JPH09124333A - Production of preform for optical fiber - Google Patents

Production of preform for optical fiber

Info

Publication number
JPH09124333A
JPH09124333A JP28181095A JP28181095A JPH09124333A JP H09124333 A JPH09124333 A JP H09124333A JP 28181095 A JP28181095 A JP 28181095A JP 28181095 A JP28181095 A JP 28181095A JP H09124333 A JPH09124333 A JP H09124333A
Authority
JP
Japan
Prior art keywords
deposition
burner
optical fiber
deposit
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28181095A
Other languages
Japanese (ja)
Inventor
Yuichi Oga
裕一 大賀
Motonori Nakamura
元宣 中村
Toshio Danzuka
俊雄 彈塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP28181095A priority Critical patent/JPH09124333A/en
Publication of JPH09124333A publication Critical patent/JPH09124333A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0148Means for heating preforms during or immediately prior to deposition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/54Multiple burner arrangements combined with means for heating the deposit, e.g. non-deposition burner

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent crack formation in a preform for an optical fiber during its production or in the following process. SOLUTION: This is a method for producing a preform 4 for an optical fiber by ejecting a glass raw material from an accumulation burner 31, producing glass fine particles by flame hydrolysis and blowing them on a starting member 2 to accumulate. In the method, heating burners 32a, 32b are placed adjacently to the accumulation burner 31. These burners heat the accumulated areas 42 of the glass fine particles during the accumulation of the glass fine particles at a temperature the same as or higher than that of the accumulated area 41 which is heated by the accumulation burner 31 in terms of surface temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ母材の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical fiber preform.

【0002】[0002]

【従来の技術】従来、光ファイバ母材であるガラス微粒
子堆積体の製造方法としては、特開平3−83829号
公報に記載されているものが知られている。すなわち、
石英ガラス、炭素、炭化けい素などのような耐火性の担
体(棒状の出発部材)の外周に、四塩化けい素などのけ
い素化合物を酸水素火炎バーナからの火炎中で酸化、加
水分解してシリカ微粒子として堆積させ、その堆積工程
とともに担体と酸水素バーナとを担体の軸方向へ相対的
に平行移動させることにより、多孔質のガラス微粒子堆
積体、即ち光ファイバ母材を形成する方法であって、前
述の酸水素火炎バーナに隣接して加熱用バーナを配置し
ガラス微粒子堆積体におけるガラス微粒子の表面密度を
一定に保つことで、その堆積体へのクラック(ひび割
れ)を防止しようとするものである。
2. Description of the Related Art Conventionally, as a method for producing a glass fine particle deposit which is an optical fiber preform, a method described in Japanese Patent Laid-Open No. 3-83829 is known. That is,
A silicon compound such as silicon tetrachloride is oxidized and hydrolyzed in the flame from an oxyhydrogen flame burner on the outer periphery of a refractory carrier (bar-shaped starting member) such as quartz glass, carbon, and silicon carbide. By depositing as silica fine particles, and the carrier and the oxyhydrogen burner are relatively moved in parallel with each other in the axial direction of the carrier along with the deposition step, thereby forming a porous glass fine particle deposit, that is, an optical fiber preform. Therefore, by placing a heating burner adjacent to the above-mentioned oxyhydrogen flame burner and keeping the surface density of the glass particles in the glass particle deposit body constant, an attempt is made to prevent cracks in the deposit. It is a thing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
光ファイバ母材の製造技術にあっては、次のような問題
点がある。近年、光ファイバ母材(ガラス微粒子の堆積
体)は、生産性向上、低コスト化の観点から、大径化・
長尺化しており、このような光ファイバ母材を製造しよ
うとすると、光ファイバ母材の端部でバーナによる加熱
が十分でなく、また光ファイバ母材が大径となったとき
に単位面積あたりの熱量が不足してしまう。その不具合
を解消するために、各バーナの火力を上げて光ファイバ
母材を製造してみても、やはり、光ファイバ母材の端部
及び表層でクラックが発生するという問題があった。
However, the conventional technique for manufacturing an optical fiber preform has the following problems. In recent years, optical fiber preforms (deposits of glass particles) have been increased in diameter and diameter in order to improve productivity and reduce costs.
It is becoming longer, and when trying to manufacture such an optical fiber preform, heating by the burner at the end of the optical fiber preform is not sufficient, and when the optical fiber preform has a large diameter, The amount of heat around is insufficient. Even if an attempt is made to manufacture the optical fiber preform by increasing the heating power of each burner in order to solve the problem, there is still a problem that cracks occur at the end portion and the surface layer of the optical fiber preform.

【0004】そこで本発明は、以上のような問題点を解
決するためになされたものであって、大型の光ファイバ
母材の製造に適した光ファイバ母材の製造方法を提供す
ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method of manufacturing an optical fiber preform suitable for manufacturing a large-sized optical fiber preform. And

【0005】[0005]

【課題を解決するための手段】すなわち本発明は、堆積
用バーナからガラス原料を噴出させ火炎加水分解により
ガラス微粒子とし出発部材へ噴き付け堆積させて行う光
ファイバ母材の製造方法において、堆積用バーナに隣接
して加熱用バーナを配設し、ガラス微粒子の堆積の際、
その加熱用バーナで加熱されるガラス微粒子の堆積面の
表面温度を堆積用バーナで加熱される堆積面の表面温度
に対して同温又は高温とすることを特徴とする。
That is, the present invention relates to a method for producing an optical fiber preform in which a glass raw material is ejected from a deposition burner and is sprayed and deposited on a starting member as glass particles by flame hydrolysis for deposition. A heating burner is arranged adjacent to the burner, and when glass fine particles are deposited,
It is characterized in that the surface temperature of the deposition surface of the glass particles heated by the heating burner is the same or higher than the surface temperature of the deposition surface heated by the deposition burner.

【0006】また本発明は、前述の加熱用バーナへ供給
する燃料ガス又は助燃性ガスの供給量を調整することに
より、加熱用バーナで加熱される堆積面の表面温度を堆
積用バーナで加熱される堆積面に対し同温又は高温とす
ることを特徴とする。
Further, according to the present invention, the surface temperature of the deposition surface heated by the heating burner is heated by the deposition burner by adjusting the supply amount of the fuel gas or the auxiliary gas supplied to the heating burner. It is characterized in that the same temperature or high temperature is applied to the deposition surface.

【0007】また本発明は、前述の堆積用バーナに比べ
大口径の加熱用バーナを用いることにより、加熱用バー
ナで加熱される堆積面の表面温度を堆積用バーナで加熱
される堆積面に対し同温又は高温とすることを特徴とす
る。
Further, according to the present invention, by using a heating burner having a larger diameter than that of the above-mentioned deposition burner, the surface temperature of the deposition surface heated by the heating burner is set to be higher than that of the deposition burner heated by the deposition burner. It is characterized in that the temperature is the same or high.

【0008】これらの発明によれば、堆積用バーナに隣
接する加熱用バーナにより、ガラス微粒子の堆積前に堆
積面を予め十分に加熱するので、ガラス微粒子の嵩密度
が高くなる。また、その加熱用バーナにより、ガラス微
粒子の堆積後に堆積面が十分に焼き固められるから、ガ
ラス微粒子堆積体にクラックが発生することがない。
According to these inventions, the heating burner adjacent to the deposition burner sufficiently heats the deposition surface in advance before the deposition of the glass particles, so that the bulk density of the glass particles increases. Moreover, since the deposition surface of the glass fine particles is sufficiently hardened by the heating burner after the glass fine particles are deposited, cracks do not occur in the glass fine particle deposit body.

【0009】また本発明は、前述のガラス微粒子の堆積
の際、その堆積により形成される堆積体の嵩密度を0.
6〜1.2g/cm3 とすることを特徴とする。
Further, according to the present invention, when the above-mentioned glass fine particles are deposited, the bulk density of the deposit formed by the deposition is set to 0.
It is characterized by being 6 to 1.2 g / cm 3 .

【0010】このような発明によれば、ガラス微粒子の
堆積体が焼き固められたものとなるから、その堆積体を
太径なものとしても、その堆積体にクラックが発生する
ことがない。また、ガラス微粒子の堆積体に気泡が混入
することはなく、良好なガラス微粒子堆積体が形成され
る。
According to such an invention, since the deposited body of glass fine particles is baked and solidified, even if the deposited body has a large diameter, cracks do not occur in the deposited body. Further, bubbles are not mixed in the glass particle deposit body, and a good glass particle deposit body is formed.

【0011】更に本発明は、前述のガラス微粒子の堆積
の際、その堆積により形成される堆積体の嵩密度を堆積
初期時の出発部材の近傍で高くすることを特徴とする。
Further, the present invention is characterized in that, when the above-mentioned glass fine particles are deposited, the bulk density of the deposit formed by the deposition is increased near the starting member at the initial stage of the deposition.

【0012】このような発明によれば、クラックの発生
しやすい出発部材の近傍でガラス微粒子の堆積体が強固
となるから、クラックの発生が未然に防止される。
According to this invention, since the deposited body of the glass fine particles becomes strong in the vicinity of the starting member where cracks are likely to occur, the occurrence of cracks is prevented in advance.

【0013】[0013]

【発明の実施の形態】以下、添付図面に基づき、本発明
に係る実施形態の種々の例について説明する。尚、各図
において同一要素には同一符号を付して説明を省略す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of the present invention will be described below with reference to the accompanying drawings. In the drawings, the same elements are denoted by the same reference numerals, and the description is omitted.

【0014】図1は光ファイバ母材の製造工程の説明図
である。まず、光ファイバ母材の製造方法の説明に先立
って、光ファイバ母材の製造装置1について説明する。
図1において、密封された反応容器内には駆動機構(図
示なし)が設置されており、この駆動機構に取り付けた
棒状の出発部材2が軸回転(その軸心を中心に回転)
し、かつその軸方向へ向けて往復移動する構造となって
いる。この駆動機構としては、公知のものが採用され
る。出発部材2は、ガラス微粒子を外周に堆積させるた
め部材であって、例えば、軸心に配したコアの周囲にク
ラッドを配したガラス棒材21の両端に支持材22を連
接したものが採用される。
FIG. 1 is an explanatory view of the manufacturing process of the optical fiber preform. First, prior to the description of the method for manufacturing the optical fiber preform, the manufacturing apparatus 1 for the optical fiber preform will be described.
In FIG. 1, a drive mechanism (not shown) is installed in the sealed reaction container, and a rod-shaped starting member 2 attached to this drive mechanism rotates about an axis (rotates about its axis).
In addition, the structure is such that it reciprocates in the axial direction. As this drive mechanism, a known one is adopted. The starting member 2 is a member for depositing glass fine particles on the outer periphery, and, for example, a member in which a support member 22 is connected to both ends of a glass rod member 21 having a clad arranged around an axially arranged core is adopted. It

【0015】一方、図1のように、駆動機構に取り付け
た出発部材2の中央部付近には、堆積用バーナ31、加
熱用バーナ32a、32bが配設されており、その出発
部材2の外周へ向けて火炎又はガラス微粒子を噴き付け
可能となっている。すなわち、堆積用バーナ31にはS
iCl4 などのガラス原料ガス、H2 などの燃料ガス及
びO2 などの助燃性ガスがそれぞれ設定した量だけ供給
可能となっており、それらのガス供給により堆積用バー
ナ31から所定火力の火炎と共に所定量のガラス微粒子
が噴出できるようになっている。尚、各ガスの供給は、
公知の手段及び手法により行えばよい。また、加熱用バ
ーナ32には、H2 などの燃料ガス及びO2 などの助燃
性ガスがそれぞれ設定した量だけ供給可能となってお
り、それらのガス供給によりそれらバーナ32、33か
ら所定火力の火炎が噴出できるようになっている。
On the other hand, as shown in FIG. 1, a deposition burner 31 and heating burners 32a and 32b are disposed near the center of the starting member 2 attached to the drive mechanism, and the outer periphery of the starting member 2 is arranged. It is possible to spray flames or fine glass particles toward. That is, the deposition burner 31 has S
A glass raw material gas such as iCl 4, a fuel gas such as H 2 and a combustion supporting gas such as O 2 can be supplied in set amounts, respectively, and by supplying these gases, the deposition burner 31 produces a flame of a predetermined thermal power. A predetermined amount of glass particles can be ejected. The supply of each gas is
Any known means and technique may be used. Further, the heating burner 32 can be supplied with a set amount of a fuel gas such as H 2 and a supporting gas such as O 2 respectively, and by supplying these gases, the burners 32 and 33 generate a predetermined thermal power. A flame can be emitted.

【0016】堆積用バーナ31、加熱用バーナ32a、
32bの配置は、出発部材2の往復移動方向に沿って各
バーナ32a、31、32bが横並びとされ、加熱用バ
ーナ32a、32b間に堆積用バーナ31が配された形
とされており、堆積用バーナ31で出発部材2又は堆積
体4にガラス微粒子を噴き付け堆積させる際に、その堆
積前の堆積面を加熱用バーナ32a又は32bのいずれ
か一方で予め加熱し、その堆積後の堆積面を他方の加熱
バーナ32B又は32a更に加熱する構造となってい
る。
A deposition burner 31, a heating burner 32a,
The arrangement of 32b is such that the burners 32a, 31 and 32b are arranged side by side along the reciprocating movement direction of the starting member 2 and the deposition burner 31 is arranged between the heating burners 32a and 32b. When the glass burner 31 sprays and deposits glass particles on the starting member 2 or the deposit 4, the deposition surface before the deposition is preheated by either the heating burner 32a or 32b, and the deposition surface after the deposition is performed. Is further heated by the other heating burner 32B or 32a.

【0017】尚、前述の製造装置1にあっては、固定さ
れた各バーナ31、32に対し出発部材2が往復移動す
る構造となっているが、出発部材2と各バーナ31、3
2とが出発部材2の軸方向へ沿って相対的に往復移動す
る構造であれば、出発部材2に対して各バーナ31、3
2が往復移動するものであってもよい。
In the manufacturing apparatus 1 described above, the starting member 2 reciprocates with respect to the fixed burners 31 and 32. However, the starting member 2 and the burners 31 and 3 are provided.
2 has a structure in which it reciprocates relatively along the axial direction of the starting member 2, each burner 31, 3 with respect to the starting member 2.
2 may reciprocate.

【0018】次に、光ファイバ母材の製造方法について
説明する。
Next, a method of manufacturing the optical fiber preform will be described.

【0019】図1において、コア及びクラッドを有する
出発部材2を図示しない駆動機構に取り付けた後、駆動
機構2を作動させて出発部材2を軸回転させると共に、
バーナ31、32に対しその軸方向へ沿って往復移動さ
せる。一方、堆積用バーナ31からは火炎と共にガラス
原料を噴出させ、火炎加水分解によりガラス微粒子とし
て出発部材2の外周に噴き付け堆積させると共に、その
両側に配置される加熱用バーナ32a、32bからは火
炎を噴出させて出発部材2の外周へ噴き付けさせる。
In FIG. 1, after the starting member 2 having a core and a clad is attached to a driving mechanism (not shown), the driving mechanism 2 is operated to rotate the starting member 2 axially, and
The burners 31 and 32 are reciprocated along the axial direction thereof. On the other hand, a glass raw material is ejected together with a flame from the deposition burner 31 and is sprayed and deposited as fine glass particles on the outer periphery of the starting member 2 by flame hydrolysis, and flames are emitted from the heating burners 32a and 32b arranged on both sides thereof. To be jetted to the outer periphery of the starting member 2.

【0020】その際、各バーナ31、32a、32bに
供給する燃料ガス及び助燃性ガスの量を調整して、堆積
用バーナ31の火炎で加熱される出発部材2又は堆積体
4の堆積面41の表面温度TD に対し、加熱用バーナ3
2a、32bの火炎で加熱される堆積面42の表面温度
S を同温又は高温としておく。それらの表面温度をT
S ≧TD と設定しておくことで、ガラス微粒子が噴き付
けられる堆積面41が加熱用バーナ32a又は32bに
より予め高温状態に温められているから、ガラス微粒子
の嵩密度が高くなり、ガラス微粒子が効率良く出発部材
2又は堆積体4へ堆積することとなる。また、ガラス微
粒子の堆積後には、その堆積面41が加熱用バーナ32
b又は32aで更に加熱されて焼き固められ、堆積体4
の堆積面における嵩密度を0.6〜1.2g/cm3
度の高いものとすることが可能となる。このため、堆積
体4を形成するガラス微粒子が強固に結合した状態とな
り、ひび割れのない良好な堆積体4が得られる。また、
堆積体4が高い嵩密度を有することから、この堆積体4
(光ファイバ母材)から長い光ファイバの形成が可能と
なる。
At this time, the amounts of the fuel gas and the auxiliary gas supplied to the burners 31, 32a, 32b are adjusted so that the deposition member 41 or the deposition surface 41 of the deposition body 4 heated by the flame of the deposition burner 31 is heated. Burner 3 for the surface temperature T D of
The surface temperature T S of the deposition surface 42 heated by the flames 2a and 32b is set to the same temperature or high temperature. Their surface temperature is T
By setting S ≧ T D , since the deposition surface 41 onto which the glass particles are sprayed is preheated to a high temperature by the heating burners 32a or 32b, the bulk density of the glass particles is increased, and the glass particles are increased. Will be efficiently deposited on the starting member 2 or the deposit 4. Further, after the glass particles are deposited, the deposition surface 41 of the glass particles is heated by the heating burner 32.
b or 32a, which is further heated and baked to be solidified.
It is possible to make the bulk density on the deposition surface of (6) as high as about 0.6 to 1.2 g / cm 3 . Therefore, the glass fine particles forming the deposit 4 are firmly bonded to each other, and a good deposit 4 without cracks can be obtained. Also,
Since the deposit 4 has a high bulk density, the deposit 4
A long optical fiber can be formed from the (optical fiber base material).

【0021】ここで、堆積体4から得られる光ファイバ
の長さは、図2に示すように、堆積体4の長さ(堆積体
4の軸寸法)を一定とした場合、堆積体4の直径とその
嵩密度により決定され、堆積体4の嵩密度が高いほど光
ファイバを長くとることができる。このため、堆積体4
の平均嵩密度は、0.4〜1.2g/cm3 とするのが
好ましく、更に0.6〜1.0g/cm3 とすることが
より好ましい。すなわち、嵩密度が0.4g/cm3
下では、ガラス微粒子堆積時又は焼結透明化時に堆積体
4(光ファイバ母材)が割れやすく大きな堆積体4を形
成しても所定長のファイバが得にくいからであり、ま
た、1.2g/cm3 以上では堆積体4を焼結透明化し
たときにその内部に気泡が残留するからである。更に
0.6〜1.0g/cm3 とすれば、それらの不具合を
確実に回避できるからである。
Here, as shown in FIG. 2, the length of the optical fiber obtained from the deposit 4 is constant when the length of the deposit 4 (axial dimension of the deposit 4) is constant. It is determined by the diameter and its bulk density, and the higher the bulk density of the deposit 4, the longer the optical fiber can be made. Therefore, the deposit 4
The average bulk density of is preferably set to 0.4~1.2g / cm 3, and more preferably to further 0.6~1.0g / cm 3. That is, when the bulk density is 0.4 g / cm 3 or less, the deposited body 4 (optical fiber preform) is easily cracked at the time of glass particle deposition or sinter transparentization, and even if a large deposited body 4 is formed, a fiber of a predetermined length is not formed. This is because it is difficult to obtain, and when it is 1.2 g / cm 3 or more, bubbles remain inside the deposited body 4 when the deposited body 4 is sintered and made transparent. Further, if it is set to 0.6 to 1.0 g / cm 3 , those problems can be surely avoided.

【0022】また、堆積体4へのガラス微粒子の噴き付
け及び加熱に際し、前述の加熱用バーナ32a、32b
として、堆積用バーナ31より大口径のものを用いるの
が好ましい。そのようにすることで、加熱用バーナ32
a、32bから大きな火炎が噴出され、堆積体4の堆積
が進み大径化したときに加熱面積を大きくとれ、その表
面温度の低下を抑制できるので非常に有効である。
When the glass particles are sprayed onto the deposit 4 and heated, the above-mentioned heating burners 32a and 32b are used.
It is preferable to use a burner having a diameter larger than that of the deposition burner 31. By doing so, the heating burner 32
When a large flame is ejected from a and 32b and the deposition body 4 is deposited and has a large diameter, the heating area can be made large and the decrease in the surface temperature can be suppressed, which is very effective.

【0023】ガラス微粒子の噴き付けにより、出発部材
2の周りに堆積体4が形成されていくこととなるが、堆
積初期時において、堆積体4の嵩密度を高しておくこと
が好ましい。すなわち、出発部材2の近傍でクラックが
発生しやすく、堆積初期で堆積体4の嵩密度を高くする
ことで出発部材2の近傍における堆積体4が強固なもの
となり、クラックの発生が未然に防止されることとな
る。嵩密度を高くすることは、出発部材2の移動速度を
遅くし、また各バーナ31、32の火力を上げるなどに
より行えばよい。
Although the deposit 4 is formed around the starting member 2 by spraying the glass particles, it is preferable to increase the bulk density of the deposit 4 at the initial stage of deposition. That is, cracks are likely to occur near the starting member 2, and by increasing the bulk density of the deposit 4 at the initial stage of deposition, the deposit 4 near the starting member 2 becomes solid and cracks are prevented from occurring. Will be done. The bulk density can be increased by slowing down the moving speed of the starting member 2 and increasing the heat power of the burners 31 and 32.

【0024】そして、堆積体4の堆積用バーナ31によ
る堆積面41の表面温度TD に対し、加熱用バーナ32
a、32bによる堆積面42の表面温度TS を同温状態
又は高温状態と保ちながら、出発部材2の往復移動を所
定回数繰り返し、ガラス微粒子の堆積により堆積体4が
所要の径まで達したら、堆積体4の製造を終了する。
Then, for the surface temperature T D of the deposition surface 41 by the deposition burner 31 of the deposition body 4, the heating burner 32
While keeping the surface temperature T S of the deposition surface 42 due to a and 32b at the same temperature or high temperature, the reciprocating movement of the starting member 2 is repeated a predetermined number of times, and when the deposition body 4 reaches the required diameter by the deposition of the glass particles, The manufacturing of the deposit 4 is completed.

【0025】このように、堆積用バーナ31に隣接して
加熱用バーナ32を設け、その加熱用バーナ32で加熱
する堆積面42の温度を温度堆積用バーナ31における
堆積面41の温度に対し、同温又は高温とすることによ
り、ガラス微粒子の堆積時に、ガラス微粒子が焼き固め
られ嵩密度の高い状態で堆積され、堆積体4にクラック
が発生することが防止される。
As described above, the heating burner 32 is provided adjacent to the deposition burner 31, and the temperature of the deposition surface 42 heated by the heating burner 32 is lower than the temperature of the deposition surface 41 of the temperature deposition burner 31. By setting the temperature to the same temperature or high temperature, when the glass particles are deposited, the glass particles are hardened and deposited in a state of high bulk density, and cracks are prevented from being generated in the deposit 4.

【0026】尚、この製造方法にあっては、固定された
各バーナ31、32に対し出発部材2を往復移動させて
いるが、出発部材2と各バーナ31、32とを出発部材
2の軸方向へ沿って相対的に往復移動させれば、出発部
材2に対して各バーナ31、32を往復移動させてもよ
い。
In this manufacturing method, the starting member 2 is reciprocally moved with respect to the fixed burners 31 and 32. However, the starting member 2 and the burners 31 and 32 are axially connected to the starting member 2. The respective burners 31, 32 may be reciprocated with respect to the starting member 2 by relatively reciprocating along the direction.

【0027】次に、上述の製造方法により堆積体4を製
造した具体的な実施例について説明する。
Next, a concrete example of manufacturing the deposit 4 by the above-described manufacturing method will be described.

【0028】図1において、直径20mm、長さ120
0mmのコア及びクラッドを含む石英ガラスロッドをガ
ラス棒材21として用い、その石英ガラスロッドの両端
にそれぞれ支持材22を連接して全長2500mmの出
発部材2とし、駆動機構に取り付ける。そして、駆動機
構を作動させて、30rpmで出発部材2を軸回転させ
ると共に、その軸方向に沿って往復移動させる。その往
復移動は、堆積初期の5往復において50mm/min
とし、その後、1往復ごとに10mm/minずつ往復
移動の速度を加速させ、200mm/minまで上昇さ
せ一定速度とした。このように、堆積初期の段階で往復
移動を遅くすることにより、出発部材2の近傍における
堆積体4の嵩密度が高くなり、堆積体4にクラックが生
じにくくなる。
In FIG. 1, the diameter is 20 mm and the length is 120.
A quartz glass rod including a 0 mm core and a clad is used as a glass rod 21, and a support member 22 is connected to both ends of the quartz glass rod to form a starting member 2 having a total length of 2500 mm, which is attached to a drive mechanism. Then, the driving mechanism is operated to axially rotate the starting member 2 at 30 rpm and reciprocate along the axial direction. The reciprocating movement is 50 mm / min in the first 5 rounds of deposition.
After that, the speed of reciprocating movement was accelerated by 10 mm / min for each reciprocation and increased to 200 mm / min to a constant speed. Thus, by slowing the reciprocating movement in the initial stage of the deposition, the bulk density of the deposit 4 in the vicinity of the starting member 2 is increased, and the deposit 4 is less likely to be cracked.

【0029】一方、堆積用バーナ31は口径45mmの
ものを用い、ガラス原料としてSiCl4 を6l/mi
n、燃料ガスとしてH2 を100l/min、助燃性ガ
スとしてO2 を60l/minの割合でその堆積用バー
ナ31へ供給した。すると、堆積用バーナ31から噴き
出すSiCl4 が火炎加水分解されSiO2 のガラス微
粒子となって前述の出発部材2の外周へ付着し堆積して
いく。また、加熱用バーナ32a、32bは、それぞれ
口径60mmのものを用い、燃料ガスとしてH2 を12
0l/min、助燃性ガスとしてO2 を70l/min
の割合で加熱用バーナ32a、32bのそれぞれに供給
して、ガラス微粒子の堆積前の堆積面41を予め温め、
かつ、その堆積後に更に加熱して堆積体4を焼き固めさ
せた。
On the other hand, the deposition burner 31 having a diameter of 45 mm is used, and SiCl 4 is used as a glass raw material in an amount of 6 l / mi.
n, H 2 as a fuel gas and O 2 as a supporting gas at a rate of 60 l / min were supplied to the deposition burner 31. Then, SiCl 4 ejected from the deposition burner 31 is flame-hydrolyzed and becomes fine particles of SiO 2 which adhere to the outer periphery of the starting member 2 and are deposited. The heating burner 32a, 32b is used as the diameter 60mm respectively, as a fuel gas H 2 to 12
0 l / min, O 2 as an auxiliary gas 70 l / min
Is supplied to each of the heating burners 32a and 32b at a ratio of 10 to preheat the deposition surface 41 before the deposition of the glass particles,
Further, after the deposition, the deposition body 4 was further heated and solidified.

【0030】このようなガラス微粒子の堆積工程におけ
る堆積体4の堆積面41、42の表面温度は、図3に示
すように、堆積初期でいずれも高温状態とし、後に堆積
用バーナ31による堆積面41の表面温度を約850
℃、加熱用バーナ32による堆積面42の表面温度を約
1000℃と一定になるように保った。その際、堆積体
4の径が大きくなるに従い、単位面積当りの熱量が不足
して表面温度が低下する傾向となるが、燃料ガス
(H2 )及び助燃性ガス(O2 )の供給量を増加調整し
て表面温度が一定となるようにした。
As shown in FIG. 3, the surface temperatures of the deposition surfaces 41 and 42 of the deposition body 4 in the deposition process of the glass particles are set to a high temperature at the initial stage of the deposition, and then the deposition surface by the deposition burner 31 is set. The surface temperature of 41 is about 850
C., the surface temperature of the deposition surface 42 by the heating burner 32 was kept constant at about 1000.degree. At that time, as the diameter of the deposit 4 increases, the amount of heat per unit area becomes insufficient and the surface temperature tends to decrease. However, the supply amount of the fuel gas (H 2 ) and the combustion supporting gas (O 2 ) is The surface temperature was made constant by adjusting the increase.

【0031】このようにして、堆積体4(出発部材2)
と各バーナ31、32との相対的往復移動を繰り返し、
ガラス微粒子を堆積させて、直径160mm、長さ12
00mm、平均嵩密度1.0g/cm3 の堆積体4を得
た。この堆積体4を炉心管を有する加熱炉内に設置して
200paの減圧下にて、1100℃で2時間保持し、
1600℃まで加熱して、焼結透明化した。そして透明
化した光ファイバ母材は気泡を混在せず良好なものとな
った。この母材からは約1000kmの光ファイバが得
られる。
In this way, the deposit 4 (starting member 2)
And the relative reciprocating movement of each burner 31, 32 is repeated,
Glass particles are deposited to a diameter of 160 mm and a length of 12
A deposit 4 having a size of 00 mm and an average bulk density of 1.0 g / cm 3 was obtained. This deposited body 4 was placed in a heating furnace having a core tube, and kept under reduced pressure of 200 pa at 1100 ° C. for 2 hours,
It was heated to 1600 ° C. to make it transparent by sintering. The transparent optical fiber preform was good without bubbles. An optical fiber of about 1000 km can be obtained from this base material.

【0032】次に本発明に係るその他の実施形態につい
て説明する。前述の製造装置1において、堆積用バーナ
31及び加熱用バーナ32a、32bからなるバーナ群
を複数設けた構造とし、その製造装置により出発部材2
へガラス微粒子を付着堆積させると共に、出発部材2を
加熱して堆積体4を形成してもよい。例えば、図4、図
5に示すように、出発部材2の周りに二組のバーナ群3
0、50を設けておき、それら各バーナ群30、50か
ら出発部材2へ向けてガラス微粒子及び火炎を噴き付け
て堆積体4を形成していく。バーナ群30、50は、前
述のように堆積用バーナ及び加熱用バーナを横並びに配
列して構成したものであり、図5の如く、それぞれ出発
部材2へ向けられている。また、バーナ群30、50と
は、出発部材2を中心として、堆積体4の周方向に所定
の角度θをなして配設されており、バーナ群30、50
による堆積体4へのガラス微粒子の噴付が狭い範囲で行
えるようになっている。このため、堆積体4の製造にお
いて、テーパ状となる堆積体4の端部が小さくなり、光
ファイバ母材の有効長(テーパ状の端部を除いた長さ)
を大きくとることができる。なお、バーナ群30とバー
ナ群50のなす角θは、バーナ群間の火炎の干渉を回避
するため、60°程度に設定するのが好ましい。
Next, another embodiment according to the present invention will be described. In the manufacturing apparatus 1 described above, a structure is provided in which a plurality of burner groups including the deposition burner 31 and the heating burners 32a and 32b are provided, and the starting member 2
The deposit 4 may be formed by heating the starting member 2 while depositing and depositing fine glass particles. For example, as shown in FIGS. 4 and 5, two sets of burner groups 3 are arranged around the starting member 2.
0 and 50 are provided, and glass particles and a flame are sprayed from the respective burner groups 30 and 50 toward the starting member 2 to form the deposit 4. The burner groups 30 and 50 are configured by arranging the deposition burners and the heating burners side by side as described above, and are directed to the starting member 2 as shown in FIG. The burner groups 30, 50 are arranged at a predetermined angle θ in the circumferential direction of the deposit 4 with the starting member 2 as the center, and the burner groups 30, 50 are arranged.
The glass particles can be sprayed onto the deposit 4 in a narrow range. Therefore, in the production of the deposited body 4, the end portion of the deposited body 4 having a tapered shape becomes small, and the effective length of the optical fiber preform (the length excluding the tapered end portion)
Can be large. The angle θ formed by the burner group 30 and the burner group 50 is preferably set to about 60 ° in order to avoid flame interference between the burner groups.

【0033】また、図4のように、バーナ群30の堆積
用バーナ31とバーナ群50の加熱用バーナ52a又は
52bを対向させ、またバーナ群50の堆積用バーナ5
1とバーナ群30の加熱用バーナ32a又は32bを対
向させて、互いの堆積用バーナ31、51が対向しない
ようにバーナ群30、50を配置するのが好ましい。こ
のように配設することで、各バーナ群30、50の堆積
用バーナ31、51による堆積面41、61が他方のバ
ーナ群の加熱用バーナにより予め温められるので、ガラ
ス微粒子がより高い嵩密度で堆積することとなる。
Further, as shown in FIG. 4, the deposition burner 31 of the burner group 30 and the heating burner 52a or 52b of the burner group 50 are opposed to each other, and the deposition burner 5 of the burner group 50 is opposed.
1 and the heating burners 32a or 32b of the burner group 30 are opposed to each other, and the burner groups 30 and 50 are preferably arranged so that the deposition burners 31 and 51 do not face each other. With this arrangement, the deposition surfaces 41, 61 of the deposition burners 31, 51 of the respective burner groups 30, 50 are preheated by the heating burners of the other burner group, so that the glass fine particles have a higher bulk density. Will be deposited at.

【0034】上述の製造方法により堆積体4を製造した
その他の実施例について説明する。
Another embodiment in which the deposit 4 is manufactured by the above manufacturing method will be described.

【0035】図4において、直径25mm、長さ120
0mmのコア及びクラッドを含む石英ガラスロッドをガ
ラス棒材21として用い、上述の実施例と同様に、その
石英ガラスロッドの両端にそれぞれ支持材22を連接し
て全長2500mmの出発部材2とする。その出発部材
2を駆動機構に取り付け駆動機構を作動させて、30r
pmで出発部材2を軸回転させると共に、その軸方向に
沿って往復移動させる。その往復移動は、堆積初期の5
往復において50mm/minとし、その後、1往復ご
とに10mm/minずつ往復移動の速度を加速させ、
200mm/minまで上昇させ一定速度とした。
In FIG. 4, the diameter is 25 mm and the length is 120.
A quartz glass rod including a 0 mm core and a clad is used as a glass rod 21, and a support member 22 is connected to both ends of the quartz glass rod to form a starting member 2 having a total length of 2500 mm, as in the above-described embodiment. The starting member 2 is attached to the drive mechanism to operate the drive mechanism,
The starting member 2 is axially rotated at pm and is reciprocally moved along the axial direction. The reciprocating movement is 5 at the beginning of deposition.
In the reciprocation, 50 mm / min, and thereafter, the reciprocating speed is accelerated by 10 mm / min for each reciprocation,
The speed was increased to 200 mm / min to keep the speed constant.

【0036】一方、図4、図5において、バーナ群30
における堆積用バーナ31は口径45mmのものを用
い、ガラス原料としてSiCl4 を6l/min、燃料
ガスとしてH2 を100l/min、助燃性ガスとして
2 を60l/minの割合でその堆積用バーナ31へ
供給した。また、バーナ群50における堆積用バーナ5
1は口径65mmのものを用い、ガラス原料としてSi
Cl4 を10l/min、燃料ガスとしてH2 を150
l/min、助燃性ガスとしてO2 を90l/minの
割合でその堆積用バーナ31へ供給した。すると、それ
ぞれの堆積用バーナ31、51から噴き出すSiCl4
が火炎加水分解されSiO2 のガラス微粒子となって前
述の出発部材2の外周へ付着し堆積していく。
On the other hand, in FIGS. 4 and 5, the burner group 30
The deposition burner 31 used in the above has a diameter of 45 mm, and SiCl 4 is 6 l / min as a glass material, H 2 is 100 l / min as a fuel gas, and O 2 is 60 l / min as a combustion supporting gas. 31 was supplied. Further, the deposition burner 5 in the burner group 50
1 has a diameter of 65 mm and uses Si as a glass raw material.
Cl 4 10 l / min, H 2 150 as fuel gas
O 2 as an auxiliary gas was supplied to the deposition burner 31 at a rate of 90 l / min. Then, SiCl 4 ejected from each of the deposition burners 31 and 51.
Is flame-hydrolyzed and becomes SiO2 glass fine particles which adhere to and accumulate on the outer periphery of the starting member 2.

【0037】また、バーナ群30における加熱用バーナ
32a、32bは、それぞれ口径60mmのものを用
い、燃料ガスとしてH2 を120l/min、助燃性ガ
スとしてO2 を70l/minの割合で加熱用バーナ3
2a、32bのそれぞれに供給した。また、バーナ群5
0における加熱用バーナ52a、52bとしては、それ
ぞれ口径80mmのものを用い、燃料ガスとしてH2
120l/min、助燃性ガスとしてO2 を70l/m
inの割合でそれぞれに供給した。これらの加熱用バー
ナ32、52により、ガラス微粒子の堆積前の堆積面4
1、61が予め温められ、かつ、その堆積後に更に加熱
することにより堆積体4が焼き固められる。
The heating burners 32a and 32b in the burner group 30 each have a diameter of 60 mm, and H 2 is 120 l / min as a fuel gas and O 2 is 70 l / min as a combustion supporting gas for heating. Burner 3
It was supplied to each of 2a and 32b. Also, burner group 5
As the heating burners 52a and 52b in No. 0, those having a diameter of 80 mm were used, and H 2 was 120 l / min as the fuel gas and O 2 was 70 l / m as the combustion supporting gas.
It was supplied to each in the ratio of in. By these heating burners 32 and 52, the deposition surface 4 before the deposition of the glass particles is performed.
1, 1 and 61 are preliminarily warmed, and the deposition body 4 is baked and solidified by further heating after the deposition.

【0038】このような堆積体4の製造工程において、
各ガスの供給量を調整しながら、堆積用バーナ31によ
る堆積面41の表面温度に対し、加熱用バーナ32によ
る堆積面42の表面温度が同温又は高温となるように保
ち、また、堆積用バーナ51による堆積面61の表面温
度に対し、加熱用バーナ52による堆積面62の表面温
度が同温又は高温となるように保った。そして、堆積体
4の径が150mmに達したところで、バーナ群30の
堆積用バーナ31、加熱用バーナ32a、32bへの各
ガスの供給量を一定とし、バーナ群50の堆積用バーナ
51への各ガスの供給量を一定としておき、バーナ群5
0の加熱用バーナ52a、52bへの各ガスの供給量を
増加して、加熱用バーナ52a、52bにおける堆積面
62の表面温度を900〜1000℃とし、堆積用バー
ナ51における堆積面61の表面温度を800〜900
℃とした。
In the manufacturing process of such a stack 4,
While adjusting the supply amount of each gas, the surface temperature of the deposition surface 42 by the heating burner 32 is kept equal to or higher than the surface temperature of the deposition surface 41 by the deposition burner 31. The surface temperature of the deposition surface 62 formed by the heating burner 52 was maintained at the same temperature or higher than the surface temperature of the deposition surface 61 formed by the burner 51. When the diameter of the deposited body 4 reaches 150 mm, the supply amount of each gas to the deposition burner 31 and the heating burners 32a and 32b of the burner group 30 is made constant, and the deposition burner 51 of the burner group 50 is supplied. Burner group 5 with each gas supply constant
No. 0 heating burners 52a and 52b are supplied with increasing amounts of each gas so that the surface temperature of the deposition surface 62 of the heating burners 52a and 52b is 900 to 1000 ° C., and the surface of the deposition surface 61 of the deposition burner 51 is Temperature is 800-900
° C.

【0039】このようにして、堆積体4(出発部材2)
と各バーナ群30、50との相対的往復移動を繰り返
し、ガラス微粒子を堆積させて、直径220mm、長さ
1200mm、平均嵩密度0.85g/cm3 の堆積体
4を得た。この堆積体4はクラックの全くない良好なも
のであった。この堆積体4を前述同様に加熱炉内で加熱
して、焼結透明化したところ、気泡のない透明ガラス母
材となった。この母材から約1500kmの光ファイバ
を得ることが可能である。
In this way, the deposit 4 (starting member 2)
By repeating relative reciprocating movement between the burner groups 30 and 50 and depositing glass particles, a deposit 4 having a diameter of 220 mm, a length of 1200 mm and an average bulk density of 0.85 g / cm 3 was obtained. This deposit 4 was a good one without any cracks. When this deposited body 4 was heated in the heating furnace in the same manner as described above to be sintered and made transparent, a transparent glass base material having no bubbles was obtained. It is possible to obtain an optical fiber of about 1500 km from this base material.

【0040】次に、前述の各実施形態における製造方法
と比較するための比較例について説明する。
Next, a comparative example for comparison with the manufacturing method in each of the above-described embodiments will be described.

【0041】図1における製造装置1にて、前述同様
に、出発部材2を軸回転させ、かつ往復移動させて、堆
積用バーナ31から火炎と共にガラス微粒子を噴出させ
ると共に、加熱用バーナ32から火炎を噴出させなが
ら、出発部材2の外周にガラス微粒子を付着堆積させ、
堆積体4を形成していく。その際、図6に示すように、
堆積体4へガラス微粒子の堆積が進むに伴い、各ガスの
供給量を調整して、堆積用バーナ31の堆積面41の表
面温度に対し、加熱用バーナ32の加熱による堆積面4
2の表面温度が低くなるようにして、堆積体4の製造を
行った。
In the manufacturing apparatus 1 shown in FIG. 1, similarly to the above, the starting member 2 is axially rotated and reciprocally moved to eject the glass particles together with the flame from the deposition burner 31 and the flame from the heating burner 32. While ejecting, glass particles are deposited and deposited on the outer periphery of the starting member 2,
The deposit 4 is formed. At that time, as shown in FIG.
As the deposition of glass particles on the deposit 4 progresses, the supply amount of each gas is adjusted so that the deposition burner 32 heats the deposition burner 32 against the surface temperature of the deposition burner 31.
The deposit 4 was manufactured so that the surface temperature of 2 was lowered.

【0042】すると、ガラス微粒子の堆積体4が直径1
35mmを越えたあたりで、堆積体4の端部を起点とし
てクラックが発生した。
Then, the glass particulate deposit 4 has a diameter of 1
Around 35 mm, a crack was generated starting from the end of the deposit 4.

【0043】[0043]

【発明の効果】以上説明したように本発明によれば、次
のような効果を得ることができる。すなわち、堆積用バ
ーナに隣接する加熱用バーナにより、ガラス微粒子の堆
積前に堆積面が予め十分に温められているから、ガラス
微粒子付着の効率向上が図れる。また、堆積後も加熱用
バーナにより、堆積面が十分に焼き固められるから嵩密
度の高いものとなり、製造時又は製造後の焼結透明化時
において光ファイバ母材(ガラス微粒子の堆積体)にク
ラックが発生することがない。
As described above, according to the present invention, the following effects can be obtained. That is, since the deposition surface is sufficiently warmed in advance before the deposition of the glass particles by the heating burner adjacent to the deposition burner, the efficiency of the glass particle adhesion can be improved. In addition, since the deposition surface is sufficiently baked and solidified by the heating burner even after deposition, the bulk density becomes high, and it is used as an optical fiber preform (deposit of glass fine particles) at the time of manufacturing or at the time of sintering and transparency after manufacturing. No cracks will occur.

【0044】また、ガラス微粒子の堆積の際、その堆積
により形成される堆積体の嵩密度を0.6〜1.2g/
cm3 とすれば、ガラス微粒子の堆積体が十分に焼き固
められたものとなり、その堆積体を太径なものとしても
堆積体にクラックが発生することがないと共に、堆積体
に気泡が混入することもない。従って、良好な光ファイ
バ母材を得ることができ、特に大型の光ファイバ母材を
形成するのに有効である。
When the glass particles are deposited, the bulk density of the deposit formed by the deposition is 0.6 to 1.2 g /
If it is cm 3 , the deposited body of fine glass particles is sufficiently hardened, and even if the deposited body has a large diameter, cracks do not occur in the deposited body and bubbles are mixed into the deposited body. Nothing. Therefore, a good optical fiber preform can be obtained, which is particularly effective for forming a large-sized optical fiber preform.

【0045】更に、ガラス微粒子の堆積の際、堆積体の
嵩密度を堆積初期時の出発部材の近傍で高くすれば、ク
ラックの発生しやすい出発部材の近傍でガラス微粒子の
堆積体が強固となるから、クラックの発生を未然に防止
することができる。
Further, when the glass fine particles are deposited, if the bulk density of the deposit is increased in the vicinity of the starting member at the initial stage of deposition, the deposit of glass particles becomes strong in the vicinity of the starting member where cracks are likely to occur. Therefore, it is possible to prevent the occurrence of cracks.

【図面の簡単な説明】[Brief description of the drawings]

【図1】光ファイバ母材の製造工程の説明図である。FIG. 1 is an explanatory diagram of a manufacturing process of an optical fiber preform.

【図2】堆積体(光ファイバ母材)の直径とその堆積体
から得られる光ファイバ形成長とを示す図表である。
FIG. 2 is a chart showing a diameter of a deposited body (optical fiber preform) and an optical fiber formation length obtained from the deposited body.

【図3】堆積体製造時における堆積体の表面温度を示す
図表である。
FIG. 3 is a table showing the surface temperature of the deposit during the production of the deposit.

【図4】光ファイバ母材の製造工程の説明図である。FIG. 4 is an explanatory diagram of a manufacturing process of an optical fiber preform.

【図5】光ファイバ母材の製造工程の説明図である。FIG. 5 is an explanatory diagram of a manufacturing process of an optical fiber preform.

【図6】比較例における堆積体製造時の堆積体の表面温
度を示す図表である。
FIG. 6 is a chart showing the surface temperature of the deposit during the production of the deposit according to the comparative example.

【符号の説明】[Explanation of symbols]

1…光ファイバ母材製造装置、2…出発部材、31…堆
積用バーナ、32a、32b…加熱用バーナ、4…堆積
体(光ファイバ母材)、
DESCRIPTION OF SYMBOLS 1 ... Optical fiber preform manufacturing apparatus, 2 ... Starting member, 31 ... Deposition burner, 32a, 32b ... Heating burner, 4 ... Deposition body (optical fiber preform),

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 堆積用バーナからガラス原料を噴出さ
せ、火炎加水分解によりガラス微粒子とし、出発部材へ
噴き付け堆積させて行う光ファイバ母材の製造方法にお
いて、 前記堆積用バーナに隣接して加熱用バーナを配設し、 前記ガラス微粒子の堆積の際、その加熱用バーナで加熱
されるガラス微粒子の堆積面における表面温度を前記堆
積用バーナで加熱される堆積面の表面温度に対し、同温
又は高温とすることを特徴とする光ファイバ母材の製造
方法。
1. A method for producing an optical fiber preform in which a glass raw material is ejected from a deposition burner, and is made into glass particles by flame hydrolysis and is sprayed and deposited on a starting member, wherein heating is performed adjacent to the deposition burner. And a surface temperature on the deposition surface of the glass particles heated by the heating burner is the same as the surface temperature of the deposition surface heated by the deposition burner. Alternatively, the method for producing an optical fiber preform is characterized in that the temperature is high.
【請求項2】 前記加熱用バーナへ供給する燃料ガス又
は助燃性ガスの供給量を調整することにより、前記加熱
用バーナで加熱される堆積面の表面温度を前記堆積用バ
ーナで加熱される堆積面に対し同温又は高温とすること
を特徴とする請求項1に記載の光ファイバ母材の製造方
法。
2. The deposition temperature of the deposition surface heated by the heating burner is adjusted by adjusting the supply amount of the fuel gas or the supporting gas supplied to the heating burner. The method for producing an optical fiber preform according to claim 1, wherein the temperature is the same as or higher than that of the surface.
【請求項3】 前記堆積用バーナに比べ大口径の加熱用
バーナを用いることにより、前記加熱用バーナで加熱さ
れる堆積面の表面温度を前記堆積用バーナで加熱される
堆積面に対し同温又は高温とすることを特徴とする請求
項1に記載の光ファイバ母材の製造方法。
3. By using a heating burner having a larger diameter than that of the deposition burner, the surface temperature of the deposition surface heated by the heating burner is the same as that of the deposition surface heated by the deposition burner. Alternatively, the temperature is set to a high temperature, and the method for manufacturing an optical fiber preform according to claim 1.
【請求項4】 前記ガラス微粒子の堆積の際、その堆積
により形成される堆積体の嵩密度を0.6〜1.2g/
cm3 とすることを特徴とする請求項1乃至3のいずれ
かに記載の光ファイバ母材の製造方法。
4. When depositing the glass fine particles, the bulk density of the deposit formed by the deposition is 0.6 to 1.2 g /
The method for producing an optical fiber preform according to claim 1, wherein the optical fiber preform has a size of cm 3 .
【請求項5】 前記ガラス微粒子の堆積の際、その堆積
により形成される堆積体の嵩密度を堆積初期時の前記出
発部材の近傍で高くすることを特徴とする請求項1乃至
4のいずれかに記載の光ファイバ母材の製造方法。
5. When depositing the glass fine particles, the bulk density of a deposit formed by the deposit is increased in the vicinity of the starting member at the initial stage of deposition. The method for producing an optical fiber preform according to 1.
JP28181095A 1995-10-30 1995-10-30 Production of preform for optical fiber Pending JPH09124333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28181095A JPH09124333A (en) 1995-10-30 1995-10-30 Production of preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28181095A JPH09124333A (en) 1995-10-30 1995-10-30 Production of preform for optical fiber

Publications (1)

Publication Number Publication Date
JPH09124333A true JPH09124333A (en) 1997-05-13

Family

ID=17644312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28181095A Pending JPH09124333A (en) 1995-10-30 1995-10-30 Production of preform for optical fiber

Country Status (1)

Country Link
JP (1) JPH09124333A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080294A1 (en) * 2005-01-26 2006-08-03 Shin-Etsu Chemical Co., Ltd. Quartz glass preform for optical fiber and process for producing the same
JP2006248880A (en) * 2005-03-14 2006-09-21 Furukawa Electric Co Ltd:The Method for manufacturing optical fiber base material
JP2007153678A (en) * 2005-12-06 2007-06-21 Fujikura Ltd Method of producing porous silica glass preform
JP2011026171A (en) * 2009-07-27 2011-02-10 Shin-Etsu Chemical Co Ltd Method of manufacturing optical fiber preform using high frequency induction thermal plasma torch
JP2016044087A (en) * 2014-08-21 2016-04-04 住友電気工業株式会社 Method of manufacturing glass fine particle deposition body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080294A1 (en) * 2005-01-26 2006-08-03 Shin-Etsu Chemical Co., Ltd. Quartz glass preform for optical fiber and process for producing the same
JP2006206356A (en) * 2005-01-26 2006-08-10 Shin Etsu Chem Co Ltd Quartz glass preform for optical fiber and its manufacturing method
JP4614782B2 (en) * 2005-01-26 2011-01-19 信越化学工業株式会社 Method for producing quartz glass preform for optical fiber
JP2006248880A (en) * 2005-03-14 2006-09-21 Furukawa Electric Co Ltd:The Method for manufacturing optical fiber base material
JP4558547B2 (en) * 2005-03-14 2010-10-06 古河電気工業株式会社 Optical fiber preform manufacturing method
JP2007153678A (en) * 2005-12-06 2007-06-21 Fujikura Ltd Method of producing porous silica glass preform
JP4499025B2 (en) * 2005-12-06 2010-07-07 株式会社フジクラ Method for producing quartz glass porous base material
JP2011026171A (en) * 2009-07-27 2011-02-10 Shin-Etsu Chemical Co Ltd Method of manufacturing optical fiber preform using high frequency induction thermal plasma torch
JP2016044087A (en) * 2014-08-21 2016-04-04 住友電気工業株式会社 Method of manufacturing glass fine particle deposition body

Similar Documents

Publication Publication Date Title
EP0154342B1 (en) Method for producing highly pure glass preform for optical fiber
JPH039047B2 (en)
EP2098489B1 (en) Method of fabricating an optical fiber preform and a burner therefor
JPH09124333A (en) Production of preform for optical fiber
JP2000272930A (en) Production of optical fiber preform
JP4614782B2 (en) Method for producing quartz glass preform for optical fiber
JP5012042B2 (en) Manufacturing method of glass base material
KR100630117B1 (en) Optical vapor deposition apparatus for optical preform
JP4097982B2 (en) Method for producing porous preform for optical fiber
JP2000272929A (en) Production of optical fiber preform
JP5485003B2 (en) Optical fiber preform manufacturing method
JPH1072231A (en) Apparatus for producing optical fiber preform and production thereof
KR20020067992A (en) Method of forming soot preform
JPH107429A (en) Production of preform for optical fiber
JP2004035376A (en) Method and apparatus for manufacturing preform for optical fiber
JP3917022B2 (en) Method for producing porous preform for optical fiber
JP3575505B2 (en) Manufacturing method of optical fiber preform
JP3521415B2 (en) Manufacturing method of optical fiber preform
JPH03112820A (en) Production of porous glass preform
JP2000072449A (en) Apparatus and method for producing porous glass base material
JP4434083B2 (en) Manufacturing apparatus and manufacturing method of glass fine particle deposit
JP2649450B2 (en) Method for producing porous glass base material
JP3654232B2 (en) Optical fiber preform manufacturing method
JPH1121143A (en) Production of preform for optical fiber
JP3960714B2 (en) Manufacturing method of glass preform for optical fiber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050418