JPH02172839A - Production of base material for optical fiber - Google Patents

Production of base material for optical fiber

Info

Publication number
JPH02172839A
JPH02172839A JP32595488A JP32595488A JPH02172839A JP H02172839 A JPH02172839 A JP H02172839A JP 32595488 A JP32595488 A JP 32595488A JP 32595488 A JP32595488 A JP 32595488A JP H02172839 A JPH02172839 A JP H02172839A
Authority
JP
Japan
Prior art keywords
rod
burners
layer
glass
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32595488A
Other languages
Japanese (ja)
Inventor
Koichiro Watanabe
渡辺 幸一郎
Shigeru Emori
滋 江森
Nobuyasu Sato
信安 佐藤
Ryozo Yamauchi
良三 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP32595488A priority Critical patent/JPH02172839A/en
Publication of JPH02172839A publication Critical patent/JPH02172839A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/12Nozzle or orifice plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/22Inert gas details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To improve production efficiency by depositing fine glass particle layers for a clad around a rod for a core and depositing the layers while increas ing the spacings between adjacent burners with an increase in the deposition thickness. CONSTITUTION:The previously formed transparent glass rod 1 of GeO2-doped SiO2 is rotated at about 30rpm and is traversed at about 40mm/min speed in an axial direction. The multinozzle burners 3, 3 which supply SiOCl4 as a glass raw material to a central part 10, gaseous Ar to the 2nd layer 12, H2 to the 3rd layer 14, and O2 to nozzles 16 are disposed to the lower part at the right end of the rod 1 to supply burner flames. The spacing D between the burner 3, 3 is first kept at about 65mm. This spacing is increased successively by about 5mm each at every one traversing in one way of the rod 1 so that the burners are spaced at about 130mm at the time of the final 14th traversing. The base material for optical fibers having about 50mm thickness of the fine glass particle deposited layers 2 (e.g.: porous SiO2 glass layer) for the clad is produced while the interference of the burner flames with each other is prohibited.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、コア用ロッドの回りにクラッドとなるガラ
ス微粒子層を複数本のバーナを用いて堆積させる工程を
有する光ファイバ母材の製造方法に関するもので、その
堆積速度の減少を防止して生産性の向上を図ったもので
ある。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a method for manufacturing an optical fiber preform, which includes a step of depositing a glass fine particle layer to serve as a cladding around a core rod using a plurality of burners. The aim is to improve productivity by preventing a decrease in the deposition rate.

(従来の技術) 従来のこの種の方法では、第3図に示すようにコア用ロ
ッドl上に、複数本例えば2本のバーナ3.3を用いて
、例えばバーナをロッドの軸方向にトラバースさせつつ
クラッド用ガラス微粒子層2を堆積させるのであるが、
その堆積厚さが次第に増していっても、バーナ3.3の
間の間隔dを一定に保たったまま製造していた。なお4
.4はバーナ炎である。
(Prior art) In this type of conventional method, as shown in FIG. 3, a plurality of burners, for example two burners 3.3, are used on a core rod l, and the burners are traversed in the axial direction of the rod. The glass fine particle layer 2 for cladding is deposited while
Even though the deposition thickness gradually increased, the distance d between the burners 3.3 remained constant during production. Note 4
.. 4 is burner flame.

(発明が解決しようとする課題) しかしながら、ガラス微粒子層の堆積の当初は隣接する
バーナの炎同士は離れていて相互に干渉することがなく
問題はないが、第4図に示すように堆積が進行しその厚
さが増し外径が次第に太き(なると、バーナ3.3とロ
ッド1との間隔が接近してくるためバーナ炎4.4同士
が堆積面上で一部重なることとなり堆積面の温度が上昇
してくる。堆積面の温度とガラス微粒子の堆積速度とは
相関関係があって、温度が上昇すると堆積速度が低下す
る。このことは母材の製造効率の低下につながるため改
善が望まれていた。
(Problem to be Solved by the Invention) However, at the beginning of the deposition of the glass fine particle layer, the flames of adjacent burners are far apart and do not interfere with each other, so there is no problem, but as shown in FIG. As the flame progresses, the thickness increases and the outer diameter gradually increases (as the distance between the burner 3.3 and the rod 1 approaches, the burner flames 4.4 partially overlap on the deposition surface, and the deposition surface There is a correlation between the temperature of the deposition surface and the deposition rate of glass particles, and as the temperature increases, the deposition rate decreases.This leads to a decrease in the manufacturing efficiency of the base material, so it is necessary to improve it. was desired.

(課題を解決するための手段) この発明は、以上の観点からコア用ガラスロッドの回り
に、複数本のバーナを用いて外付は法によりクラッドと
なるガラス微粒子層を堆積させて多孔質ガラスプリフォ
ームとする工程を含む光ファイバ母材の製造方法におい
て、前記クラッド用ガラス微粒子層の堆積厚さが増すに
つれて隣接するバーナ間隔を大にしてバーナ炎相互間の
干渉を阻止しつつ堆積させることを特徴とする特に、シ
ングルモードファイバ用母材をこの方法で製造する場合
、クラッド厚を十分にとる必要性からバーナの本数も3
〜5木と多いため有効である。
(Means for Solving the Problems) From the above points of view, the present invention is directed to forming a porous glass by depositing a layer of glass fine particles that will become a cladding around a core glass rod using a plurality of burners. In a method for manufacturing an optical fiber preform including a step of making a preform, as the deposited thickness of the glass fine particle layer for cladding increases, the distance between adjacent burners is increased to prevent interference between burner flames while depositing. In particular, when manufacturing a base material for single mode fiber using this method, the number of burners is 3 because it is necessary to have a sufficient cladding thickness.
It is effective because there are as many as ~5 trees.

(作 用) 隣接するバーナ間において、相互干渉がないのでガラス
微粒子の堆積面の表面温度が常に一定に維持でき、ガラ
ス微粒子の堆積速度の低下を阻止できる。
(Function) Since there is no mutual interference between adjacent burners, the surface temperature of the surface on which the glass fine particles are deposited can always be maintained constant, and a decrease in the deposition rate of the glass fine particles can be prevented.

(実施例) 第1図は、この発明方法によってコア用ロッド上にクラ
ッド用のガラス微粒子層を形成する様子を示したもので
、同一符号は第3図と同一物を示す。また第2図は用い
られるマルチノズルバーナ3の具体的構造を示している
。第2図において、中心部工0にはガラス原料としての
5tOCj!4.2層目12にはシールガスとしてのA
r、3層目14にはH2、そしてこの3層目の内部に同
心円状に12個形成されたノズル16には02が供給さ
れる。以上において、1は予め形成されたGeO□ドー
プSin、透明ガラス微粒子で、その外径は17III
III、全長は1800mm、そのうち最終的に母材と
なりうる有効長はおよそ750mmである。このロッド
1を3Orρmで回転させつつ、その軸方向に40M/
分の速度でトラバースさせた。このとき、第2図に示し
た構造のマルチノズルバーナ3.3にはそれぞれ5iO
Ce s 3.0〜5.011/分、^r1.8j2/
分、Hz30〜451!/分、0゜15〜2317分を
供給した。
(Example) FIG. 1 shows how a glass fine particle layer for cladding is formed on a core rod by the method of the present invention, and the same reference numerals indicate the same parts as in FIG. 3. Further, FIG. 2 shows the specific structure of the multi-nozzle burner 3 used. In Figure 2, the central part 0 has 5tOCj as a glass raw material! 4. A as a seal gas in the second layer 12
r, H2 is supplied to the third layer 14, and 02 is supplied to 12 nozzles 16 formed concentrically inside this third layer. In the above, 1 is pre-formed GeO□-doped Sin transparent glass fine particles, the outer diameter of which is 17III.
III. The total length is 1800 mm, of which the effective length that can eventually become the base material is approximately 750 mm. While rotating this rod 1 at 3Orρm, it is rotated 40M/in the axial direction.
traversed at a speed of 1 minute. At this time, each of the multi-nozzle burners 3.3 with the structure shown in FIG.
Ce s 3.0~5.011/min, ^r1.8j2/
Minutes, Hz30-451! /min, 0°15-2317 min.

そして最初は、バーナ3.3の間隔りを65+nmに保
ち、ロッドlの片道1回のトラバースごとにその間隔を
順次70nnu、75mm、80mmと5IIIIIl
ずつ離し、最終の144層目トラバースのときには13
0mm離した。ここでトラバースごとにバーナ間隔を順
次床げるのはロッドlに堆積されるSin、ガラス微粒
子層の堆積により、外径が大きくなるにしたがって炎の
横方向への広がりが大きくなり付着面積が増大するため
である。
Initially, the spacing between the burners 3.3 is kept at 65+nm, and the spacing is sequentially increased to 70nnu, 75mm, 80mm, and 5IIIIl for each one-way traverse of the rod L.
13 by the time of the final 144th layer traverse.
0mm apart. Here, the reason why the burner spacing is gradually lowered for each traverse is due to the accumulation of Sin deposited on the rod l.As the outer diameter increases, the lateral spread of the flame increases and the adhesion area increases due to the deposition of a glass fine particle layer. This is to do so.

かくして得られたSin、多孔質ガラス層の厚さが所定
の50mmになるまでの時間は417分であり、従来が
約490分であったのと比較して著しく改善された。
The time it took for the thickness of the thus obtained Sin and porous glass layer to reach the predetermined thickness of 50 mm was 417 minutes, which was significantly improved compared to the conventional method, which took about 490 minutes.

なお、この発明の実施例では、トラバースをコア用ロッ
ドにしたがバーナをトラバースしても良い。
In the embodiment of the present invention, the core rod is used as the traverse, but the burner may also be the traverse.

(発明の効果) この発明は、以上のようにコア用ロッド上へのクラッド
用ガラス微粒子の堆積速度を、バーナ炎の相互干渉を防
止することで常に所定量となるようにしたので、母材の
製造効率を高めることができる。
(Effects of the Invention) As described above, this invention keeps the deposition rate of glass fine particles for cladding on the core rod always at a predetermined amount by preventing mutual interference of the burner flame. production efficiency can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明による光ファイバ母材の製造方法を
示す概略説明図、第2図は、第1図において用いられる
バーナの説明図、第3.4図は、従来の光ファイバ母材
の製造方法を示す概略説明図である。 図において、2:クランド用ガラス微粒子堆積層、3.
3:バーナ、D:バーナ間隔。
Fig. 1 is a schematic explanatory diagram showing a method for manufacturing an optical fiber preform according to the present invention, Fig. 2 is an explanatory diagram of a burner used in Fig. 1, and Figs. 3 and 4 are diagrams showing a conventional optical fiber preform. FIG. 2 is a schematic explanatory diagram showing a manufacturing method. In the figure, 2: glass fine particle deposition layer for gland; 3.
3: Burner, D: Burner interval.

Claims (1)

【特許請求の範囲】[Claims] コア用ガラスロッドの回りに、複数本のバーナを用いて
外付け法によりクラッドとなるガラス微粒子層を堆積さ
せて多孔質ガラスプリフォームとする工程を含む光ファ
イバ母材の製造方法において、前記クラッド用ガラス微
粒子層の堆積厚さが増すにつれて隣接するバーナ間隔を
大にしてバーナ炎相互間の干渉を阻止しつつ堆積させる
ことを特徴とする光ファイバ母材の製造方法。
A method for producing an optical fiber preform comprising the step of depositing a glass fine particle layer to become a cladding around a core glass rod by an external method using a plurality of burners to form a porous glass preform. A method for manufacturing an optical fiber preform, characterized in that as the deposited thickness of the glass fine particle layer increases, the distance between adjacent burners is increased to prevent interference between the burner flames while depositing the layer.
JP32595488A 1988-12-26 1988-12-26 Production of base material for optical fiber Pending JPH02172839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32595488A JPH02172839A (en) 1988-12-26 1988-12-26 Production of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32595488A JPH02172839A (en) 1988-12-26 1988-12-26 Production of base material for optical fiber

Publications (1)

Publication Number Publication Date
JPH02172839A true JPH02172839A (en) 1990-07-04

Family

ID=18182461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32595488A Pending JPH02172839A (en) 1988-12-26 1988-12-26 Production of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPH02172839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212327A (en) * 1989-02-10 1990-08-23 Shin Etsu Chem Co Ltd Production of optical fiber preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212327A (en) * 1989-02-10 1990-08-23 Shin Etsu Chem Co Ltd Production of optical fiber preform
JPH0777968B2 (en) * 1989-02-10 1995-08-23 信越化学工業株式会社 Optical fiber preform base material manufacturing method

Similar Documents

Publication Publication Date Title
US4915717A (en) Method of fabricating optical fiber preforms
JPH02172839A (en) Production of base material for optical fiber
JP2612941B2 (en) Method for producing porous optical fiber preform
JPS6234699B2 (en)
JP3517848B2 (en) Manufacturing method of optical fiber preform
JPH0777968B2 (en) Optical fiber preform base material manufacturing method
JPH0525818B2 (en)
JP3133392B2 (en) Manufacturing method of soot base material for optical fiber
JP3137849B2 (en) Manufacturing method of preform for dispersion shifted optical fiber
JPH0579614B2 (en)
JPH0986948A (en) Production of porous glass base material for optical fiber
JP3340471B2 (en) Manufacturing method of optical fiber preform
JP2583217B2 (en) Method for producing porous base material for optical fiber
JPH0525817B2 (en)
JPS636171Y2 (en)
JPS62162637A (en) Production of optical fiber preform
JPH05330843A (en) Production of optical fiber preform
JP2986453B1 (en) Apparatus and method for manufacturing glass preform for optical fiber
KR20020008433A (en) Manufacturing System and Method for Preform Optical Fiber
JPH06316429A (en) Production of preform for dispersion shift optical fiber
JPH0616447A (en) Production of optical fiber base material
JPH0665614B2 (en) Method for manufacturing optical fiber preform
JPS63285129A (en) Production of optical fiber preform
JPH02124736A (en) Production of optical fiber preform
JPH0742130B2 (en) Method for manufacturing rod-shaped base material for optical transmission line