JP3587032B2 - Manufacturing method of optical fiber preform - Google Patents

Manufacturing method of optical fiber preform Download PDF

Info

Publication number
JP3587032B2
JP3587032B2 JP30050297A JP30050297A JP3587032B2 JP 3587032 B2 JP3587032 B2 JP 3587032B2 JP 30050297 A JP30050297 A JP 30050297A JP 30050297 A JP30050297 A JP 30050297A JP 3587032 B2 JP3587032 B2 JP 3587032B2
Authority
JP
Japan
Prior art keywords
flow rate
optical fiber
glass
dopant
fiber preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30050297A
Other languages
Japanese (ja)
Other versions
JPH11130456A (en
Inventor
佳生 横山
章 浦野
俊雄 彈塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30050297A priority Critical patent/JP3587032B2/en
Publication of JPH11130456A publication Critical patent/JPH11130456A/en
Application granted granted Critical
Publication of JP3587032B2 publication Critical patent/JP3587032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/90Feeding the burner or the burner-heated deposition site with vapour generated from solid glass precursors, i.e. by sublimation

Description

【0001】
【発明の属する技術分野】
本発明は外付け法(OVD法)により高比屈折率差を有しかつ複雑な屈折率分布を有する光ファイバを製造する方法、特に長距離大容量通信システムに用いられる高性能の光ファイバを提供せんとするものである。
【0002】
【従来の技術】
従来行われている光ファイバ母材の製造方法の一つとして、透明ガラスロッドを出発部材とし、この出発部材を容器内に水平もしくは鉛直に設置し、これを出発部材の軸回りに回転させ、気体状ガラス原料をガラス微粒子合成用バーナに供給してガラス微粒子を合成し、ガラス微粒子合成用バーナに対して相対的に往復運動している出発部材に堆積させるいわゆる外付け法によりガラス微粒子堆積体(光ファイバ母材)を得て、これを加熱溶融して透明ガラス化する方法がある(特開平2−172838号公報など)。
この方法により光ファイバ母材を製造する装置の1例を図1に示す。図1の装置は容器1内に出発部材2がロッド7に把持され鉛直に取付けられており、この出発部材2は軸回りに回転し、昇降装置5により上下方向に往復運動するようになっている。容器1の側面には出発部材2の回転軸に直角にガラス合成バーナ3が取付けられており、原料供給装置8から供給される原料によりガラス微粒子を合成し出発部材2上に堆積させる。なお、ガラス合成バーナ3はバーナ移動装置4により前後に移動可能になっている。また、ガラス合成バーナ3の反対側の容器1の側面には排気口6が設けられており、合成中の余剰ガラス微粒子などを含む排気が排出される。
【0003】
このような装置により光ファイバ母材を製造する場合、図2に示すように出発部材2にガラス微粒子が堆積したガラス微粒子堆積体9の中間部分には外径が一定な外径定常部10が形成されるが、上下端部には外径が異なる外径非定常部11が生じる。この端部においてはバーナが折り返す形になるため、また、外径が小さく熱容量が小さいこともあって、バーナの加熱力が一定の場合、ガラス微粒子堆積体の温度が局所的に上昇してしまう。例えば、ターゲットの移動速度が定速のとき、外径定常部の温度を900℃程度になるように操作しても、端部では約1100℃にまで上昇してしまう場合があり、ガラス微粒子堆積体の嵩密度に分布が生じて硬さに不整が生じ、透明ガラスロッドとガラス微粒子堆積層との熱収縮率の差からすす割れが発生するという問題があった。
【0004】
更に上記方法の欠点を解消し、透明ガラスロッドからなる出発部材上にガラス微粒子を堆積させる際に、ガラス微粒子堆積体の端部における局所的な温度の上昇を抑え、良好な品質の光ファイバ母材を得ることのできる光ファイバ母材の製造方法、さらに端部の外径非定常部の増量を抑え、光ファイバ母材に線引きする際の歩留りがよい光ファイバ母材の製造方法を提供するためにガラス微粒子堆積体の端部の外径非定常部におけるガラス合成バーナの加熱力を調整して、端部の外径非定常部の温度の局所的上昇を抑えるように制御して多孔質母材へのクラックの発生を防止することが提案されているが(特願平9−131997号明細書)、ドーパントを添加する場合については認識されていない。
【0005】
【発明が解決しようとする課題】
本発明は上記のような先行技術における問題点を解決するために開発されたものである。一般に、高比屈折率差を有しかつ複雑な屈折率分布を有する光ファイバの製造方法には、MCVD法やOVD法が適しており、特にOVD法は母材大型化が可能であるため、生産性を上げるのに有利であるが、OVD法において高比屈折率差を有する光ファイバを作成する際には、合成するガラス多孔質母材にクラックが入り易いという問題があった。すなわち、高比屈折率差を有する光ファイバを作成するためには、径方向にドーパントの添加量を大きく変化させる必要がある。ガラス多孔質母材を合成する際には、ドーパント量が変化するとガラス微粒子間の収縮量が変化するため、合成中のガラス多孔質母材中に歪みが発生してクラックが発生し易くなる。特にドーパントを含まないガラス微粒子堆積層の上に高濃度のドーパントを含むガラス微粒子を堆積させる場合、双方の間の熱収縮率の差が大きくなるため、すす割れの発生頻度はさらに高くなるという問題があった。さらに、OVD法によるガラス多孔質母材の作成では、両端部にクラックが入り、そこが起点となって全長にクラックが発生するという問題があった。
【0006】
本発明は、例えば、OVD法により高比屈折率差を有しかつ複雑な屈折率分布を有する光ファイバ用の母材を製造する方法において、ドーパント含有原料ガスを供給する際に端部でのドーパント濃度を下げることにより、クラックの発生を抑制することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的は下記の各発明により効果的に達成することができる:
(1)ガラス合成用バーナを出発ロッドの軸方向に対して相対的に移動させ、軸方向の一定範囲で往復させることにより出発ロッド上にガラス多孔質体を合成し、光ファイバ用ガラス多孔質母材を製造する方法において、往復の端部においてドーパントの原料ガスの流量を定常部の0〜70%、好ましくは0〜40%に減量することを特徴とする光ファイバ母材の製造方法。
(2)ドーパントの原料ガスの流量の減少を開始するか、もしくは定常部の流量に戻す末端からの距離を合成中の多孔質母材の外径の30〜250%、好ましくは50〜150%とすることを特徴とする上記(1)に記載の光ファイバ母材の製造方法。
【0008】
(3)ドーパントの原料ガスの流量の変化をステップ状に変化させるかもしくは末端からの距離の関数で変化させることを特徴とする上記(1)又は(2)に記載の光ファイバ母材の製造方法。
(4)ドーパントの原料ガスの流量の変化と同時にバーナ火炎のH/O流量を調整することを特徴とする上記(1)〜(3)のいずれかに記載の光ファイバ母材の製造方法。
【0009】
上記(1)の発明に従い、端部でのドーパントの原料ガス量を減少させ、ドーパント濃度を下げることにより、全すす表面積の中に占める高ドーパント濃度部分の割合を低減し、すす表面全体の歪みを低減することによりクラックの発生を抑えることが可能となる。また、特に端部では、定常部に比べて外径が長手方向に変化しているため、堆積面の温度分布が長手方向に変化し易く、このため歪みが発生し易い。さらに、温度分布に従ってドーパントの収率も変化するため、端部では複雑な歪みの分布が形成される。従って端部でのドーパント濃度を減らすことが、クラックを抑制することに最大の効果を得ることになる。ここで、ドーパントの原料ガス流量が定常部の70%より大きいとクラックが発生し易いという問題が生じる。
【0010】
上記(2)の発明では、端部での外径テーパの長さは、多孔質母材の外径によって変化するのでドーパントの原料ガス流量の変化を開始、終了する末端からの距離を母材の外径を基準として特定している。30%未満ではクラックの抑制効果が不充分であり、250%を超えると母材の歩留りが低下するという問題が生じる。
【0011】
上記(3)の発明では、ドーパントの原料ガス流量の変化の速度を特定している。ドーパントの原料ガスの流量は端部では可能な限り少ない方がクラックを抑える効果は大きくなるが、急激に流量変化を行うと、堆積面の温度が大きく変化するために逆に歪みが発生し易くなる。流量変化の大きさに応じて流量変化速度を選択することが効果的である。通常は、定常部から末端若しくは末端から定常部に向かって直線的に流量変化を行わせる。
【0012】
上記(4)の発明は、端部でのドーパント量変化に伴うすす嵩密度の変化をH/O火炎の調整で抑えることを規定している。すなわち、ドーパントの原料ガスの流量の変化に伴い生ずる堆積面の温度の変化をH/O火炎の強さを調整することにより低減することがクラックの抑制に効果的である。
【0013】
本発明は透明ガラスロッドを出発部材とし、この表面にガラス微粒子を堆積させる光ファイバ母材の製造方法であり、本明細書においては、透明ガラスロッドからなる出発部材にガラス微粒子を堆積させたガラス微粒子堆積体を光ファイバ母材又は光ファイバ多孔質母材等という。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明を詳細に説明する。図1は本発明の方法を実施する装置の1例を示す概略断面図である。図1の装置は容器1内に出発部材2がロッド7に把持され鉛直に取付けられており、この出発部材2は軸回りに回転し、昇降装置5により上下方向に往復運動するようになっている。この透明ガラスロッドからなる出発部材2は、例えばガラス製の棒状の部材を容器内に水平又は鉛直に設置し、これを出発部材として軸回りに回転させ、気体状ガラス原料をコア用バーナ及びクラッド用バーナに供給してガラス微粒子を合成し、屈折率の異なるコアとクラッド層(目的とする屈折率パターンに相当する)を有するガラス微粒子堆積体を作製した後、脱水、加熱溶融して透明ガラス化することによって作製することができる。容器1の側面には出発部材2の回転軸に直角にガラス合成バーナ3が取付けられており、原料供給装置8から供給される原料によりガラス微粒子を合成し出発部材2上に堆積させる。
【0015】
なお、ガラス合成バーナ3はバーナ移動装置4により前後に移動可能になっている。ガラス合成バーナ3は通常複数の管を複合化した多重管バーナであり、それぞれの管から四塩化珪素、酸素、水素及び必要に応じてドーパントキャリヤーガスなどが供給されガラス微粒子を合成しながら出発部材に堆積させる構成となっている。そして、ガラス微粒子堆積体の外径が大きくなるに従って、バーナを後退させバーナと堆積面との距離を調整し、さらに表面温度が適正範囲内に保持されるようにガスの流量、特に加熱効率に大きく寄与する水素流量を徐々に増やし、バーナの火力を強めるようにしている。また、ガラス合成バーナ3の反対側の容器1の側面には排気口6が設けられており、合成中の余剰ガラス微粒子などを含む排気が排出される。
【0016】
図1の形式の装置により光ファイバ母材を製造する場合、ガラス微粒子堆積体の外径定常部における堆積面の温度は通常500〜700℃、好ましくは550〜650℃の範囲の所定の温度でガラス微粒子の堆積が行われる。この温度が500℃未満ではガラス微粒子堆積体の嵩密度が小さくなりすす割れし易い。また、700℃を超える高温になるとガラス微粒子堆積体の嵩密度が大きくなり過ぎ、脱水、焼結におけるOH基や不純物の除去が充分できなくなりファイバの伝送損失を悪化させる。
【0017】
本発明の高比屈折率差を有しかつ複雑な屈折率差を有する光ファイバを上記のようなOVD法により製造する。例えば、図1に示される装置を用い、比屈折率差0.6〜3.0%を有し、図3−(a)に示されるようなリング型Δnプロファイルを有する外径φ30mm以上、長さ200mm以上、嵩密度0.2〜0.8g/cmの光ファイバ母材をドーパントしてGe,Fを用いて合成する。
石英出発部材を上下にトラバースさせながら、ガラス合成バーナからSiCl、GeClなどの原料ガスをH/O火炎とともに流し、出発部材上にガラス微粒子を堆積する。トラバースを逆方向にターンさせる端部(両端部共)ではドーパントの原料ガスの流量を定常部の0〜70%、好ましくは0〜40%に減量する。端部で0%とするとクラック抑制に最大の効果が得られるが、焼結の際、端部へドーパントの拡散が生じるため定常部の端でドーパント濃度が減り歩留りが低下する。0%より大きく70%迄の範囲、特に0〜40%の範囲であればクラック防止は可能であり、一方、70%より大きくなるとクラックは発生し易くなる。
【0018】
すなわち、例えば図3−(a)に示されるようなリング型Δnプロファイルを有する光ファイバ母材を製造する場合は、初めはドーパントとしてのGeClを含まない原料ガスをバーナから供給して純粋なSiO層を形成し、次いでリング部の合成には、ArをキャリアガスとしたGeClを含む原料ガスを供給してリング部(SiO−GeO)を合成し、更にその外側には再び原料ガスをSiClのみとして純粋なSiO層を合成する。
図4〜図5は、供給ガス量の流量パターンの例を示す。図4は、上記のドーパントの原料ガスの供給方法で、外径定常部では外径の増加に見合って徐々に流量を増やし端部ではガス供給量を0%とする場合を示している。この場合は、OとHの供給量は一定量としているのでガラス微粒子の堆積面の温度は稍不安定となる。図5では、端部でのドーパントの原料ガス供給量を徐々に減らして0%とし、同時にOとHの供給量も増やして堆積面の表面温度を調整している。図9では、ドーパントの原料ガス供給量を徐々に減らしてはいるが0%とはせず、例えば20%に抑え、一方、OとHの供給量も減らして温度調整を行っている状態を示している。
【0019】
上記のようなドーパントの原料ガスの供給方法において、ドーパントの原料ガス流量の変化を開始する末端からの距離、端部から戻って定常部の流量に戻る末端からの距離、及びドーパントの原料ガスの流量変化速度を変更することが可能であり、また、ドーパントの原料ガスの流量変化に応じてバーナのH/Oガスの流量を変化させすす嵩密度を調整することも可能である。実際、端部でのドーパントの原料ガスの流量を定常部の0%とし、流量を変化する末端からの距離を合成するガラス多孔質母材の外径の50%として合成を行ったところ、母材にクラックは発生しなかった。端部も定常部と同じガス流量条件で合成を行ったものはクラックが発生した。
【0020】
【実施例】
以下実施例により本発明を具体的に説明する。
(実施例1)
図1に示す構成からなる装置で、8重管バーナを用いてφ17mm×480mmの出発部材(石英ロッド)上に図3−(a)に示す様なリング型Δnプロファイルを有するガラス多孔質母材を作製した。この時の主な製造条件は、SiCl流量2.80SLM,H流量50SLM、O流量70SLM,リング部のGeCl流量900SCCM(Arキャリア流量、コンデンサ温度66℃)、出発部材の往復トラバース速度は300mm/分、主軸回転数は40rpmであった。ガラス多孔質体(すす体)を合成する手順は、最初から80トラバース目まではバーナから流す原料ガスをSiClのみとし純粋なSiOからなる層を形成し、次いで、GeClを加えた原料ガスをバーナから流し、150トラバースまでリング部(SiO−GeO)を合成した。さらにその外側には、再び原料ガスをSiClのみとし、純SiOからなる層を230トラバースまで合成した。図10に示す従来の方法では、リング部を合成する際、1トラバース中のGeCl流量を常に一定に供給し合成を行っていた。この様な製造条件では、リング部の合成中にクラックが発生し良好な母材は得られなかった。これに対し、図6に示すようにリング部を合成する際、1トラバース中の両端部50mmにおいてGeClのバーナへの供給を停止させ、両端部の50mmにはGeOを含まないガラス微粒子(すす)を堆積させた場合、クラックのない良好な母材(すす体)を得ることができた。
本実施例では、ドーパント減量領域は50mmで、母材外径37mmの135%に相当する。
【0021】
上記の3段階のトラバースにおいて、H及びOの供給量は一定とし、特にリング部合成の際には両端部50mmの部分ではGeCl原料ガスの供給量は0としたが、H及びOはそのまま供給を続けた。この時外径定常部の温度は600℃、非定常部(両端部50mm)の温度は650℃であった。
【0022】
(実施例2)
リング部合成の際、端部50mmの外径非定常部におけるH及びOの供給量を外径定常部に比較して図7に示されるようにそれぞれ80%及び90%に減らして堆積面温度を600℃の一定に保持し、ドーパントのガス流量を端部で0にすることで堆積面温度が変化して歪みが発生しクラックが発生し易くなるのを防止した外は、実施例1と同様の条件で光ファイバ母材を作製した。
【0023】
(実施例3)
リング部合成の際、端部50mmの外径非定常部におけるGeCl供給量を図8に示されるように勾配をもたせて減少させ、同時にH及びOの供給量も勾配をつけて減らして(外径定常部に対してそれぞれ80%及び90%に減少)、堆積面温度を600℃の一定に保持した外は実施例1と同様の条件で光ファイバ母材を作製した。この例では、急激にガス流量を変化させるとガラス組成や堆積面温度が急激に変化し歪みが発生しクラックが発生し易くなるため、徐々にガス流量を変化させた。
【0024】
(実施例4)
リング部合成の際、端部50mmの外径非定常部におけるH及びOの供給量を外径定常部に比較して図9に示されるようにそれぞれ85%及び95%に減らして堆積面温度を600℃の一定に保持し、ドーパントのガス流量を端部で定常部の20%にすることで堆積面温度が変化して歪みが発生しクラックが発生し易くなるのを防止した外は、実施例1と同様の条件で光ファイバ母材を作製した。
【0025】
【発明の効果】
本発明の光ファイバ母材の製造方法によれば、ガラス多孔質母材の端部におけるガラス合成バーナへのドーパントの原料ガスの供給流量を調整することによって、出発部材上にガラス微粒子を堆積させる際に、ガラス多孔質母材の端部における局所的な歪みの発生を抑えることができ、良好な品質の光ファイバ母材を得ることができる。
【図面の簡単な説明】
【図1】図1は、本発明の方法を実施するための光ファイバ母材の製造装置の1例を示す概略断面図である。
【図2】図2は、出発部材へのガラス微粒子の堆積の状況を示す説明図である。
【図3】図3−(a)〜(e)は、本発明の方法により形成されたリング型Δnプロファイルの例を示す模式図である(縦軸は比屈折率差)。
【図4】図4は、本発明の方法に係るガス供給量の制御パターンの1例を示す説明図(H,O供給量一定)である。
【図5】図5は、本発明の方法に係るガス供給量の制御パターンの1例を示す説明図(H,O供給量を増加させる)である。
【図6】図6は、実施例1で採用されたガス供給量の制御パターンを示す説明図である。
【図7】図7は、実施例2で採用されたガス供給量の制御パターンを示す説明図である。
【図8】図8は、実施例3で採用されたガス供給量の制御パターンを示す説明図である。
【図9】図9は、実施例4で採用されたガス供給量の制御パターンを示す説明図である。
【図10】図10は、従来の方法で採用されたガス供給量の制御パターンを示す説明図である。
【符号の説明】
1.容器、2.出発部材、3.ガラス合成バーナ、4.バーナ移動装置、5.昇降装置、6.排気口、7.ロッド、8.原料供給装置、9.ガラス多孔質母材、10.外径定常部、11.外径非定常部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an optical fiber having a high relative refractive index difference and a complicated refractive index distribution by an external method (OVD method), and particularly to a high-performance optical fiber used for a long-distance large-capacity communication system. It will not be provided.
[0002]
[Prior art]
As one of the conventional methods of manufacturing an optical fiber preform, a transparent glass rod is used as a starting member, and this starting member is installed horizontally or vertically in a container, and this is rotated around the axis of the starting member, A so-called external particle deposition method in which a gaseous glass material is supplied to a burner for synthesizing glass fine particles to synthesize glass fine particles, and is deposited on a starting member that reciprocates relatively to the burner for synthesizing glass fine particles. There is a method of obtaining an (optical fiber preform), heating and melting it to form a vitreous glass (Japanese Patent Application Laid-Open No. 2-172838).
FIG. 1 shows an example of an apparatus for manufacturing an optical fiber preform by this method. In the apparatus shown in FIG. 1, a starting member 2 is vertically held by a rod 7 held in a container 1, and the starting member 2 rotates around an axis, and reciprocates vertically by an elevating device 5. I have. A glass synthesis burner 3 is mounted on the side surface of the container 1 at right angles to the rotation axis of the starting member 2, and synthesizes glass fine particles from the raw material supplied from the raw material supply device 8 and deposits the glass particles on the starting member 2. The glass composite burner 3 can be moved back and forth by a burner moving device 4. In addition, an exhaust port 6 is provided on the side surface of the container 1 opposite to the glass synthesis burner 3, and exhaust gas containing surplus glass fine particles during synthesis is exhausted.
[0003]
When an optical fiber preform is manufactured by such an apparatus, as shown in FIG. 2, a constant outer diameter portion 10 having a constant outer diameter is provided at an intermediate portion of a glass particle deposit body 9 in which glass particles are deposited on a starting member 2. Although formed, outer diameter unsteady portions 11 having different outer diameters are formed at the upper and lower ends. At this end, the burner is folded back, and the outer diameter is small and the heat capacity is small. If the heating power of the burner is constant, the temperature of the glass fine particle deposit locally increases. . For example, when the moving speed of the target is constant, even if the temperature of the constant outer diameter portion is adjusted to about 900 ° C., the temperature may rise to about 1100 ° C. at the end portion, and the glass fine particle deposition may occur. There has been a problem that the bulk density of the body is distributed, the hardness is irregular, and soot cracks occur due to the difference in the heat shrinkage between the transparent glass rod and the glass fine particle deposition layer.
[0004]
In addition, the method of the present invention solves the drawbacks of the above method and suppresses a local rise in temperature at the end of the glass particle deposit when depositing glass particles on a starting member made of a transparent glass rod. Provided is a method of manufacturing an optical fiber preform from which a material can be obtained, and a method of manufacturing an optical fiber preform with a good yield when drawing an optical fiber preform while suppressing an increase in the outer diameter unsteady portion at the end. Therefore, by controlling the heating power of the glass composite burner at the outer diameter unsteady portion at the end of the glass fine particle deposit, control is performed so as to suppress the local rise in temperature at the outer diameter unsteady portion at the end. Although it has been proposed to prevent the occurrence of cracks in the base material (Japanese Patent Application No. 9-131997), the case where a dopant is added has not been recognized.
[0005]
[Problems to be solved by the invention]
The present invention has been developed to solve the problems in the prior art as described above. In general, an MCVD method or an OVD method is suitable for a method for manufacturing an optical fiber having a high relative refractive index difference and a complicated refractive index distribution. In particular, since the OVD method can increase the size of a base material, Although it is advantageous for increasing the productivity, when an optical fiber having a high relative refractive index difference is produced by the OVD method, there is a problem that cracks easily occur in the glass porous preform to be synthesized. That is, in order to produce an optical fiber having a high relative refractive index difference, it is necessary to greatly change the amount of dopant added in the radial direction. When synthesizing a glass porous base material, when the amount of dopant changes, the shrinkage amount between the glass fine particles changes, so that strain is generated in the glass porous base material during synthesis and cracks are easily generated. Particularly when depositing glass particles containing a high concentration of dopant on a glass particle deposition layer containing no dopant, the difference in thermal shrinkage between the two becomes large, so that the frequency of soot cracking becomes even higher. was there. Further, in the production of the porous glass preform by the OVD method, there is a problem that cracks are formed at both ends and the cracks are generated from the cracks in the entire length.
[0006]
The present invention provides, for example, a method of manufacturing a base material for an optical fiber having a high relative refractive index difference and a complicated refractive index distribution by an OVD method, when supplying a dopant-containing raw material gas at an end portion. An object is to suppress the occurrence of cracks by lowering the dopant concentration.
[0007]
[Means for Solving the Problems]
The above objects can be effectively achieved by the following inventions:
(1) By moving the burner for glass synthesis relatively to the axial direction of the starting rod and reciprocating within a certain range in the axial direction, a glass porous body is synthesized on the starting rod, and the glass porous material for the optical fiber is formed. A method for manufacturing an optical fiber preform, wherein the flow rate of a dopant source gas is reduced to 0 to 70%, preferably 0 to 40% of a steady portion at a reciprocating end.
(2) Start reducing the flow rate of the source gas of the dopant or return the flow rate to the steady-state flow rate by setting the distance from the end to 30 to 250%, preferably 50 to 150% of the outer diameter of the porous base material being synthesized. The method for producing an optical fiber preform according to the above (1), wherein
[0008]
(3) The production of the optical fiber preform according to the above (1) or (2), wherein the change in the flow rate of the dopant source gas is changed stepwise or as a function of the distance from the terminal. Method.
(4) The optical fiber preform according to any one of (1) to (3), wherein the H 2 / O 2 flow rate of the burner flame is adjusted simultaneously with the change in the flow rate of the dopant source gas. Method.
[0009]
According to the invention of the above (1), by reducing the amount of the source gas of the dopant at the end portion and lowering the dopant concentration, the proportion of the high dopant concentration portion in the total surface area of the soot is reduced, and the distortion of the entire soot surface is reduced. The occurrence of cracks can be suppressed by reducing the number of cracks. In addition, especially at the end, the outer diameter changes in the longitudinal direction as compared with the steady part, so that the temperature distribution on the deposition surface is likely to change in the longitudinal direction, and thus distortion is likely to occur. Furthermore, since the yield of the dopant changes according to the temperature distribution, a complicated strain distribution is formed at the end. Therefore, reducing the dopant concentration at the end has the greatest effect on suppressing cracks. Here, if the flow rate of the source gas of the dopant is larger than 70% of the steady portion, there is a problem that cracks are easily generated.
[0010]
In the invention of the above (2), since the length of the outer diameter taper at the end changes depending on the outer diameter of the porous base material, the distance from the end where the change of the dopant raw material gas flow starts and ends at the base material is determined. Specified based on the outer diameter of If it is less than 30%, the effect of suppressing cracks is insufficient, and if it exceeds 250%, there arises a problem that the yield of the base material is reduced.
[0011]
In the above invention (3), the rate of change in the flow rate of the dopant source gas is specified. The effect of suppressing cracks is greater when the flow rate of the dopant source gas is as small as possible at the end, but when the flow rate changes rapidly, distortion tends to occur because the temperature of the deposition surface changes greatly. Become. It is effective to select the flow rate change speed according to the magnitude of the flow rate change. Normally, the flow rate is changed linearly from the steady portion to the end or from the end to the steady portion.
[0012]
The invention (4) specifies that the change in soot bulk density due to the change in the amount of dopant at the end is suppressed by adjusting the H 2 / O 2 flame. In other words, it is effective for suppressing cracks to reduce a change in the temperature of the deposition surface caused by a change in the flow rate of the dopant source gas by adjusting the intensity of the H 2 / O 2 flame.
[0013]
The present invention relates to a method for producing an optical fiber preform in which a transparent glass rod is used as a starting member and glass fine particles are deposited on the surface of the starting member. The fine particle deposit is referred to as an optical fiber preform or an optical fiber porous preform.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic sectional view showing an example of an apparatus for performing the method of the present invention. In the apparatus shown in FIG. 1, a starting member 2 is vertically held by a rod 7 held in a container 1, and the starting member 2 rotates around an axis, and reciprocates vertically by an elevating device 5. I have. The starting member 2 made of a transparent glass rod is, for example, a glass rod-shaped member is installed horizontally or vertically in a container, and is rotated around an axis as a starting member. The glass particles are supplied to the burner to synthesize glass particles, and a glass particle stack having a core and a clad layer (corresponding to a target refractive index pattern) having different refractive indices is produced. It can be manufactured by forming A glass synthesis burner 3 is mounted on the side surface of the container 1 at right angles to the rotation axis of the starting member 2, and synthesizes glass fine particles from the raw material supplied from the raw material supply device 8 and deposits the glass particles on the starting member 2.
[0015]
The glass composite burner 3 can be moved back and forth by a burner moving device 4. The glass synthesis burner 3 is usually a multi-tube burner in which a plurality of tubes are combined, and silicon tetrachloride, oxygen, hydrogen, and a dopant carrier gas are supplied from each of the tubes to synthesize glass fine particles, and the starting member is used. It is configured to be deposited on the surface. Then, as the outer diameter of the glass fine particle deposit increases, the burner is retracted to adjust the distance between the burner and the deposition surface, and furthermore, the gas flow rate, particularly the heating efficiency, is maintained so that the surface temperature is maintained within an appropriate range. The hydrogen flow, which greatly contributes, is gradually increased to increase the thermal power of the burner. In addition, an exhaust port 6 is provided on the side surface of the container 1 opposite to the glass synthesis burner 3, and exhaust gas containing surplus glass fine particles during synthesis is exhausted.
[0016]
When the optical fiber preform is manufactured by the apparatus of the type shown in FIG. 1, the temperature of the deposition surface at the constant outer diameter portion of the glass fine particle deposit is usually 500 to 700 ° C., preferably 550 to 650 ° C. Glass fine particles are deposited. When this temperature is lower than 500 ° C., the bulk density of the glass fine particle deposit becomes small, and the glass fine particle deposit is easily broken. Further, when the temperature is higher than 700 ° C., the bulk density of the glass fine particle deposit becomes too large, and OH groups and impurities cannot be sufficiently removed in dehydration and sintering, thereby deteriorating the transmission loss of the fiber.
[0017]
The optical fiber having a high relative refractive index difference and a complicated refractive index difference of the present invention is manufactured by the OVD method as described above. For example, using the device shown in FIG. 1, having a relative refractive index difference of 0.6 to 3.0%, a ring type Δn profile as shown in FIG. The optical fiber preform having a bulk density of 0.2 to 0.8 g / cm 3 and a thickness of 200 mm or more is synthesized using Ge and F as dopants.
While the quartz starting member is traversed up and down, a raw material gas such as SiCl 4 and GeCl 4 is caused to flow along with the H 2 / O 2 flame from the glass synthesis burner to deposit fine glass particles on the starting member. At the ends where the traverse is turned in the opposite direction (both ends), the flow rate of the dopant source gas is reduced to 0 to 70%, preferably 0 to 40% of the steady state. When the content is 0% at the end, the maximum effect is obtained in suppressing cracks. However, during sintering, the dopant is diffused to the end, so that the dopant concentration is reduced at the end of the stationary portion and the yield is reduced. Cracks can be prevented in a range of more than 0% to 70%, particularly in a range of 0 to 40%. On the other hand, when it is more than 70%, cracks are easily generated.
[0018]
That is, for example, when manufacturing an optical fiber preform having a ring type Δn profile as shown in FIG. 3A, a raw material gas not containing GeCl 4 as a dopant is first supplied from a burner to produce a pure gas. An SiO 2 layer is formed, and then a ring portion is synthesized by supplying a source gas containing GeCl 4 using Ar as a carrier gas to synthesize a ring portion (SiO 2 —GeO 2 ), and further outside the ring portion. A pure SiO 2 layer is synthesized using only SiCl 4 as a source gas.
4 and 5 show examples of the flow rate pattern of the supply gas amount. FIG. 4 shows a case where the flow rate of the raw material gas for the dopant is gradually increased in accordance with the increase in the outer diameter at the constant outer diameter portion, and the gas supply amount is set to 0% at the end portion. In this case, since the supply amounts of O 2 and H 2 are constant, the temperature of the deposition surface of the glass fine particles becomes slightly unstable. In FIG. 5, the supply temperature of the source gas of the dopant at the end is gradually reduced to 0%, and at the same time, the supply amounts of O 2 and H 2 are also increased to adjust the surface temperature of the deposition surface. In FIG. 9, the supply amount of the source gas of the dopant is gradually reduced, but is not set to 0%, but is suppressed to, for example, 20%. On the other hand, the supply amounts of O 2 and H 2 are also reduced to adjust the temperature. The state is shown.
[0019]
In the method of supplying the dopant source gas as described above, the distance from the end where the change in the flow rate of the dopant source gas starts, the distance from the end that returns from the end and returns to the steady-state flow rate, and the source gas of the dopant. It is possible to change the flow rate change rate, and it is also possible to adjust the bulk density of the burner by changing the flow rate of the H 2 / O 2 gas in accordance with the change in the flow rate of the dopant source gas. Actually, when the flow rate of the raw material gas of the dopant at the end portion was set to 0% of the steady portion and the distance from the end where the flow rate was changed was set to 50% of the outer diameter of the glass porous base material to be synthesized, the synthesis was performed. No cracks occurred in the material. Cracks also occurred at the ends where synthesis was performed under the same gas flow conditions as for the steady part.
[0020]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
(Example 1)
A glass base material having a ring type Δn profile as shown in FIG. 3- (a) on a starting member (quartz rod) of φ17 mm × 480 mm using an octuple burner with an apparatus having the configuration shown in FIG. Was prepared. The main manufacturing conditions at this time are: SiCl 4 flow rate 2.80 SLM, H 2 flow rate 50 SLM, O 2 flow rate 70 SLM, GeCl 4 flow rate 900 SCCM in the ring part (Ar carrier flow rate, condenser temperature 66 ° C.), reciprocating traverse speed of starting member Was 300 mm / min, and the spindle rotation speed was 40 rpm. The procedure for synthesizing a porous glass body (soot body) is as follows. From the beginning until the 80th traverse, the raw material gas flowing from the burner is made only SiCl 4 to form a layer made of pure SiO 2 , and then the raw material to which GeCl 4 is added Gas was passed from the burner to synthesize a ring portion (SiO 2 —GeO 2 ) up to 150 traverses. Further, a layer made of pure SiO 2 was synthesized up to 230 traverses again using only SiCl 4 as a source gas outside. In the conventional method shown in FIG. 10, when synthesizing the ring portion, the GeCl 4 flow rate during one traverse is always supplied constantly to perform the synthesis. Under such manufacturing conditions, cracks occurred during the synthesis of the ring portion, and a good base material could not be obtained. On the other hand, as shown in FIG. 6, when synthesizing the ring portion, the supply of GeCl 4 to the burner was stopped at both ends 50 mm in one traverse, and the glass particles containing no GeO 2 (50 mm at both ends). When soot was deposited, a good base material (soot body) without cracks could be obtained.
In this embodiment, the dopant reduction region is 50 mm, which corresponds to 135% of the base material outer diameter of 37 mm.
[0021]
In traversing the three stages described above, the supply amount of H 2 and O 2 was constant, especially when the ring portion synthesized in the portion of the both end portions 50mm and the supply amount is 0 GeCl 4 source gas, H 2, and O 2 was supplied as it was. At this time, the temperature of the constant outer diameter portion was 600 ° C., and the temperature of the unsteady portion (both ends 50 mm) was 650 ° C.
[0022]
(Example 2)
In the synthesis of the ring portion, the supply amounts of H 2 and O 2 in the non-stationary outer diameter portion at the end of 50 mm were reduced to 80% and 90%, respectively, as shown in FIG. Except that the surface temperature was kept constant at 600 ° C. and the gas flow rate of the dopant was set to 0 at the end, thereby preventing the deposition surface temperature from changing and causing strain and cracking easily. An optical fiber preform was produced under the same conditions as in Example 1.
[0023]
(Example 3)
At the time of synthesis of the ring portion, the supply amount of GeCl 4 in the unsteady portion having an outer diameter of 50 mm at the end portion is reduced with a gradient as shown in FIG. 8, and at the same time, the supply amounts of H 2 and O 2 are also reduced with a gradient. (Reduced to 80% and 90%, respectively, with respect to the constant outer diameter portion), and an optical fiber preform was manufactured under the same conditions as in Example 1 except that the deposition surface temperature was kept constant at 600 ° C. In this example, if the gas flow rate was suddenly changed, the glass composition and the deposition surface temperature would change suddenly, causing distortion and cracking easily. Therefore, the gas flow rate was gradually changed.
[0024]
(Example 4)
In the synthesis of the ring portion, the supply amounts of H 2 and O 2 in the non-stationary outer diameter portion at the end of 50 mm are reduced to 85% and 95%, respectively, as shown in FIG. By keeping the surface temperature constant at 600 ° C. and setting the gas flow rate of the dopant to 20% of the steady portion at the end, the deposition surface temperature is prevented from changing, thereby preventing distortion and cracks from easily occurring. Prepared an optical fiber preform under the same conditions as in Example 1.
[0025]
【The invention's effect】
According to the method of manufacturing an optical fiber preform of the present invention, glass particles are deposited on the starting member by adjusting the supply flow rate of the raw material gas of the dopant to the glass synthesis burner at the end of the porous glass preform. At this time, the occurrence of local distortion at the end of the porous glass preform can be suppressed, and an optical fiber preform of good quality can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing one example of an apparatus for manufacturing an optical fiber preform for carrying out a method of the present invention.
FIG. 2 is an explanatory diagram showing a state of deposition of glass fine particles on a starting member.
FIGS. 3A to 3E are schematic views showing examples of a ring-shaped Δn profile formed by the method of the present invention (the vertical axis represents a relative refractive index difference).
FIG. 4 is an explanatory diagram (constant H 2 and O 2 supply amounts) showing an example of a gas supply amount control pattern according to the method of the present invention.
FIG. 5 is an explanatory diagram (increase of H 2 and O 2 supply amounts) showing an example of a gas supply amount control pattern according to the method of the present invention.
FIG. 6 is an explanatory diagram illustrating a control pattern of a gas supply amount adopted in the first embodiment.
FIG. 7 is an explanatory diagram illustrating a control pattern of a gas supply amount adopted in the second embodiment.
FIG. 8 is an explanatory diagram illustrating a control pattern of a gas supply amount adopted in a third embodiment.
FIG. 9 is an explanatory diagram illustrating a control pattern of a gas supply amount adopted in a fourth embodiment.
FIG. 10 is an explanatory diagram showing a control pattern of a gas supply amount adopted by a conventional method.
[Explanation of symbols]
1. Container, 2. 2. Starting member; 3. glass synthetic burner; Burner moving device, 5. 5. lifting device; Exhaust port, 7. Rod, 8. 8. raw material supply device; 10. glass porous base material; Outer diameter constant portion, 11. Outer diameter unsteady part

Claims (4)

ガラス合成用バーナを出発ロッドの軸方向に対して相対的に移動させ、軸方向の一定範囲で往復させることにより出発ロッド上にガラス多孔質体を合成し、光ファイバ用ガラス多孔質母材を製造する方法において、往復の端部においてドーパントの原料ガスの流量を定常部の0〜70%に減量することを特徴とする光ファイバ母材の製造方法。By moving the burner for glass synthesis relatively to the axial direction of the starting rod and reciprocating within a certain range in the axial direction, a glass porous body is synthesized on the starting rod, and a glass porous preform for an optical fiber is formed. A method of manufacturing an optical fiber preform, wherein the flow rate of a dopant source gas at a reciprocating end is reduced to 0 to 70% of a steady state. ドーパントの原料ガスの流量の減少を開始するか、もしくは定常部の流量に戻す末端からの距離を合成中の多孔質母材の外径30〜250%とすることを特徴とする請求項1に記載の光ファイバ母材の製造方法。2. The method according to claim 1, wherein the distance from the terminal to start decreasing the flow rate of the dopant raw material gas or to return the flow rate to the steady state flow rate is 30 to 250% of the outer diameter of the porous base material being synthesized. A method for producing the optical fiber preform according to the above. ドーパントの原料ガスの流量の変化をステップ状に変化させるかもしくは末端からの距離の関数で変化させることを特徴とする請求項1又は2に記載の光ファイバ母材の製造方法。3. The method of manufacturing an optical fiber preform according to claim 1, wherein the change in the flow rate of the dopant source gas is changed stepwise or as a function of the distance from the terminal. ドーパントの原料ガスの流量の変化と同時にバーナ火炎のH/O流量を調整することを特徴とする請求項1〜3のいずれかに記載の光ファイバ母材の製造方法。Method for manufacturing an optical fiber preform according to claim 1, characterized in that to adjust the H 2 / O 2 flow rate at the same time the burner flame and changes in the flow rate of the source gas of the dopant.
JP30050297A 1997-10-31 1997-10-31 Manufacturing method of optical fiber preform Expired - Lifetime JP3587032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30050297A JP3587032B2 (en) 1997-10-31 1997-10-31 Manufacturing method of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30050297A JP3587032B2 (en) 1997-10-31 1997-10-31 Manufacturing method of optical fiber preform

Publications (2)

Publication Number Publication Date
JPH11130456A JPH11130456A (en) 1999-05-18
JP3587032B2 true JP3587032B2 (en) 2004-11-10

Family

ID=17885597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30050297A Expired - Lifetime JP3587032B2 (en) 1997-10-31 1997-10-31 Manufacturing method of optical fiber preform

Country Status (1)

Country Link
JP (1) JP3587032B2 (en)

Also Published As

Publication number Publication date
JPH11130456A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
US8375749B2 (en) Method for fabricating porous silica preform
JP3521681B2 (en) Manufacturing method of optical fiber preform
US4627867A (en) Method for producing highly pure glass preform for optical fiber
US7437893B2 (en) Method for producing optical glass
JP3587032B2 (en) Manufacturing method of optical fiber preform
JP3675579B2 (en) Manufacturing method of optical fiber preform
KR20010078071A (en) Method for manufacturing glass base material, glass base material, and optical fiber
US6928841B2 (en) Optical fiber preform manufacture using improved VAD
JP4292862B2 (en) Optical fiber preform manufacturing method and optical fiber manufacturing method
JP4472308B2 (en) Method for producing porous quartz base material
JP3917022B2 (en) Method for producing porous preform for optical fiber
JP3567636B2 (en) Base material for optical fiber and method of manufacturing the same
US20220009816A1 (en) Optical fiber preform
JPS5924097B2 (en) Glass body manufacturing method
JP3864580B2 (en) Manufacturing method of optical fiber preform
JP2005247636A (en) Method of manufacturing porous preform for optical fiber and glass preform
JP3998228B2 (en) Optical fiber porous base material, optical fiber glass base material, and manufacturing methods thereof
JP4048753B2 (en) Manufacturing method of glass preform for optical fiber
JPH01160839A (en) Production of preform for optical fiber
JPH05116980A (en) Production of performed base material for optical fiber
JP3953855B2 (en) Method for producing porous base material
JPH0712951B2 (en) Method for manufacturing base material for optical fiber
JP4176978B2 (en) Manufacturing method of large optical fiber preform
JP2004262719A (en) Method of manufacturing fluorine added glass article
JP2005008451A (en) Optical fiber preform and its production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term