JPH02307838A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPH02307838A
JPH02307838A JP12665789A JP12665789A JPH02307838A JP H02307838 A JPH02307838 A JP H02307838A JP 12665789 A JP12665789 A JP 12665789A JP 12665789 A JP12665789 A JP 12665789A JP H02307838 A JPH02307838 A JP H02307838A
Authority
JP
Japan
Prior art keywords
burner
layer
temp
fluorine
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12665789A
Other languages
Japanese (ja)
Other versions
JPH0665614B2 (en
Inventor
Shigeru Emori
滋 江森
Koichiro Watanabe
渡辺 幸一郎
Kenji Nishide
西出 研二
Ryoji Yamauchi
良三 山内
Nobuyasu Sato
信安 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP12665789A priority Critical patent/JPH0665614B2/en
Publication of JPH02307838A publication Critical patent/JPH02307838A/en
Publication of JPH0665614B2 publication Critical patent/JPH0665614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Abstract

PURPOSE:To equalize the bulk densities of fine grain layers and to produce the preform having a stabilized specific refractive index between the core and clad by monitoring the surface temp. of the fine glass grain deposit and controlling the amt. of a gas to be supplied into the burner. CONSTITUTION:A rod 1 is rotated, plural burners 3 and 4 are traversed in the axial direction of the rod 1, and a gas is supplied at a specified flow rate to deposit fine quartz glass grains. The temp. of the surface layer 21 of the grains formed by the preceding burner 3 is measured by a radiation thermometer 31, etc., and the temp. of the surface layer 22 of the fine glass grains formed by the succeeding burner 4 is measured. The amt. of the gas to be supplied to the preceding burner 3 is adjusted in each traverse so that both temps. are equalized, and the bulk density of the entire grain layer is uniformized. The fine glass grain layer is placed in a heating furnace and dehydrated, then the furnace is filled with a high-temp. gaseous fluorine atmosphere to vitrify the layer, and a fluorine-doped Si layer is obtained. As a result, an optical fiber preform in which the refractive index in the clad is not fluctuated is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、コア用ロッドの回りにガラス微粒子を複数
本のバーナを用いて堆積させ、その透明ガラス化時にフ
ッ素をドープしてクラッドとする光ファイバ母材の製造
方法に関するもので、フッ素が均一にドープされるよう
にしてクラッドの屈折率を一定に保ち、得られるファイ
バの伝送特性の向上を図ったものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention involves depositing glass particles around a core rod using a plurality of burners, and doping it with fluorine to form a cladding when making it transparent. This relates to a method of manufacturing an optical fiber preform, in which the refractive index of the cladding is kept constant by uniformly doping fluorine, and the transmission characteristics of the resulting fiber are improved.

(従来の技術) 従来のこの種の方法では、第3図に示すようにコア用の
SiO□、もしくはドープ)Siftロッド1上に、複
数本例えば2本のバーナ3,4を用いてバーナ3,4を
ロッド1の軸方向にトラバースさせつつSingガラス
微粒子層2を形成させる。なお、図において21は先行
するバーナ3によるガラス微粒子層、22は後行するバ
ーナ4によるガラス微粒子層である。次いでこのガラス
微粒子層2を必要に応じて脱水処理した後、フッ素ガス
雰囲気で高温に加熱して透明ガラス化してフッ素によっ
て屈折率が低下されたフッ素ドープSiO□ガラスとな
し、コアー°クラッド型の光ファイバ母材とする。
(Prior Art) In this type of conventional method, as shown in FIG. , 4 in the axial direction of the rod 1 to form the Sing glass fine particle layer 2. In the figure, 21 is a glass fine particle layer formed by the preceding burner 3, and 22 is a glass fine particle layer formed by the following burner 4. Next, this glass fine particle layer 2 is subjected to dehydration treatment as necessary, and then heated to a high temperature in a fluorine gas atmosphere to make it transparent vitrified to form a fluorine-doped SiO□ glass whose refractive index is lowered by fluorine. Use as optical fiber base material.

(発明が解決しようとする課題) しかしながら、先行するバーナ炎の熱がコア用ロッード
1や、先に堆積されたガラス微粒子層21に奪われるた
め、後行するバーナ炎に比較してその堆積面の温度が低
下するという現象が生じる。そのため、先行するバーナ
によって得られるガラス微粒子層21のカサ密度と、後
行するバーナによって得られるガラス微粒子層22のカ
サ密度とが異なることとなり、結果として透明ガラス化
時にドープさせるべきフッ素量に影響を及ぼし、第4図
に示すようにクラッド内において屈折率の微少変動が生
じ、コアとクラッド間の比屈折率差が不安定となる。な
お、バーナ温度ひいてはガラス微粒子堆積面の温度と、
得られるガラス微粒子のカサ密度との関係は、温度が低
いほどカサ密度の小さい柔らかな層となり、フッ素はド
ープしやすくなる。
(Problem to be Solved by the Invention) However, since the heat of the preceding burner flame is absorbed by the core rod 1 and the glass fine particle layer 21 deposited earlier, the deposition surface of the preceding burner flame is smaller than that of the following burner flame. A phenomenon occurs in which the temperature of Therefore, the bulk density of the glass fine particle layer 21 obtained by the preceding burner is different from the bulk density of the glass fine particle layer 22 obtained by the succeeding burner, and as a result, the amount of fluorine to be doped during transparent vitrification is affected. As shown in FIG. 4, slight fluctuations in the refractive index occur within the cladding, and the relative refractive index difference between the core and the cladding becomes unstable. In addition, the burner temperature and the temperature of the glass particle deposition surface,
Regarding the relationship between the bulk density of the obtained glass particles, the lower the temperature, the softer the layer becomes with a lower bulk density, and the easier it is to dope with fluorine.

(課題を解決するための手段) この発明は、以上の観点からコア用ガラスロンドの回り
に、複数本のバーナを用いて外付は法によりガラス微粒
子層を堆積させ、このガラス微粒子層をフッ素ガス雰囲
気下で透明ガラス化してフッ素ドープクラッドプリフォ
ームとする際に、各バーナによるガラス微粒子の堆積面
の温度が一定になるようにバーナ内へのガスの供給量を
調整してカサ密度が等しくなるようにしたものである。
(Means for Solving the Problems) In view of the above, this invention deposits a glass fine particle layer around a core glass iron by an external method using a plurality of burners, and this glass fine particle layer is coated with fluorine. When creating a fluorine-doped clad preform by transparent vitrification in a gas atmosphere, the amount of gas supplied to the burners is adjusted so that the temperature of the surface on which glass particles are deposited by each burner is constant, so that the bulk density is equal. It was made so that it would become so.

なお、ガラス微粒子の堆積成長面の温度の測定は例えば
放射温度計等を用いて測る。
Note that the temperature of the surface on which the glass particles are deposited and grown is measured using, for example, a radiation thermometer.

(作 用) 各バーナによって生成されるガラス微粒子の堆積面の表
面温度を常に監視して、それらが等しくなるように各バ
ーナ内へのガスの供給量を調整しているので、得られる
各ガラス微粒子層のカサ密度は等しくなる。その結果、
フッ素のドープ景が一定になるためクラッド内における
屈折率に変動がなく半径方向に一定の値が得られる。
(Function) The surface temperature of the surface on which the glass particles generated by each burner are deposited is constantly monitored, and the amount of gas supplied to each burner is adjusted so that the temperatures are equal. The bulk density of the fine particle layer becomes equal. the result,
Since the fluorine doping profile is constant, there is no variation in the refractive index within the cladding, and a constant value can be obtained in the radial direction.

(実施例) この発明を第1図にもとすいて説明する。図において第
3図と同一部には同じ符号を付しである。
(Example) This invention will be explained based on FIG. 1. In the figure, the same parts as in FIG. 3 are given the same reference numerals.

コア用として予めVAD法によりGeO□ ドープSi
0g透明ガラスロッド1を用意した。このロッド1の外
径は14m5全長は1800mm、そのうち有効長はお
よそ750mmである。このロッド1を2Orpmで回
転させた。一方バーナ3.4として第2図に示す2連ノ
ズル型バーナを用いた。図において、10は中央に並列
して配置された2連ノズルで、各々は同心2重管構造に
なされており、内部パイプ12には5iC24、外部パ
イプ14にはシールガスとしてのArが供給される。1
6はこの2連ノズル10を囲むようにして位置される環
状パイプ群で、各々には酸素ガスが供給される。18は
外管で、内部には水素ガスが供給される。これら2本の
バーナ3.4をロッド1の軸方向に40mm/分の速度
でトラバースさせるとともに、いずれにも第1表に示す
流量のガスを供給した。
GeO□ doped Si is pre-coated for the core by VAD method.
A 0g transparent glass rod 1 was prepared. The rod 1 has an outer diameter of 14 m and a total length of 1800 mm, of which the effective length is approximately 750 mm. This rod 1 was rotated at 2 rpm. On the other hand, a double nozzle type burner shown in FIG. 2 was used as the burner 3.4. In the figure, reference numeral 10 denotes two nozzles arranged in parallel in the center, each of which has a concentric double pipe structure, with 5iC24 supplied to the inner pipe 12 and Ar as a sealing gas supplied to the outer pipe 14. Ru. 1
Reference numeral 6 denotes a group of annular pipes located so as to surround this double nozzle 10, each of which is supplied with oxygen gas. 18 is an outer tube into which hydrogen gas is supplied. These two burners 3.4 were traversed in the axial direction of the rod 1 at a speed of 40 mm/min, and gas was supplied to both of them at the flow rates shown in Table 1.

第1表 内部バイブ12   5iCfa   2.5 SLM
Ar  1.5SLM 外部パイプ14    Ar    3.5SLM環状
パイプ群16   o、    11.5 SLM外管
18       Hz    23.OSLMところ
が先行バーナ3によるガラス微粒子表面層21の放射温
度計31の温度が1100°Cを示し、後行バーナ4に
よるガラス微粒子表面層22の放射温度計4Aの温度が
1200℃を示したため、先行バーナ3内へのガスの供
給量を以下の第2表に示すように変更した。
Table 1 Internal Vibrator 12 5iCfa 2.5 SLM
Ar 1.5 SLM external pipe 14 Ar 3.5 SLM annular pipe group 16 o, 11.5 SLM external pipe 18 Hz 23. However, the temperature of the radiation thermometer 31 of the glass particle surface layer 21 by the leading burner 3 showed 1100°C, and the temperature of the radiation thermometer 4A of the glass particulate surface layer 22 by the trailing burner 4 showed 1200°C. The amount of gas supplied into the burner 3 was changed as shown in Table 2 below.

第2表 内部バイブ12   5iC1<   2.5 SLM
Ar  1.5SLM 外部パイプ14    Ar    3.5SLM循環
バイブ群16  0!    11.5 SLM外管1
8        H223,OSLMこれにより、先
行バーナ3、後行バーナ4によって得られるガラス微粒
子表面層21.22の温度は等しくなった。
Table 2 Internal Vibrator 12 5iC1< 2.5 SLM
Ar 1.5SLM external pipe 14 Ar 3.5SLM circulation vibe group 16 0! 11.5 SLM outer tube 1
8 H223, OSLM As a result, the temperatures of the glass particle surface layers 21 and 22 obtained by the leading burner 3 and the trailing burner 4 became equal.

以降、トラバースするごとに先行バーナ3のガス供給量
の調整を行い、全ガラス微粒子層のカサ密度を等しくし
た。ひき続いてこのガラス微粒子層を加熱炉に入れてC
2!にて脱水処理した後、さらに高温に上げるとともに
炉内をフッ素ガス雰囲気にして透明ガラス化を図り、フ
ッ素ドープ5t(h層を得、コアークラッド型のプリフ
ォームとした。
Thereafter, the amount of gas supplied to the preceding burner 3 was adjusted every time the traversal was carried out, and the bulk density of all the glass fine particle layers was made equal. Subsequently, this glass fine particle layer was placed in a heating furnace and heated to C.
2! After dehydration treatment, the temperature was raised to a higher temperature and the inside of the furnace was made into a fluorine gas atmosphere to achieve transparent vitrification to obtain a fluorine-doped 5T (h layer) and a core clad preform.

二のプリフォームの屈折率を測定したところ、クラッド
部は半径方向に均一であった。
When the refractive index of the second preform was measured, the cladding portion was uniform in the radial direction.

(発明の効果) この発明は、以上のように複数のバーナを用いてSin
、からなるガラス微粒子層を得る際に、各バーナにより
得られるガラス微粒子の堆積面の温度を監視しつつ行い
、温度差がある場合にはバーナ内へのガス量を変えるこ
とで温度を一定になすようにしたので、得られるフッ素
ドープ5iOzクラツドの屈折率が一定に維持できるた
め、コアークラッド間の比屈折率差が安定した母材が得
られる。
(Effect of the invention) As described above, this invention uses a plurality of burners to
When obtaining a layer of glass particles consisting of By doing so, the refractive index of the resulting fluorine-doped 5iOz cladding can be maintained constant, and a base material with a stable relative refractive index difference between the core claddings can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明によるSiO□ガラス微粒子層の製
造方法を示す概略説明図、第2図は、ガラス微粒子製造
用バーナ、第3図は、従来の光ファイバ母材の製造方法
を示す概略説明図、第4図は、従来法により得られた母
材の屈折率分布を示す概′略図である。 図において、2 :  Sin、ガラス微粒子層、21
:先行バーナ3による5iOzガラス微粒子層、22:
後行バーナ4によるSingガラス微粒子層、31゜4
1:放射温度計。
FIG. 1 is a schematic diagram showing a method for manufacturing a SiO□ glass particle layer according to the present invention, FIG. 2 is a burner for manufacturing glass particles, and FIG. 3 is a schematic diagram showing a conventional method for manufacturing an optical fiber preform. The explanatory diagram, FIG. 4, is a schematic diagram showing the refractive index distribution of the base material obtained by the conventional method. In the figure, 2: Sin, glass fine particle layer, 21
: 5iOz glass fine particle layer by preceding burner 3, 22:
Sing glass fine particle layer by trailing burner 4, 31°4
1: Radiation thermometer.

Claims (1)

【特許請求の範囲】[Claims] 石英ガラス系コア用ロッドの回りに、複数本のバーナを
用いて外付け法により石英ガラス微粒子を堆積させ、得
られる石英ガラス微粒子層をフッ素含有ガス雰囲気で透
明ガラス化してフッ素ドープ石英ガラスクラッドとする
工程を含む光ファイバ母材の製造方法において、前記各
バーナ内へのガス供給量を調整して各バーナによって得
られる石英ガラス微粒子層のカサ密度を等しくして堆積
させることを特徴とする光ファイバ母材の製造方法。
Silica glass fine particles are deposited around a rod for a quartz glass core by an external method using multiple burners, and the resulting quartz glass fine particle layer is made into transparent glass in a fluorine-containing gas atmosphere to form a fluorine-doped silica glass cladding. In the method for manufacturing an optical fiber preform, the amount of gas supplied to each of the burners is adjusted so that the bulk density of the silica glass fine particle layer obtained by each burner is equalized and deposited. Method for manufacturing fiber base material.
JP12665789A 1989-05-22 1989-05-22 Method for manufacturing optical fiber preform Expired - Lifetime JPH0665614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12665789A JPH0665614B2 (en) 1989-05-22 1989-05-22 Method for manufacturing optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12665789A JPH0665614B2 (en) 1989-05-22 1989-05-22 Method for manufacturing optical fiber preform

Publications (2)

Publication Number Publication Date
JPH02307838A true JPH02307838A (en) 1990-12-21
JPH0665614B2 JPH0665614B2 (en) 1994-08-24

Family

ID=14940645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12665789A Expired - Lifetime JPH0665614B2 (en) 1989-05-22 1989-05-22 Method for manufacturing optical fiber preform

Country Status (1)

Country Link
JP (1) JPH0665614B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310531A (en) * 1991-04-03 1992-11-02 Yazaki Corp Production of optical fiber preform
EP0604785A1 (en) * 1992-12-28 1994-07-06 Corning Incorporated Method of making optical waveguide preforms

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310531A (en) * 1991-04-03 1992-11-02 Yazaki Corp Production of optical fiber preform
JP2592359B2 (en) * 1991-04-03 1997-03-19 矢崎総業株式会社 Burner control device for forming clad members
EP0604785A1 (en) * 1992-12-28 1994-07-06 Corning Incorporated Method of making optical waveguide preforms

Also Published As

Publication number Publication date
JPH0665614B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
CA1104825A (en) Method and apparatus for manufacturing a glass optical transmission fiber preform
JP2612949B2 (en) Manufacturing method of optical fiber preform base material
US6324871B1 (en) Process for producing optical fiber preform
JP2622182B2 (en) Manufacturing method of optical fiber preform base material
JPH02307838A (en) Production of optical fiber preform
JP3562545B2 (en) Method for producing glass preform for optical fiber
JPH01286932A (en) Production of optical fiber preform
JPH02275724A (en) Production of optical fiber matrix
JPH0559052B2 (en)
JPH03242341A (en) Production of porous glass preform for single-mode optical fiber
JPS62182129A (en) Production of preform for optical fiber
JP3953855B2 (en) Method for producing porous base material
KR850000908B1 (en) Method for manufacturing an optical fiber preform
JPH0986948A (en) Production of porous glass base material for optical fiber
JPH0360438A (en) Production of optical fiber base material
JP3587032B2 (en) Manufacturing method of optical fiber preform
JPH0712951B2 (en) Method for manufacturing base material for optical fiber
JPH05330843A (en) Production of optical fiber preform
JPH04349147A (en) Radiation-resistant optical fiber and its production
JPS62283838A (en) Production of optical fiber
JPS641414B2 (en)
JPH07287131A (en) Production of glass preform for optical fiber
JPH02304B2 (en)
JPH027888B2 (en)
JPH02164734A (en) Production of quartz glass soot