * 1989-02-10 1995-08-23 信越化学工業株式会社 Optical fiber preform base material manufacturing method
US5211732A (en) * 1990-09-20 1993-05-18 Corning Incorporated Method for forming a porous glass preform
US5116400A (en) * 1990-09-20 1992-05-26 Corning Incorporated Apparatus for forming a porous glass preform
JPH0527026U (en) * 1991-09-18 1993-04-06 古河電気工業株式会社 Optical fiber synthesizer
DE19501733C1 (en) * 1995-01-20 1996-05-15 Heraeus Quarzglas Gas flow distributor
DE19628958C2 (en) * 1996-07-18 2000-02-24 Heraeus Quarzglas Process for the production of quartz glass bodies
DE19629170C2 (en) * 1996-07-19 1998-06-04 Heraeus Quarzglas Method and device for producing quartz glass bodies
US6007328A (en) * 1997-04-16 1999-12-28 The Texas A&M University System Flame jet impingement heat transfer system and method of operation using radial jet reattachment flames
TW564242B (en) * 1998-07-29 2003-12-01 Shinetsu Chemical Co Porous optical fiber base materials, optical fiber base materials and methods for producing them
DE10029151C1 (en) * 2000-06-19 2001-08-16 Heraeus Quarzglas Process for the production of a SiO¶2¶ blank and SiO¶2¶ blank
JP3512027B2 (en) * 2001-09-20 2004-03-29 住友電気工業株式会社 Method for producing porous base material
US9873629B2 (en) * 2011-06-30 2018-01-23 Corning Incorporated Methods for producing optical fiber preforms with low index trenches
JP5760859B2 (en) * 2011-08-29 2015-08-12 住友電気工業株式会社 Method for producing glass particulate deposit, glass preform for optical fiber, and optical fiber
JP6387739B2 (en) * 2014-08-21 2018-09-12 住友電気工業株式会社 Method for producing glass particulate deposit
JP6839558B2 (en) * 2017-02-13 2021-03-10 古河電気工業株式会社 Manufacturing method and manufacturing equipment for optical fiber porous base material

Also Published As

Publication number Publication date
JPS649821A (en) 1989-01-13

Similar Documents

Publication Publication Date Title
JPH0686300B2 (en) Soot-like silica body and method for producing the same
JP5068015B2 (en) Free-formed quartz glass ingot and method for producing the same
JPH039047B2 (en)
JPS60191028A (en) Manufacture of high-purity glass body
RU2284968C2 (en) Method of manufacture of the optical glass
JP2649450B2 (en) Method for producing porous glass base material
JPH0825761B2 (en) Porous glass base material
JP3917022B2 (en) Method for producing porous preform for optical fiber
JP2881624B2 (en) Manufacturing method of optical fiber preform
JPS604978Y2 (en) Glass particle synthesis torch
JP3212331B2 (en) Manufacturing method of preform preform for optical fiber
JPH09124333A (en) Production of preform for optical fiber
JPH0986948A (en) Production of porous glass base material for optical fiber
JP3998228B2 (en) Optical fiber porous base material, optical fiber glass base material, and manufacturing methods thereof
JP2003165738A (en) Method for fine-adjustment of side burner position and method for manufacturing optical fiber preform
JP3381309B2 (en) Method for producing glass particle deposit
JPS62162646A (en) Production of glass fine particle deposit
JP3077107B1 (en) Chamber for manufacturing porous glass preform for optical fiber
JPH0583497B2 (en)
JPS63123828A (en) Production of porous preform for optical fiber
JP2938650B2 (en) Manufacturing method of preform for optical fiber
JPS6114085B2 (en)
JPH0383829A (en) Preparation of base material for optical fiber
JPH085689B2 (en) Method for producing porous base material for optical fiber
JPH01257147A (en) Multitube burner for production of synthetic quartz ingot

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees