JPH0777968B2 - Optical fiber preform base material manufacturing method - Google Patents

Optical fiber preform base material manufacturing method

Info

Publication number
JPH0777968B2
JPH0777968B2 JP1031311A JP3131189A JPH0777968B2 JP H0777968 B2 JPH0777968 B2 JP H0777968B2 JP 1031311 A JP1031311 A JP 1031311A JP 3131189 A JP3131189 A JP 3131189A JP H0777968 B2 JPH0777968 B2 JP H0777968B2
Authority
JP
Japan
Prior art keywords
burner
preform
flame
optical fiber
burners
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1031311A
Other languages
Japanese (ja)
Other versions
JPH02212327A (en
Inventor
清 横川
均 飯沼
弘行 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1031311A priority Critical patent/JPH0777968B2/en
Publication of JPH02212327A publication Critical patent/JPH02212327A/en
Publication of JPH0777968B2 publication Critical patent/JPH0777968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ファイバプリフオーム母材の製造方法、特に
はガラス原料の火炎加水分解によるガラス微粒子の発生
を2本または2本以上のバーナーを使用して多孔質ガラ
ス母材を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a method for producing an optical fiber preform preform, and more particularly to a method of producing two or more burners for producing glass fine particles by flame hydrolysis of a glass raw material. It relates to a method for producing a porous glass preform.

[従来の技術] 光ファイバプリフオーム母材の作成方法にはVAD法、OVD
法などが知られており、これは四塩化けい素などのガラ
ス原料を酸水素火炎バーナーに送り、火炎加水分解して
ガラス微粒子を発生させ、これをコア用ガラスからなる
出発部材に堆積させて多孔質ガラス母材を作り、ついで
これを脱水,焼結しガラス化して光ファイバ母材とする
方法で作られているが、この多孔質ガラス母材の生産性
向上を目的としてこのバーナーを2本または2本以上と
する方法が提案されている。
[Prior Art] VAD method, OVD method for making optical fiber preform base material
The method is known, in which glass raw materials such as silicon tetrachloride are sent to an oxyhydrogen flame burner and flame hydrolyzed to generate fine glass particles, which are deposited on a starting member consisting of core glass. A porous glass preform is made, and then dehydrated, sintered, and vitrified to form an optical fiber preform. This burner is used to improve the productivity of the porous glass preform. A method of using a book or two or more books has been proposed.

[解決すべき課題] しかし、上記したように2本または2本以上の複数本の
バーナーを用いてガラス原料の火炎加水分解を行なわせ
る場合、このバーナーの間隔を近づけすぎるとこのバー
ナー火炎が互いに干渉し合うために堆積量が低下し、2
本のバーナーを用いて2倍の原材料を送ったにもかかわ
らず、1本のバーナーまたは1.5本分の効果した得られ
なくなる。
[Problems to be solved] However, as described above, when flame hydrolysis of the glass raw material is performed using two or more burners, the burner flames may be separated from each other if the burner spaces are too close to each other. The amount of deposition decreases due to interference with each other.
Despite sending twice as much raw material using a book burner, one burner or 1.5 books worth of effect is no longer available.

一方、バーナーの間隔を離しすぎると、堆積速度は最大
値で変らなくなるにもかかわらず距離に限界のある装置
内では有効堆積長さが短かくなり、目標とするプリフオ
ームの長さが短かくなるという問題が生じていた。
On the other hand, if the burner spacing is too large, the effective deposition length will become short and the target preform length will become short in a device with a limited distance even though the deposition rate will not change at the maximum value. There was a problem.

[課題を解決するための手段] 本発明はこのような不利を解決した光ファイバープリフ
オーム母材の製造方法に関するものであり、これはガラ
ス原料を酸水素火炎バーナーで火炎加水分解させてガラ
ス微粒子を発生させ、これをコア用出発材料に堆積して
多孔質ガラス母材を作り、脱水,焼結しガラス化して光
ファイバ母材を製造するに当り、このバーナーを2本ま
たは2本以上とし該バーナーを並列にならべ、堆積中の
多孔質ガラス母材の表面における火炎の広がりが互いに
交わる交点を示すときのバーナー間隔を1とし、このバ
ーナー間隔が0.5倍から1.5倍の距離となる範囲に設定す
ることを特徴とするものである。
[Means for Solving the Problems] The present invention relates to a method for producing an optical fiber preform base material which has solved such disadvantages, and this is a method in which a glass raw material is flame-hydrolyzed by an oxyhydrogen flame burner to form fine glass particles. The burner is produced and deposited on the starting material for the core to form a porous glass preform, which is dehydrated, sintered and vitrified to produce an optical fiber preform, and the burner has two or more burners. The burners are arranged in parallel, and the burner interval at the intersection of the flame spreads on the surface of the porous glass base material during deposition is set to 1, and the burner interval is set to a range of 0.5 to 1.5 times the distance. It is characterized by doing.

すなわち、本発明者らは2本または2本以上の複数の酸
水素火炎バーナーを使用してガラス原料を火炎加水分解
させ、ここに発生するガラス微粒子を出発部材に堆積し
て光ファイバ母材を製造する方法の合理化策について種
々検討した結果、複数本のバーナーの間隔を多孔質ガラ
ス母材の表面における火炎の広がりが互いに交わる交点
を示すときのバーナー間隔を基準とし、その0.5〜1.5倍
の距離とし、バーナー間隔の最大距離は多孔質ガラス母
材の最終径以下の範囲とすれば、並列に並んでいるバー
ナー群の無駄な距離を短縮することができ、限られた長
さ当りの生産速度を最大にすることができることを見出
し、これによれば効率よく目的とする光ファイバーを製
造することができることを確認して本発明を完成させ
た。
That is, the inventors of the present invention flame-hydrolyze a glass raw material using two or more than two oxyhydrogen flame burners, deposit glass fine particles generated there on a starting member to form an optical fiber preform. As a result of various studies on the rationalization method of the manufacturing method, the interval of a plurality of burners is based on the burner interval when the intersection of the flame spreads on the surface of the porous glass base material is shown as a standard, and 0.5 to 1.5 times that. If the maximum distance of the burner interval is within the range of the final diameter of the porous glass preform or less, it is possible to shorten the wasteful distance of the burner group arranged in parallel, and to produce a product with a limited length. The present invention has been completed by finding that the speed can be maximized and confirming that the desired optical fiber can be efficiently manufactured.

[作用] 以下、これを添付の図面にもとづいて詳述する。[Operation] This will be described in detail below with reference to the accompanying drawings.

第1図は本発明の方法における2本のバーナー位置を例
示した縦断面図、第2図はこの方法におけるバーナー間
隔とガラス微粒子堆積速度との関係グラフを示したもの
であり、第3図は1本のバーナー使用時の火炎の広がり
を示す縦断面図、第4図は2本のバーナー間隔が狭すぎ
るもの、また第5図は2本のバーナー間隔が広すぎるも
のの縦断面図を示したものである。
FIG. 1 is a longitudinal sectional view illustrating two burner positions in the method of the present invention, FIG. 2 is a graph showing the relationship between the burner interval and the glass particulate deposition rate in this method, and FIG. FIG. 4 is a vertical cross-sectional view showing the spread of flame when one burner is used, FIG. 4 is a vertical cross-sectional view of the one in which the two burner spaces are too narrow, and FIG. It is a thing.

すなわち、第3図は公知の方法にしたがってガラス原料
を酸水素火炎バーナー11に供給し、ここで火炎加水分解
させてガラス微粒子を発生させ、これを出発部材12に堆
積させて多孔質ガラス母材13を作成するときにこの酸水
素火炎バーナー11を1本としてガラス原料を火炎加水分
解すると、このときの火炎14の広がりは第3図に示した
15の範囲となることが知られている。しかし、この場合
において第4図に示したように2本のバーナー11,11を
比較的接近して配置するとこの火炎14,14の火炎の広が
りは16,17に示したようになるが、この火炎14,14は互に
干渉し合うことになるのでこの境界18の部位においては
堆積が妨害し合い、ガラス微粒子の堆積速度が低下する
ことになる。また、この2本のバーナー11,11を使用す
る場合において、第5図に示したようにこの2本のバー
ナー11,11をバーナー相互間距離を長く分離配置するよ
うにすると、火炎14,14の火炎の広がりは19,20に示され
るようになるため、堆積効率は2本のバーナーが独立に
堆積するか、2倍の速度で堆積したことと同等になる
が、2本のバーナー距離が広くなった分だけターゲット
上の有効製品長は小さくなる。
That is, FIG. 3 shows that a glass raw material is supplied to an oxyhydrogen flame burner 11 according to a known method, and flame hydrolysis is performed there to generate glass fine particles, which are deposited on a starting member 12 to form a porous glass base material. When this oxyhydrogen flame burner 11 was used as a single flame to hydrolyze the glass material when 13 was made, the spread of the flame 14 at this time is shown in FIG.
It is known to range from 15. However, in this case, when the two burners 11, 11 are arranged relatively close to each other as shown in FIG. 4, the flame spread of the flames 14, 14 becomes as shown in 16, 17 Since the flames 14 and 14 interfere with each other, the deposits interfere with each other at the boundary 18, and the deposition rate of the glass particles decreases. Also, when using these two burners 11,11, if the two burners 11,11 are arranged so as to have a long distance between the burners as shown in FIG. 5, the flames 14,14 The spread of the flame is as shown at 19,20, so the deposition efficiency is equivalent to two burners depositing independently or at twice the velocity, but the distance between the two burners is The effective product length on the target becomes smaller as the width becomes wider.

しかし、本発明の方法にしたがって2本または2本以上
の複数本のバーナーを使用する場合において、この2本
のバーナー1,1の配置を第1図に示したようにバーナー
1,1の火炎2,2の広がりの交点以上で堆積することが堆積
収率を最も高めることができる。
However, in the case where two or more burners are used according to the method of the present invention, the arrangement of the two burners 1, 1 is as shown in FIG.
The deposition yield can be maximized by depositing at or above the intersection of the spread of 1,2 flames 2,2.

しかし、バーナー間隔が大きくなりすぎると第6図に示
したようにこの間隔内の堆積は末端部に対してテーパー
をもち、均一な厚さを得ることはできない。そこで、バ
ーナー間隔を考慮に入れた総合合成速度は炎の広がり半
径の0.5〜1.5倍が最も生産速度の早くなることが判っ
た。
However, if the burner spacing becomes too large, as shown in FIG. 6, the deposition within this spacing has a taper to the end portion, and a uniform thickness cannot be obtained. Therefore, it was found that the total production rate considering the burner interval was 0.5 to 1.5 times the flame spread radius, which was the fastest production rate.

なお、この第1図の場合における2本のバーナー1,1の
間隔は火炎2,2の広がり半径が1倍であるが、これは目
的とする多孔質ガラス母材の最終径との関係において
は、この間隔が多孔質ガラス母材の最終径での炎の広が
り以上とすると有効長さが短かくなるという不利が生じ
るので、これは火炎2の広がり半径の1.5倍以下で最大
間隔が多孔質ガラス母材の最終径以下とする必要があ
る。
The interval between the two burners 1 and 1 in the case of Fig. 1 is that the spread radius of the flames 2 and 2 is 1, but this is in relation to the final diameter of the target porous glass preform. Has the disadvantage that the effective length becomes shorter if this interval is more than the spread of the flame at the final diameter of the porous glass base material, so this is less than 1.5 times the spread radius of flame 2 and the maximum interval is It is necessary to make it less than or equal to the final diameter of the quality glass base material.

また、本発明の目的とする光ファイバ母材はこのように
して得た多孔質ガラス母材を1.300〜1,800℃に加熱し、
焼結してこれを透明ガラス化することによって得ること
ができるが、この透明ガラス化は公知の方法に準じて行
えばよく、本発明の方法によれば多孔質ガラス母材を効
率よく生産することができる。
Further, the optical fiber preform of the object of the present invention, the porous glass preform thus obtained is heated to 1.300 ~ 1,800 ℃,
It can be obtained by sintering and vitrifying it, but this vitrification may be carried out according to a known method. According to the method of the present invention, a porous glass preform is efficiently produced. be able to.

[実施例] つぎに本発明の方法による実施例をあげる。[Example] Next, an example of the method of the present invention will be described.

実施例1 同心円4重管酸水素火炎バーナーを2本使用し、各バー
ナーの内層第1層に四塩化けい素1.12l/分、第2層に水
素ガス3l/分、第3層にアルゴンガス0.6l/分、第4層に
酸素ガス6l/分を流し、この2本のバーナーの間隔を変
化させて外付法(OVD法)で石英ガラス棒上に四塩化け
い素の火炎加水分解で発生したガラス微粒子を堆積させ
て多孔質ガラス母材を作り、この重量増加から堆積速度
を計算したところ、バーナー間隔とガラス微粒子の堆積
速度との関係について第2図に示したような結果が得ら
れた。
Example 1 Two concentric quadruple oxyhydrogen flame burners were used, the inner layer of each burner was 1.12 l / min of silicon tetrachloride for the first layer, 3 l / min of hydrogen gas for the second layer, and argon gas for the third layer. Oxygen gas of 6l / min was flowed to the 4th layer at 0.6l / min, and the interval of these two burners was changed and the flame hydrolysis of silicon tetrachloride was performed on the quartz glass rod by the external attachment method (OVD method). The generated glass particles were deposited to form a porous glass base material, and the deposition rate was calculated from this weight increase. The results shown in Fig. 2 were obtained for the relationship between the burner interval and the deposition rate of glass particles. Was given.

なお、第2図における横軸のバーナー間隔は火炎の広が
り巾としたもの、縦軸のガラス微粒子の堆積速度は1本
のバーナーを使用したときの堆積速度を1としたもので
あり、このことからバーナーの間隔は火炎の広がり巾の
0.4倍以下ではその堆積速度が1.5本分の能力にも達せ
ず、効率のわるいこと、またバーナー間隔を火炎の広が
りの1倍以上とするとほぼ2本分の堆積が達成されるこ
とが確認された。なお、この実験においてはこのバーナ
ー間隔を多孔質ガラス母材の最終径以上とする有効製品
長が第8図(b)の通り急速に減少することを確認され
た。
The burner interval on the horizontal axis in FIG. 2 is the spread width of the flame, and the deposition rate of the glass particles on the vertical axis is the deposition rate when one burner is used. The burner spacing is from the flame spread
It was confirmed that the deposition rate of 0.4 times or less did not reach the capacity of 1.5 lines and the efficiency was poor, and that the deposition rate of about 2 lines was achieved when the burner interval was 1 time or more of the flame spread. It was In this experiment, it was confirmed that the effective product length in which the burner interval is equal to or larger than the final diameter of the porous glass base material rapidly decreases as shown in FIG. 8 (b).

実施例2 外径18mmΦの石英製4重管バーナーの中心に酸素キヤリ
ヤーガスを用いてSiCl4を搬送させ、外周から酸水素を
噴出させて四塩化珪素の気相加水分解を行った。一方外
径18mmΦ、長さ800mmLの石英棒に同径のダミー石英棒を
熔接し全体の芯を出しこれを水平に設置して、30rpmで
軸を中心に回転させた。
Example 2 SiCl 4 was carried to the center of a quartz quadruple burner having an outer diameter of 18 mmΦ by using oxygen carrier gas, and oxyhydrogen was jetted from the outer periphery to perform vapor phase hydrolysis of silicon tetrachloride. On the other hand, a dummy quartz rod having the same diameter was welded to a quartz rod having an outer diameter of 18 mmΦ and a length of 800 mmL, the core of the whole was exposed, and this was placed horizontally and rotated at 30 rpm about the axis.

前記バーナー炎1本をこの石英棒の側面に衝突させて石
英棒にシリカ微粒子を堆積させ、石英棒の長さ方向に平
行にバーナーを移動させ、1層づつ外付法により多孔質
シリカガラススートを堆積させた。堆積のスタート時は
ガス量を抑え、最終的にはSiCl43l/分、O220l/分、H2
35l/分とし、スート外径115mmΦに達した時点で堆積を
終了したが、この時の平均堆積速度は120g/時であっ
た。
The one burner flame is collided with the side surface of the quartz rod to deposit silica fine particles on the quartz rod, the burner is moved in parallel with the length direction of the quartz rod, and the porous silica glass soot is added one by one by an external method. Was deposited. The amount of gas was suppressed at the start of deposition, and finally SiCl 4 3l / min, O 2 20l / min, H 2
The deposition rate was 35 l / min and the deposition was terminated when the soot outer diameter reached 115 mmΦ, but the average deposition rate at this time was 120 g / hr.

つぎに全く同じバーナー2本を並べ、ガス条件を等しく
して2倍の堆積速度が得られるバーナー間隔を調らべた
ところ、その結果は第1表に示したとおりであった。こ
の結果から、2本バーナーを用いる場合、バーナー間隔
を離していくと、堆積量は増加するが、各炎の拡がり半
径(r1+r2)以上では飽和し、ほぼ2倍となった。一方
長さ800mmと限定するとバーナー間隔を離すほど定常堆
積ゾーンの距離は減少し、バーナー間隔の2倍の長さを
1つの単位として非定常(形状が変っているコーン部)
部分が増加した(第7図参照)。2本以上のバーナーを
並べるにはバーナー間距離(2nr)とスート堆積距離
(L)の間にL/(2nr)≧5の関係が成立し、5以下で
は1本のバーナーより生産速度が低下する可能性がある
ので、原料も時間も人件費も2倍以上かかることになる
ことは明らかである。したがって、堆積効率を低下させ
ても生産速度を高められるバーナー間距離と、それ以上
離しても意味のない最大バーナー間隔は、 0.5<nr<1.5 が好ましく、かつ、堆積距離L/バーナー間距離(2nr)
≧5でなければならない事が分った(第8図参照)。
Next, two exactly the same burners were arranged, the gas conditions were made equal, and the burner interval at which a double deposition rate was obtained was adjusted. The results are shown in Table 1. From these results, when two burners were used, the deposition amount increased as the burner distance was increased, but it was saturated at a spread radius of each flame (r 1 + r 2 ) or more and almost doubled. On the other hand, if the length is limited to 800 mm, the distance of the steady deposition zone decreases as the burner spacing is increased, and the length is twice the burner spacing as one unit, which is unsteady (cone portion where the shape changes).
The area increased (see FIG. 7). For arranging two or more burners, the relationship L / (2nr) ≧ 5 is established between the distance between burners (2nr) and the soot deposition distance (L), and the production speed is lower than that of one burner when the burner is 5 or less. Therefore, it is clear that the cost of raw materials, time and labor costs will be more than doubled. Therefore, 0.5 <nr <1.5 is preferable for the distance between burners that can increase the production rate even if the deposition efficiency is decreased and the maximum burner distance that is meaningless if the distance is further, and the deposition distance L / the distance between burners ( 2nr)
It turns out that it must be ≧ 5 (see FIG. 8).

[発明の効果] 本発明によれば、2つの火炎の相互干渉もなくなるので
かさ密度の均一な多孔質ガラス母材を効率よく得ること
ができるという有利性が与えられる。
[Effects of the Invention] According to the present invention, mutual interference of two flames is eliminated, so that there is an advantage that a porous glass base material having a uniform bulk density can be efficiently obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法における2本のバーナー位置を示
した縦断面図、第2図はこの方法におけるバーナー間隔
とガラス微粒子の堆積速度との関係グラフを示したもの
であり、第3図は従来法による1本のバーナー使用時の
火炎の広がりを示す縦断面図、第4図は2本のバーナー
間隔が狭すぎるもの、また第5図、第7図はバーナー間
隔が広すぎるものの縦断面図、第6図は1本のバーナー
を左右に移動させたときの縦断面図を示したものであ
り、第8図は2本のバーナーを用いたときのバーナー間
隔と製品生産速度との関係グラフを示したものである。 1,11…酸水素火炎バーナー、2,14…火炎、3…ガラス微
粒子、4,12…出発部材、5,13…多孔質ガラス母材、15,1
6,17,19,20…火炎の広がり部分、18,21…境界部
FIG. 1 is a longitudinal sectional view showing the positions of two burners in the method of the present invention, and FIG. 2 is a graph showing the relationship between the burner interval and the deposition rate of glass particles in this method. Is a vertical cross-sectional view showing the spread of flame when using a single burner according to the conventional method. Fig. 4 shows the two burners with too narrow a gap, and Figs. 5 and 7 show the vertical cross section with a too wide burner. Fig. 6 is a vertical sectional view when one burner is moved to the left and right, and Fig. 8 shows burner intervals and product production speeds when two burners are used. It shows a relationship graph. 1,11 ... oxyhydrogen flame burner, 2,14 ... flame, 3 ... glass fine particles, 4,12 ... starting member, 5,13 ... porous glass base material, 15,1
6,17,19,20… flame spread, 18,21… boundary

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ガラス原料を酸水素火炎バーナーで火炎加
水分解させてガラス微粒子を発生させ、これをコアガラ
ス棒の出発材料に外付法で堆積して多孔質ガラス母材を
作り、脱水,焼結しガラス化する光ファイバープリフォ
ーム母材の製造方法において、このバーナーを2本また
は2本以上とし該バーナーを並列にならべ、堆積中の多
孔質ガラス母材の表面における火炎の広がりが互いに交
わる交点を示すときのバーナー間隔を1とし、このバー
ナー間隔が0.5倍から1.5倍の距離となる範囲に設置する
ことを特徴とする光ファイバープリフォーム母材の製造
方法。
1. A glass raw material is flame-hydrolyzed by an oxyhydrogen flame burner to generate glass fine particles, which are deposited on a starting material of a core glass rod by an external method to form a porous glass base material, dehydrated, In the method for producing an optical fiber preform preform that is sintered and vitrified, the number of the burners is set to two or more, and the burners are arranged in parallel so that flame spreads on the surface of the porous glass preform during deposition intersect with each other. A method for producing a preform preform for an optical fiber, characterized in that the burner interval at the point of intersection is set to 1, and the burner interval is set to a range of 0.5 to 1.5 times.
【請求項2】最終スート径以下としたバーナー間隔で多
孔質ガラス部材を作成することを特徴とする請求項1に
記載の光ファイバープリフォーム母材の製造方法。
2. The method for producing an optical fiber preform preform according to claim 1, wherein the porous glass member is formed with a burner interval which is equal to or less than the final soot diameter.
【請求項3】移動距離がバーナー間隔の少なくとも5倍
以上である請求項1に記載の光ファイバープリフォーム
母材の製造方法。
3. The method for producing an optical fiber preform preform according to claim 1, wherein the moving distance is at least 5 times the burner interval or more.
JP1031311A 1989-02-10 1989-02-10 Optical fiber preform base material manufacturing method Expired - Lifetime JPH0777968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1031311A JPH0777968B2 (en) 1989-02-10 1989-02-10 Optical fiber preform base material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1031311A JPH0777968B2 (en) 1989-02-10 1989-02-10 Optical fiber preform base material manufacturing method

Publications (2)

Publication Number Publication Date
JPH02212327A JPH02212327A (en) 1990-08-23
JPH0777968B2 true JPH0777968B2 (en) 1995-08-23

Family

ID=12327743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1031311A Expired - Lifetime JPH0777968B2 (en) 1989-02-10 1989-02-10 Optical fiber preform base material manufacturing method

Country Status (1)

Country Link
JP (1) JPH0777968B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628958C2 (en) * 1996-07-18 2000-02-24 Heraeus Quarzglas Process for the production of quartz glass bodies
DE10047100B4 (en) * 2000-09-21 2004-09-30 Heraeus Tenevo Ag Method and device for producing a cylinder made of doped quartz glass
CN1392866A (en) * 2000-11-24 2003-01-22 住友电气工业株式会社 Method and device for manufacturing glass particulate sedimented body
JP2022181791A (en) * 2021-05-27 2022-12-08 株式会社フジクラ Method for manufacturing porous glass body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873522A (en) * 1972-01-03 1973-10-04
JPS56109834A (en) * 1980-02-05 1981-08-31 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS57111252A (en) * 1980-12-26 1982-07-10 Nippon Telegr & Teleph Corp <Ntt> Manufacturing of preform of optical fiber for optical communication
JPH02172839A (en) * 1988-12-26 1990-07-04 Fujikura Ltd Production of base material for optical fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686300B2 (en) * 1987-07-01 1994-11-02 信越石英株式会社 Soot-like silica body and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873522A (en) * 1972-01-03 1973-10-04
JPS56109834A (en) * 1980-02-05 1981-08-31 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS57111252A (en) * 1980-12-26 1982-07-10 Nippon Telegr & Teleph Corp <Ntt> Manufacturing of preform of optical fiber for optical communication
JPH02172839A (en) * 1988-12-26 1990-07-04 Fujikura Ltd Production of base material for optical fiber

Also Published As

Publication number Publication date
JPH02212327A (en) 1990-08-23

Similar Documents

Publication Publication Date Title
JP2612949B2 (en) Manufacturing method of optical fiber preform base material
KR880001607B1 (en) Preparation for making of glass fiber preform
JP3512027B2 (en) Method for producing porous base material
JPH0777968B2 (en) Optical fiber preform base material manufacturing method
CN109626809B (en) Method for preparing porous glass deposit for optical fiber
JP2612941B2 (en) Method for producing porous optical fiber preform
JPH03112820A (en) Production of porous glass preform
JPH0557216B2 (en)
JP2649450B2 (en) Method for producing porous glass base material
JPH0986948A (en) Production of porous glass base material for optical fiber
JP2770103B2 (en) Manufacturing method of optical fiber preform
JP4398114B2 (en) Manufacturing method of glass base material for optical fiber with less unevenness
JP3137849B2 (en) Manufacturing method of preform for dispersion shifted optical fiber
JPH09118537A (en) Production of porous glass preform for optical fiber
JPS604978Y2 (en) Glass particle synthesis torch
JPS63107825A (en) Production of synthetic quartz tube
JPH02172839A (en) Production of base material for optical fiber
JP3169503B2 (en) Method for producing porous glass preform for optical fiber
JPH02124736A (en) Production of optical fiber preform
JPH0383830A (en) Optical fiber base material and preparation its
JPS60260433A (en) Manufacture of base material for optical fiber
JP2000007367A (en) Apparatus and process for producing glass preform for optical fiber
JPH07242436A (en) Production of porous glass base material for optical fiber
JPH01100034A (en) Apparatus for producing optical fiber preform
JPH0712951B2 (en) Method for manufacturing base material for optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070823

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 14