JPH02212327A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPH02212327A
JPH02212327A JP3131189A JP3131189A JPH02212327A JP H02212327 A JPH02212327 A JP H02212327A JP 3131189 A JP3131189 A JP 3131189A JP 3131189 A JP3131189 A JP 3131189A JP H02212327 A JPH02212327 A JP H02212327A
Authority
JP
Japan
Prior art keywords
flame
base material
burner
burners
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3131189A
Other languages
Japanese (ja)
Other versions
JPH0777968B2 (en
Inventor
Kiyoshi Yokogawa
清 横川
Hitoshi Iinuma
均 飯沼
Hiroyuki Koide
弘行 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1031311A priority Critical patent/JPH0777968B2/en
Publication of JPH02212327A publication Critical patent/JPH02212327A/en
Publication of JPH0777968B2 publication Critical patent/JPH0777968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To efficiently obtain a porous glass preform having uniform density by using plural burners set at specified positions to eliminate the interference between plural flames, and generating fine glass particles by flame hydrolysis. CONSTITUTION:The glass material is flame-hydrolyzed by an oxyhydrogen flame burner 1 to generate fine glass particles 3. The particles 3 are deposited on the starting member 4 of a core glass rod by external deposition to obtain the porous glass preform 5. In this case, plural burners 1 are used, and arranged in parallel. When the distance between the intersections of the radius of expanse of a flame 2 on the surface of the preform 5 is specified as unit, the expanse of the flame 2 is controlled to 0.5-1.5 times the unit.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ファイバープリフォーム母材の製造方法、特
にはガラス原料の火炎加水分解によるガラス微粒子の発
生を2本または2本以上のバーナーを使用して多孔質ガ
ラス母材を製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an optical fiber preform base material, and in particular to a method for producing glass particles by flame hydrolysis of a glass raw material using two or more burners. The present invention relates to a method for producing a porous glass preform.

[従来の技術] 光ファイバープリフォーム母材の作成方法にはVAD法
、OVD法などが知られており、これは四塩化けい素な
どのガラス原料を酸水素火炎バーナーに送り、火炎加水
分解してガラス微粒子を発生させ、これをコア用ガラス
からなる出発部材に堆積させて多孔質ガラス母材を作り
、ついでこれを脱水、焼結しガラス化して光フアイバ母
材とする方法で作られているが、この多孔質ガラス母材
の生産性向上を目的としてこのバーナーを2本または2
本以上とする方法が提案されている。
[Prior art] The VAD method and the OVD method are known as methods for producing optical fiber preform base materials, and these methods send glass raw materials such as silicon tetrachloride to an oxyhydrogen flame burner and undergo flame hydrolysis. It is made by generating glass particles and depositing them on a starting member made of core glass to create a porous glass base material, which is then dehydrated, sintered, and vitrified to form an optical fiber base material. However, in order to improve the productivity of this porous glass base material, two or two burners were installed.
A method for using more than one book has been proposed.

[解決すべき課題] しかし、上記したように2本または2本以上の複数本の
バーナーを用いてガラス原料の火炎加水分解を行なわせ
る場合、このバーナーの間隔を近づけすぎるとこのバー
ナー火炎が互いに干渉し合うために堆積量が低下し、2
木のバーナーを用いて2倍の原材料を送ったにもかかわ
らず、1本のバーナーまたは1.5本分の効果しか得ら
れなくなる。
[Problems to be Solved] However, as mentioned above, when performing flame hydrolysis of glass raw materials using two or more burners, if the burners are placed too close together, the burner flames may Due to mutual interference, the amount of deposition decreases, and 2
Even though you send twice as much raw material using a wood burner, you only get the effect of one or 1.5 burners.

一方、バーナーの間隔を離しすぎると、堆積速度は最大
値で変らなくなるにもかかわらず距離に限界のある装置
内では有効堆積長さが短かくなり、目標とするプリフォ
ームの長さが短かくなるという問題が生じていた。
On the other hand, if the burners are spaced too far apart, the effective deposition length will be shortened in a distance-limited device, even though the deposition rate will not change at its maximum value, and the target preform length will be shortened. A problem had arisen.

[課題を解決するための手段] 本発明はこのような不利を解決した光ファイバープリフ
ォーム母材の製造方法に関するものであり、これはガラ
ス原料を酸水素火炎バーナーで火炎加水分解させてガラ
ス微粒子を発生させ、これをコア用出発材料に堆積して
多孔質ガラス母材を作り、脱水、焼結しガラス化して光
フアイバ母材を製造するに当り、このバーナーを2本ま
たは2本以上とし該バーナー間の間隔を多孔質ガラス母
材の表面における火炎の広がりの交点を基準としてこの
火炎の広がり半径の0.5〜1.5倍とし、かつ最大間
隔は該多孔質ガラス母材の最終径以下の範囲を基準とす
ることを特徴とするものである。
[Means for Solving the Problems] The present invention relates to a method for manufacturing an optical fiber preform base material that solves the above-mentioned disadvantages, and this invention involves flame hydrolyzing a glass raw material with an oxyhydrogen flame burner to form glass fine particles. When producing an optical fiber base material by depositing it on a starting material for a core to make a porous glass base material, dehydrating it, sintering it, and vitrifying it to produce an optical fiber base material, two or more burners are used to produce a porous glass base material. The distance between the burners is set to 0.5 to 1.5 times the radius of flame spread based on the intersection of the flame spread on the surface of the porous glass base material, and the maximum distance is the final diameter of the porous glass base material. It is characterized by being based on the following ranges.

すなわち、本発明者らは2本または2本以上の複数の酸
水素火炎バーナーを使用してガラス原料を火炎加水分解
させ、ここに発生するガラス微粒子を出発部材に堆積し
て光フアイバ母材を製造する方法の合理化策について種
々検討した結果、複数本のバーナーの間隔を多孔質ガラ
ス母材の表面における火炎の広がりの交点を基準とし、
その0.5〜1.5倍の距離とし、バーナー間隔の最大
距離は多孔質ガラス母材の最終径以下の範囲とすれば、
並列に並んでいるバーナー群の無駄な距離を短縮するこ
とができ、限られた長さ当りの生産速度を最大にするこ
とができることを見出し、これによれば効率よく目的と
する光ファイバーを製造することができることを確認し
て本発明を完成させた。
That is, the present inventors flame-hydrolyze the glass raw material using two or more oxyhydrogen flame burners, and deposit the generated glass particles on a starting member to form an optical fiber base material. As a result of various studies on ways to rationalize the manufacturing method, we decided to set the interval between multiple burners based on the intersection of the flame spread on the surface of the porous glass base material.
If the distance is 0.5 to 1.5 times that, and the maximum distance between burners is within the final diameter of the porous glass base material,
It was discovered that it was possible to shorten the unnecessary distance of burners lined up in parallel, and to maximize the production speed per limited length. According to this, the desired optical fiber could be manufactured efficiently. The present invention was completed after confirming that it is possible.

[作 用] 以下、これを添付の図面にもとづいて詳述する。[Work] This will be explained in detail below based on the attached drawings.

第1図は本発明の方法における2木のバーナー位置を例
示した縦断面図、第2図はこの方法におけるバーナー間
隔とガラス微粒子堆積速度との関係グラフを示したもの
であり、第3図は1本のバーナー使用時の火炎の広がり
を示す縦断面図、第4図は2本のバーナー間隔が狭すぎ
るもの、また第5図は2本のバーナー間隔が広すぎるも
のの縦断面図を示したものである。
FIG. 1 is a vertical cross-sectional view illustrating the positions of two burners in the method of the present invention, FIG. 2 is a graph showing the relationship between the burner spacing and the glass particle deposition rate in this method, and FIG. A vertical cross-sectional view showing the spread of flame when one burner is used, Figure 4 shows a case where the distance between two burners is too narrow, and Figure 5 shows a vertical cross-sectional view when the distance between two burners is too wide. It is something.

すなわち、第3図は公知の方法にしたがってガラス原料
を酸水素火炎バーナー11に供給し、ここで火炎加水分
解させてガラス微粒子を発生させ、これを出発部材12
に堆積させて多孔質ガラス母材13を作成するときにこ
の酸水素火炎バーナー11を1本としてガラス原料を火
炎加水分解するときの火炎14の広がりは第3図に示し
た15の範囲となることが知られている。しかし、この
場合において第4図に示したように2本のバーナー11
.11を比較的接近して配置するとこの火炎14.14
の火炎の広がりは16.17に示したようになるが、こ
の火炎14.14は互に干渉し合うことになるのでこの
境界18の部位においては堆積が妨害し合い、ガラス微
粒子の堆積速度が低下することになる。また、この2本
のバーナー11.11を使用する場合において、第5図
に示したようにこの2木のバーナー11.11をバーナ
ー相互間距離を長く分離配置するようにすると、火炎1
4.14の火炎の広がりは19゜20に示されるように
なるため、堆積効率は2本のバーナーが独立に堆積する
か、2倍の速度で堆積したことと同等になるが、2本の
バーナー距離が広くなった分だけターゲット上の有効距
離は小さくなる。
That is, FIG. 3 shows that a glass raw material is supplied to an oxyhydrogen flame burner 11 according to a known method, where it is flame-hydrolyzed to generate glass fine particles, which are then transferred to a starting member 12.
When the glass raw material is flame-hydrolyzed using one oxyhydrogen flame burner 11 to create the porous glass base material 13 by depositing it on the glass, the spread of the flame 14 is within the range 15 shown in FIG. 3. It is known. However, in this case, as shown in FIG.
.. When 11 are placed relatively close together, this flame 14.14
The spread of the flame is as shown in 16.17, but since the flames 14.14 interfere with each other, the deposition interferes with each other at the boundary 18, and the deposition rate of glass particles decreases. This will result in a decline. In addition, when these two burners 11.11 are used, if the two burners 11.11 are separated with a long distance between them as shown in FIG.
The flame spread of 4.14 is now shown as 19°20, so the deposition efficiency is equivalent to two burners depositing independently or at twice the rate, but As the burner distance increases, the effective distance on the target decreases.

しかし、本発明の方法にしたがって2本または2本以上
の複数本のバーナーを使用する場合において、この2本
のバーナー1.1の配置を第1図に示したようにバーナ
ー1.1の火炎2.2の広がりの交点以上で堆積するこ
とが堆積収率を最も高めることができる。
However, when two or more burners are used according to the method of the invention, the arrangement of the two burners 1.1 is such that the flame of the burner 1.1 is The deposition yield can be maximized by depositing at or above the intersection of the 2.2 spreads.

しかし・、バーナー間隔が大きくなりすぎると第6図に
示したようにこの間隔内の堆積は末端部に対してテーパ
ーをもち、均一な厚さを得ることはできない、そこで1
.バーナー間隔を考慮に入れた総合合成速度は炎の広が
り半径の0.5〜1.5倍が最も生産速度の早くなるこ
とが判った。
However, if the burner spacing becomes too large, the deposit within this spacing will taper towards the ends, as shown in Figure 6, and a uniform thickness cannot be obtained;
.. It has been found that the overall synthesis rate, taking into account the burner spacing, is the highest at a rate of 0.5 to 1.5 times the flame spread radius.

なお、この第1図の場合における2本のバーナー1.1
の間隔は火炎2.2の広がり半径が1倍であるが、これ
は目的とする多孔質ガラス母材の最終径との関係におい
ては、この間隔が多孔質ガラス母材の最終径での炎の広
がり以上とすると有効長さが短かくなるという不利が生
じるので、これは火炎2の広がり半径の1.5倍以下で
最大間隔が多孔質ガラス母材の最終径以下とする必要が
ある。
In addition, the two burners 1.1 in the case of this FIG.
The interval is 1 times the spread radius of flame 2.2, but in relation to the final diameter of the porous glass base material, this interval is the same as the flame radius at the final diameter of the porous glass base material. If the spread is larger than , the disadvantage is that the effective length will be shortened, so it is necessary that this is 1.5 times or less the spread radius of the flame 2 and the maximum interval is less than or equal to the final diameter of the porous glass base material.

また、本発明の目的とする光フアイバ母材はこのように
して得た多孔質ガラス母材を1.3(10〜1.800
℃に加熱し、焼結してこれを透明ガラス化することによ
って得ることができるが、この透明ガラス化は公知の方
法に準じて行えばよく、本発明の方法によれば多孔質ガ
ラス母材を効率よく生産することができる。
Furthermore, the optical fiber base material which is the object of the present invention has a porous glass base material of 1.3 (10 to 1.800)
It can be obtained by heating it to ℃ and sintering it to make it transparent vitrified, but this transparent vitrification can be done according to a known method, and according to the method of the present invention, a porous glass base material can be produced efficiently.

[実施例] つぎに本発明の方法による実施例をあげる。[Example] Next, examples using the method of the present invention will be given.

実施例1 同心円4重管酸水素火炎バーナーを2本使用し、各バー
ナーの内層第1層に四塩化けい素1.124! 7分、
第2層に水素ガス3j2/分、第3層にアルゴンガス0
.617分、第4層に酸素ガス6117分を流し、この
2本のバーナーの間隔を変化させて外付法(OVD法)
で石英ガラス棒上に四塩化けい素の火炎加水分解で発生
したガラス微粒子を堆積させて多孔質ガラス母材を作り
、この重量増加から堆積速度を計算したところ、バーナ
ー間隔とガラス微粒子の堆積速度との関係について第2
図に示したような結果が得られた。
Example 1 Two concentric quadruple tube oxyhydrogen flame burners were used, and the first inner layer of each burner contained 1.124 silicon tetrachloride! 7 minutes,
Hydrogen gas 3j2/min in the second layer, argon gas 0 in the third layer
.. 617 minutes, oxygen gas was flowed into the fourth layer for 6117 minutes, and the interval between these two burners was changed to perform an external method (OVD method).
A porous glass matrix was created by depositing glass particles generated by flame hydrolysis of silicon tetrachloride on a quartz glass rod, and the deposition rate was calculated from this weight increase. Regarding the relationship with
The results shown in the figure were obtained.

なお、第2図における横軸のバーナー間隔は火炎の広が
り巾を1としたもの、縦軸のガラス微粒子の堆積速度は
1本のバーナーを使用したときの堆積速度を1としたも
のであり、このことからバーナーの間隔は火炎の広がり
巾の0.4倍以下ではその堆積速度が1.5本分の能力
にも達せず、効率のわるいこと、またバーナー間隔を火
炎の広がりの1倍以上とするとほぼ2本分の堆積が達成
されることが確認された。なお、この実験においてはこ
のバーナー間隔を多孔質ガラス母材の最終径以上とする
有効長さが図の通り急速に減少することを確認された。
In addition, the burner interval on the horizontal axis in FIG. 2 is based on the flame spread width as 1, and the deposition rate of glass particles on the vertical axis is based on the deposition rate when one burner is used. This means that if the burner spacing is less than 0.4 times the flame spread width, the deposition rate will not reach the capacity of 1.5 burners, resulting in poor efficiency. It was confirmed that approximately two tubes worth of deposition was achieved. In addition, in this experiment, it was confirmed that the effective length for making the burner interval equal to or larger than the final diameter of the porous glass base material rapidly decreased as shown in the figure.

実施例2 外径18mmΦの石英製4重管バーナーの中心に酸素キ
ャリヤーガスを用いて5iCj! 4を搬送させ、°外
周から酸水素を噴出させて四塩化珪素の気相加水分解を
行った。一方外径18−■Φ、蚤さ800 smLの石
英棒に同径のダミー石英棒を熔接し全体の芯を出しこれ
を水平に設置して、30rpmで軸を中心に回転させた
Example 2 Using oxygen carrier gas in the center of a quartz quadruple tube burner with an outer diameter of 18 mmΦ, 5iCj! 4 was transported, and oxyhydrogen was spouted from the outer periphery to perform gas phase hydrolysis of silicon tetrachloride. On the other hand, a dummy quartz rod with the same diameter was welded to a quartz rod with an outer diameter of 18 mm and a flea of 800 smL, the core of the entire rod was taken out, and the rod was placed horizontally and rotated about its axis at 30 rpm.

前記バーナー炎1本をこの石英棒の側面に衝突させて石
英棒にシリカ微粒子を堆積させ、石英棒の長さ方向に平
行にバーナーを移動させ、1層づつ外付法により多孔質
シリカガラススートを堆積させた。堆積のスタート時は
ガス量を抑え、最終的には5ICjLa31/分、0,
2017分、H235J! 7分とし、スート外径11
5 amΦに達した時点で堆積を終了したが、この時の
平均堆積速度は120 g/時であった。
One of the burner flames is caused to collide with the side surface of this quartz rod to deposit silica particles on the quartz rod, and the burner is moved parallel to the length direction of the quartz rod to form a porous silica glass soot layer by layer by external deposition method. was deposited. At the start of deposition, the gas amount is suppressed, and finally 5ICjLa31/min, 0,
2017 minutes, H235J! 7 minutes, soot outer diameter 11
Deposition was terminated when 5 amΦ was reached, and the average deposition rate at this time was 120 g/hour.

つぎに全く同じバーナー2本を並べ、ガス条件を等しく
して2倍の堆積速度が得られるバーナー間隔を調らべた
ところ、その結果は第1表に示したとおりであった。こ
の結果から、2本バーナーを用いる場合、バーナー間隔
を離していくと、堆積量は増加するが、番長の拡がり半
径(「8◆r2)以上では飽和し、はぼ2倍となった。
Next, two identical burners were lined up and the burner spacing at which double the deposition rate could be obtained with the same gas conditions was investigated, and the results were as shown in Table 1. From this result, when two burners are used, the amount of deposition increases as the distance between the burners increases, but it becomes saturated at the Bancho spread radius (8◆r2) or more, and the amount is almost doubled.

一方長さ80011111と限定するとバーナー間隔を
離すほど定常堆積ゾーンの距離は減少し、バーナー間隔
の2倍の長さを1つの単位として非定常(形状が変って
いるコーン部)部分が増加した(第7図参照)、2本以
上のバーナーを並べるにはバーナー間圧M(2nr)と
スート堆積距離(L)の間にL/(2nr)≧5の関係
が成立し、5以下では1本のバーナーより生産速度が低
下する可能性があるので、原料も時間も人件費も2倍以
上かかることになることは明らかである。したがって、
堆積効率を低下させても生産速度を高められるバーナー
間距離と、それ以上離しても意味のない最大バーナー間
隔は、0.5 < nr  < 1.5 が好ましく、かつ、堆積比11L/バーナー間距M(2
nr)≧5でなければならない事が分った(第8図参照
)。
On the other hand, when the length is limited to 80011111, the distance of the steady deposition zone decreases as the burner interval increases, and the unsteady (cone part whose shape changes) increases with twice the burner interval as one unit ( (See Figure 7), in order to arrange two or more burners, the relationship L/(2nr) ≧ 5 is established between the burner pressure M (2nr) and the soot deposition distance (L), and if it is 5 or less, one It is clear that the production speed may be lower than that of the conventional burner, so the raw materials, time, and labor costs will be more than twice as high. therefore,
The distance between the burners that can increase the production rate even if the deposition efficiency is reduced, and the maximum distance between the burners where it is meaningless to separate them any further are preferably 0.5 < nr < 1.5, and a deposition ratio of 11L/distance between the burners. M(2
It was found that nr) must be 5 (see Figure 8).

[発明の効果] 本発明はガラス原料を酸水素火炎中で火炎加水分解させ
て得たシリカ徹粒子を出発部材に堆積させて、多孔質ガ
ラス母材を製造するときに2本または2本以上の複数の
バーナーを使用し、この複数のバーナーの間隔をバーナ
ー火炎の広がり半径の交点を基準としてその火炎の広が
り半径の1倍より大きいものとするというものであるが
、これによれば2つの火炎の相互干渉もなくなるのでか
さ密度の均一な多孔質ガラス母材を効率よく得ることが
できるという有利性が与えられる。
[Effects of the Invention] The present invention involves depositing silica particles obtained by flame hydrolyzing a glass raw material in an oxyhydrogen flame on a starting member to produce a porous glass base material using two or more particles. According to this method, a plurality of burners are used, and the interval between the plurality of burners is set to be larger than one times the spread radius of the burner flame, based on the intersection of the spread radius of the burner flame. Since there is no mutual interference of flames, there is an advantage that a porous glass base material having a uniform bulk density can be efficiently obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法における2本のバーナー位置を示
した縦断面図、第2図はこの方法におけるバーナー間隔
とガラス微粒子の堆積速度との関係グラフを示したもの
であり、第3図は従来法による1本のバーナー使用時の
火炎の広がりを示す縦断面図、第4図は2木のバーナー
間隔が狭すぎるもの、また第5図、第7図はバーナー間
隔が広すぎるものの縦断面図、′s6図は1本のバーナ
ーを左右に移動させたときの縦断面図を示したものであ
り、第8図は2本のバーナーを用いたときのバーナー間
隔と製品生産速度との関係グラフを示したものである。 1.1!・・・酸水素火炎バーナー 2.14−・・火炎、  3・・・ガラス微粒子、4.
12・・・出発部材、 5.13・・・多孔質ガラス母材、 15、ia、tフ、19.20・・・火炎の広がり部分
、        IB、21川境界部第3図 第4圓 第2日 第5日 0.5 1.0 □バーナー内隅 (メぐうシ〃:が・ハ 2゜ 2、発明の名称 光ファイバープリフォーム母材の製造方法3、補正をす
る者 事件との関係  特許出願人 名称 (206)信越化学工業株式会社4、代理人 発進口 平成1年5月30日 6、補正の対象 委任状および明細書における「発明の詳細な説明の欄」 7、補正の内容 り委任状を別紙のとおりに補正する。 手続補正書 2、発明の名称 光ファイバープリフォーム母材の製造方法3、補正をす
る者 事件との関係 名称(20 4、代理人
FIG. 1 is a vertical cross-sectional view showing the positions of two burners in the method of the present invention, FIG. 2 is a graph showing the relationship between the burner spacing and the deposition rate of glass particles in this method, and FIG. Figure 4 is a vertical cross-sectional view showing the spread of flame when one burner is used according to the conventional method, Figure 4 is a vertical cross-sectional view of a case where the distance between two burners is too narrow, and Figures 5 and 7 are vertical cross-sectional views of cases where the distance between the burners is too wide. The top view and Figure 's6 show a vertical cross-sectional view when one burner is moved from side to side, and Figure 8 shows the relationship between burner spacing and product production speed when two burners are used. This shows a relationship graph. 1.1! ...Oxyhydrogen flame burner 2.14--Flame, 3...Glass particles, 4.
12...Starting member, 5.13...Porous glass base material, 15, ia, tfu, 19.20...Flame spreading part, IB, 21 River boundary part, Figure 3, 4th circle 2nd day 5th day 0.5 1.0 □ Burner inner corner Applicant name (206) Shin-Etsu Chemical Co., Ltd. 4. Agent starting point May 30, 1999 6. “Detailed description of the invention column” in the power of attorney subject to amendment and specification 7. Contents of amendment Amend the power of attorney as shown in the attached document. Procedural amendment 2, name of the invention, method for manufacturing optical fiber preform base material 3, name of person making the amendment related to the case (20 4, agent

Claims (1)

【特許請求の範囲】 1、ガラス原料を酸水素火炎バーナーで火炎加水分解さ
せてガラス微粒子を発生させ、これをコアガラス棒の出
発材料に外付法で堆積して多孔質ガラス母材を作り、脱
水、焼結しガラス化する光ファイバープリフォーム母材
の製造方法において、このバーナーを2本または2本以
上とし該バーナーを並列にならべ、堆積中の多孔質ガラ
ス母材の表面における火炎の広がり半径が互いに交わる
交点までの距離を1とし、この火炎の広がりが0.5倍
から1.5倍の距離となる範囲に設置することを特徴と
する光ファイバープリフォーム母材の製造方法。 2、最終スート径を基準としたバーナー間隔で多孔質ガ
ラス部材を作成することを特徴とする請求項1に記載の
光ファイバープリフォーム母材の製造方法。 3、移動距離がバーナー間隔の少なくとも5倍以上であ
る請求項1に記載の光ファイバープリフォーム母材の製
造方法。
[Claims] 1. Glass particles are generated by flame hydrolyzing the glass raw material with an oxyhydrogen flame burner, and these are deposited on the starting material of the core glass rod by an external method to create a porous glass base material. In a method for producing an optical fiber preform base material which is dehydrated, sintered and vitrified, two or more burners are arranged in parallel, and the flame spreads on the surface of the porous glass base material being deposited. A method for manufacturing an optical fiber preform base material, characterized in that the distance to the intersection point where the radii intersect is 1, and the flame is installed in a range where the spread of the flame is 0.5 times to 1.5 times the distance. 2. The method for manufacturing an optical fiber preform base material according to claim 1, characterized in that the porous glass member is created at burner intervals based on the final soot diameter. 3. The method for manufacturing an optical fiber preform preform according to claim 1, wherein the moving distance is at least five times the burner interval.
JP1031311A 1989-02-10 1989-02-10 Optical fiber preform base material manufacturing method Expired - Lifetime JPH0777968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1031311A JPH0777968B2 (en) 1989-02-10 1989-02-10 Optical fiber preform base material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1031311A JPH0777968B2 (en) 1989-02-10 1989-02-10 Optical fiber preform base material manufacturing method

Publications (2)

Publication Number Publication Date
JPH02212327A true JPH02212327A (en) 1990-08-23
JPH0777968B2 JPH0777968B2 (en) 1995-08-23

Family

ID=12327743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1031311A Expired - Lifetime JPH0777968B2 (en) 1989-02-10 1989-02-10 Optical fiber preform base material manufacturing method

Country Status (1)

Country Link
JP (1) JPH0777968B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047564A (en) * 1996-07-18 2000-04-11 Heraeus Quarzglas Gmbh Method of producing quartz glass bodies
WO2002024591A1 (en) * 2000-09-21 2002-03-28 Heraeus Tenevo Ag Method and device for producing a cylinder from doped quartz glass
EP1340724A1 (en) * 2000-11-24 2003-09-03 Sumitomo Electric Industries, Ltd. Method and device for manufacturing glass particulate sedimented body
CN115403264A (en) * 2021-05-27 2022-11-29 株式会社藤仓 Method for producing porous glass body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873522A (en) * 1972-01-03 1973-10-04
JPS56109834A (en) * 1980-02-05 1981-08-31 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS57111252A (en) * 1980-12-26 1982-07-10 Nippon Telegr & Teleph Corp <Ntt> Manufacturing of preform of optical fiber for optical communication
JPS649821A (en) * 1987-07-01 1989-01-13 Shinetsu Sekiei Kk Sooty silica material and production thereof
JPH02172839A (en) * 1988-12-26 1990-07-04 Fujikura Ltd Production of base material for optical fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873522A (en) * 1972-01-03 1973-10-04
JPS56109834A (en) * 1980-02-05 1981-08-31 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS57111252A (en) * 1980-12-26 1982-07-10 Nippon Telegr & Teleph Corp <Ntt> Manufacturing of preform of optical fiber for optical communication
JPS649821A (en) * 1987-07-01 1989-01-13 Shinetsu Sekiei Kk Sooty silica material and production thereof
JPH02172839A (en) * 1988-12-26 1990-07-04 Fujikura Ltd Production of base material for optical fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047564A (en) * 1996-07-18 2000-04-11 Heraeus Quarzglas Gmbh Method of producing quartz glass bodies
WO2002024591A1 (en) * 2000-09-21 2002-03-28 Heraeus Tenevo Ag Method and device for producing a cylinder from doped quartz glass
EP1340724A1 (en) * 2000-11-24 2003-09-03 Sumitomo Electric Industries, Ltd. Method and device for manufacturing glass particulate sedimented body
EP1340724A4 (en) * 2000-11-24 2004-12-08 Sumitomo Electric Industries Method and device for manufacturing glass particulate sedimented body
CN115403264A (en) * 2021-05-27 2022-11-29 株式会社藤仓 Method for producing porous glass body
CN115403264B (en) * 2021-05-27 2024-05-14 株式会社藤仓 Method for producing porous glass body

Also Published As

Publication number Publication date
JPH0777968B2 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
JP2612949B2 (en) Manufacturing method of optical fiber preform base material
CA1233080A (en) Method of fabricating optical fiber preforms
JPS649821A (en) Sooty silica material and production thereof
JPH02212327A (en) Production of optical fiber preform
JP2612941B2 (en) Method for producing porous optical fiber preform
JP3567574B2 (en) Burner for synthesis of porous glass base material
CN209442875U (en) VAD prepares the device of preform
JPS62108744A (en) Transparent vitrification method of porous glass base material
JPS6044258B2 (en) synthesis torch
JP2866436B2 (en) Method for producing porous preform preform for optical fiber
TWI380966B (en) Optical fiber base material, optical fiber and method of fabricating thereof
JPH0986948A (en) Production of porous glass base material for optical fiber
JPS63107825A (en) Production of synthetic quartz tube
JP2846048B2 (en) Method for producing porous glass base material
JPH02164737A (en) Production of optical fiber preform
JPS604978Y2 (en) Glass particle synthesis torch
JPH03257037A (en) Production of porous glass preform for optical fiber
JPH0383830A (en) Optical fiber base material and preparation its
JPH02307838A (en) Production of optical fiber preform
JPH0383829A (en) Preparation of base material for optical fiber
JP3131093B2 (en) Equipment for manufacturing porous glass preform for optical fiber
JPH04160026A (en) Burner for forming glass fine particles
JP2003212551A (en) Method and apparatus for manufacturing glass preform
JPH0712954B2 (en) Method for manufacturing base material for optical fiber
JP2001261362A (en) Method of producing preform for optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070823

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 14