JP3575505B2 - Manufacturing method of optical fiber preform - Google Patents

Manufacturing method of optical fiber preform Download PDF

Info

Publication number
JP3575505B2
JP3575505B2 JP27907695A JP27907695A JP3575505B2 JP 3575505 B2 JP3575505 B2 JP 3575505B2 JP 27907695 A JP27907695 A JP 27907695A JP 27907695 A JP27907695 A JP 27907695A JP 3575505 B2 JP3575505 B2 JP 3575505B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber preform
glass
layer thickness
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27907695A
Other languages
Japanese (ja)
Other versions
JPH09118539A (en
Inventor
元宣 中村
裕一 大賀
俊雄 彈塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP27907695A priority Critical patent/JP3575505B2/en
Publication of JPH09118539A publication Critical patent/JPH09118539A/en
Application granted granted Critical
Publication of JP3575505B2 publication Critical patent/JP3575505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバ母材の製造方法に関するものである。
【0002】
【従来の技術】
光ファイバ母材であるガラス微粒子堆積体の製造方法として、外付け法が知られている。この製造方法は、特開平2−243530号公報に記載されているように、SiCl、GeClなどのガラス原料を、Hなどの燃料ガス及びOなどの助燃性ガスと共にバーナから噴出させ、火炎中で酸化、加水分解反応等によりガラス微粒子とし、棒状のターゲット部材へ向けて噴き付けて行うものであって、ターゲット部材を軸回転させると共に、バーナをターゲット部材の軸方向へ繰り返し往復移動、即ちトラバースさせることにより、ターゲット部材の周囲にガラス微粒子を一層ごと付着堆積させ、その堆積面の温度を制御しながら光ファイバ母材である堆積体を形成していくものである。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の光ファイバ母材の製造技術にあっては、次のような問題点がある。すなわち、一定の表面温度にしてガラス微粒子を堆積させても、ガラス原料や燃料ガス等の供給量の変動により、異なる箇所でガラス微粒子の層厚にバラツキを生じ、また、ガラス微粒子堆積体の嵩密度にバラツキを生じる。このため、その堆積工程中に堆積体にクラックが発生したり、堆積工程の次工程で透明化する際に剥離を生じる場合があった。
【0004】
そこで本発明は、以上のような問題点を解決するためになされたものであって、欠陥のない良好な光ファイバ母材を確実に製造できる光ファイバ母材の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
すなわち本発明は、バーナへガラス原料ガス、燃料ガス及び助燃性ガスを供給しそのバーナから火炎と共にガラス微粒子を噴出させて、回転する棒状の出発部材の外周へ噴き付けさせると共に、その出発部材とバーナとを出発部材の軸方向に沿って相対的に往復移動させることにより、出発部材の周りにガラス微粒子を堆積させ積層させて行う光ファイバ母材の製造方法において、ガラス微粒子を0.5mm以下の層厚で出発部材に積層させることを特徴とする。
【0006】
また本発明は、バーナへのガラス原料ガスの供給量を制御することにより、前述のガラス微粒子の層厚の調整を行うことを特徴とする。
【0007】
また本発明は、出発部材とバーナとの相対往復移動の速度を制御することにより、前述のガラス微粒子の層厚の調整を行うことを特徴とする。
【0008】
また本発明は、バーナへの燃料ガス及び助燃性ガスの供給量を制御することにより、前述のガラス微粒子の層厚の調整を行うことを特徴とする。
【0009】
これらの発明によれば、光ファイバ母材であるガラス微粒子堆積体が0.5mm以下の薄いガラス微粒子の層を積層して形成される。このため、所定径の堆積体を形成するのに多数の層を積層することとなり、その堆積体の軸方向に対して不均等にガラス微粒子が噴き付けられても平均化されるから、堆積体における部分的な径寸法のバラツキが抑制される。
【0010】
更に本発明は、ガラス微粒子の積層状態を測定しながら、前述のガラス微粒子の層厚の調整を行うことを特徴とする。
【0011】
このような発明によれば、ガラス微粒子の積層状態が確認できるから、その積層状態に応じてガラス微粒子の層厚の調整することにより、良好な堆積体、即ち光ファイバ母材が形成可能となる。
【0012】
【発明の実施の形態】
以下、添付図面に基づき、本発明に係る実施形態の種々の例について説明する。尚、各図において同一要素には同一符号を付して説明を省略する。
【0013】
図1は光ファイバ母材の製造工程の説明図である。まず、光ファイバ母材の製造方法の説明に先立って、光ファイバ母材の製造装置1について説明する。図1において、密封された反応容器1の上方には駆動装置2が設置され、反応容器1の内部の下方へ延びるロッド21を備えており、反応容器1の内部へ向けて伸縮自在とされている。また、そのロッド21の先端には、出発部材3を着脱可能な把持部22が設けられ、ロッド21の伸張、収縮により把持部22が上下動する構造となっている。従って、図1のように、この把持部22に出発部材3を取り付けて駆動装置2の作動させれば、把持部22と共に出発部材3が軸回転しながら、その軸方向へ向けて繰り返し往復移動、すなわちトラバースすることとなる。
【0014】
一方、反応容器1の中央付近には、バーナ4が設置されており、前述の把持部22に取り付けた出発部材3へ向けて、火炎と共にガラス微粒子を噴き付けるようになっている。すなわち、バーナ4は、SiCl、GeClなどのガラス原料ガス、Hなどの燃料ガス及びOなどの助燃性ガスをそれぞれ設定した量だけガス供給装置5から供給されて、所定の火力の火炎と所定量のガラス微粒子を出発部材3へ噴き付け、出発部材3の周りにガラス微粒子を堆積させるようになっている。反応容器1のバーナ4と対向する位置には、排気口11が設けられ、この排気口11からガラス微粒子の生成時に発生する不要なガスが排出できるようになっている。また、反応容器1には、出発部材3へ堆積されるガラス微粒子の積層状態を測定する層厚測定装置6が配設されている。この測定装置6は、出発部材3がトラバースするごと(下方へ移動、又は上方へ移動するごと)に堆積されるガラス微粒子の層31の層厚tを計測可能としたものであって、例えば、超音波式、レーザ式などの公知の距離測定機器等で構成される。
【0015】
この層厚測定装置6、ガス供給装置5及び駆動装置2は、このガス供給装置5及び駆動装置2の作動を制御する制御装置7と電気的な配線71により接続されている。すなわち、層厚測定装置6に計測された積層データは配線71を介して制御装置7へ随時入力され、この積層データに基づいて制御装置7から制御信号がそれぞれガス供給装置5又は駆動装置2へ出力され、その制御信号により駆動装置2のロッド21の伸縮速度が又はガス供給装置5の所定ガスの供給量が調整されるようになっている。尚、層厚測定装置6及び制御装置7を設けず、予め計算によりロッド21の伸縮速度又はガスの供給量を設定して光ファイバ母材を製造してもよく、また製造中にその伸縮速度又はその供給量を適宜変更しながら光ファイバ母材を製造してもよい。
【0016】
次に、光ファイバ母材の製造方法について説明する。図1において、まず、コア及びクラッドを有する出発部材3を把持部22に取り付けて容易に外れないように固着しておく。駆動装置2を作動させロッド21及び把持部22を介して、出発部材3を軸回転させながら、上下方向へ往復移動、すなわちトラバースさせる。それと共に、ガス供給装置5からバーナ4へSiClなどのガラス原料ガス、Hなどの燃料ガス及びOなどの助燃性ガスをそれぞれ供給させて、そのバーナ4から出発部材3へ向けて火炎を噴出させ、ガラス原料ガスを火炎中で加水分解させてガラス微粒子として出発部材3へ噴き付けさせる。
【0017】
すると、図1のように、出発部材3の外周には、ガラス微粒子が徐々に堆積し、出発部材3がトラバースするごとにガラス微粒子の層31が積層されていく。その際、層31の層厚tが0.5mm以下となるようにバーナ4へのガラス原料ガスの供給量を調整する。ガラス微粒子の層31を0.5mm以下の層厚tとするためのガラス原料ガスの供給量は、出発部材3のトラバース速度、燃料ガス又は助燃性ガスの供給量により変わってくるが、まずトラバース速度を所定速度とし、また燃料ガス等の供給量を所定量としてガラス微粒子の噴き付けを行う。そして、層厚測定装置6によりトラバースごとの層厚tを計測して、その層厚tが0.5mmより厚いときは制御装置7からガラス原料ガスの供給量を減らす制御信号をガス供給装置5へ出力させ、層厚tが0.5mmより極端に薄いときはガラス原料ガスの供給量を増やす制御信号をガス供給装置5へ出力させることにより、最適なガラス原料ガスの供給量に調整してガラス微粒子の噴き付けを行う。尚、このガラス原料ガスの供給量の調整は、制御装置7を用いずに計測した層厚tに基づいて適宜ガス供給装置5のガラス原料ガス供給量を人為的な手作業等で行ってもよい。また、過去の試験データ等をもとに最適なガラス原料ガス供給量を予めガス供給装置5に設定することにより、その調整工程を省略してもよい。
【0018】
このように所定のガラス原料ガス供給量でガラス微粒子を噴き付けることにより、出発部材3へ堆積するガラス微粒子が0.5mm以下の薄い層31で繰り返し積層されていくこととなる。尚、この積層工程において、ガラス微粒子の堆積効率は堆積体32の外径の増加と共に向上していくので、徐々にガラス原料ガスの供給量を減らすようにガス供給装置5に予め設定しておくのが好ましい。その際、その供給量を減らし過ぎて堆積速度が低下しすぎないように、層厚tを0.3〜0.4mm程度に保つようにしておくとよい。そして、堆積体32を所定の径寸法まで成長させて、光ファイバ母材の形成が完了する。この光ファイバ母材は、薄い層31を多数積層して形成されるから、各層31における堆積体軸方向の層厚tにバラツキがあっても、多数積層させることにより平均化され、その軸方向の径寸法が一定で均整したものとなる。また、光ファイバ母材は、薄い層31を多数積層させることにより、その嵩密度も平均化され、部分的に嵩密度の異なる部分も存在しないものとなる。従って、光ファイバ母材の製造中に堆積体32にクラックが生じることもない。このような光ファイバ母材を炉で透明化する際、光ファイバ母材は不整のないものであるから、その工程中に剥離などを生じることもない。
【0019】
良好な光ファイバ母材を形成するためには、光ファイバ母材となる堆積体の表面温度や堆積体の積層の嵩密度などの様々な条件に左右されるが、以上説明したように、堆積体の層厚を所定の厚さ(0.5mm)以下に規制することで、その他の条件を測定や制御等することなく、良好な光ファイバ母材を確実に得ることができる。
【0020】
続いて、上述の製造方法により堆積体32を製造した具体的な実施例について説明する。まず、直径20mmの出発部材を反応容器1内の把持部22に取り付け、所定の回転速度で回転させ、バーナ4に対する出発部材3のトラバース速度を100mm/minでとして駆動させる。バーナ4へ供給するガラス原料ガスとしてSiCl、燃料ガスとしてH、助燃性ガスとしてOを用い、それらのガスの供給量をH:60l/min、O:35l/minとし、SiClについては少量の3l/minとし(通常は5l/min程度)、そのバーナ4から火炎と共にガラス原料を酸化、加水分解反応させてガラス微粒子を噴出させ、トラバースする出発部材3の外周へ付着堆積させた。そして、出発部材3を50回トラバース(50往復)させて、100のガラス微粒子層31を積層させたところ、直径95mmの堆積体32が得られた。この堆積体32のガラス微粒子の層31の層厚tは0.375mmであった。この堆積体の製造中又は製造後に、堆積体32へクラックが生じることはなく、またその後、高温に保持した炉で透明化を行ったところ、不整がなく良好なプリフォームとなった。
【0021】
次に、光ファイバ母材の製造方法における他の実施形態について説明する。すなわち、前述の光ファイバ母材の製造方法にあっては、ガラス原料ガスの流量を少量とし、薄い層厚tを積層させて堆積体32を形成するものであったが、出発部材3のトラバース速度を速くすることにより、薄い層厚tを積層した堆積体32を形成するものであってもよい。
【0022】
図1において、出発部材3を回転させながらトラバースさせ、バーナ3から火炎と共にガラス微粒子を噴出させて、出発部材3の周りに付着堆積させる際、堆積するガラス微粒子の層31の層厚tが0.5mm以下となるように出発部材3のトラバース速度(往復移動速度)を調整しながら光ファイバ母材を製造する。ガラス微粒子の層31を0.5mm以下の層厚tとするためのトラバース速度は、バーナ4へのガラス原料ガス、燃料ガス又は助燃性ガスの供給量により変わってくるが、まずそれらのガスを所定の供給量としてガラス微粒子の噴き付けを行い、層厚測定装置6によりトラバースごとの層厚tを計測し、その層厚tが0.5mmより厚いときは制御装置7からトラバース速度を上げる制御信号を駆動装置2へ出力させ、層厚tが0.5mmより極端に薄いときはトラバース速度を下げる制御信号を駆動装置2へ出力させることにより、最適なトラバース速度に調整してガラス微粒子の噴き付けを行う。尚、このトラバース速度の調整は、制御装置7を用いずに計測した層厚tに基づいて適宜駆動装置2のトラバース速度を人為的に行ってもよい。また、過去の試験データ等をもとに最適なトラバース速度を予め駆動装置2に設定することにより、調整工程を省略してもよい。
【0023】
このように所定のトラバース速度でガラス微粒子を噴き付けることにより、出発部材3へ堆積するガラス微粒子が0.5mm以下の薄い層31で繰り返し積層されていくこととなる。そして、所定の径寸法まで成長させ光ファイバ母材である堆積体32が形成される。この堆積体32は、薄い層31を多数積層して形成されるから、各層31における堆積体軸方向の層厚tにバラツキがあっても、多数積層させることにより平均化され、その軸方向の径寸法が一定で均整したものとなる。また、堆積体32は、薄い層31を多数積層させることにより、その嵩密度も平均化され、部分的に嵩密度の異なる部分も存在しないものとなる。従って、堆積体32の製造中にその堆積体32にクラックが生じることもない。このような堆積体32を炉で透明化する際、堆積体32は不整のないものであるから、その工程中に剥離などを生じることもない。
【0024】
続いて、上述の製造方法により堆積体32を製造した具体的な実施例について説明する。まず、直径20mmの出発部材を反応容器1内の把持部22に取り付け、所定の回転速度で回転させ、バーナ4に対する出発部材3のトラバース速度を200mm/minの高速状態(通常は100mm/min程度)で駆動させる。バーナ4へ供給するガラス原料ガスとしてSiCl、燃料ガスとしてH、助燃性ガスとしてOを用い、それらのガスの供給量をSiCl:5l/min、H:60l/min、O:35l/minとし、そのバーナ4から火炎と共にガラス原料を酸化、加水分解反応させてガラス微粒子を噴出させ、トラバースする出発部材3の外周へ付着堆積させた。そして、出発部材3へガラス微粒子の層31を積層させて、直径85mmの堆積体32が得られた。この堆積体32のガラス微粒子の層31の層厚tは0.325mmであった。この堆積体の製造中又は製造後に、堆積体32へクラックが生じることはなく、またその後、高温に保持した炉で透明化を行ったところ、不整がなく良好なプリフォームとなった。
【0025】
また、この製造方法において、各ガスの供給量を同条件とし、トラバース速度を変えたとき、積層するガラス微粒子層31の層厚tのデータを図2に示す。この図2において、トラバース速度と層厚tは、ほぼ反比例した特性を示すが、トラバース速度を遅くして一回のトラバースにより形成される層厚tを0.5mm以上として堆積体32を形成したときは、堆積体32にクラックが生じて割れてしまった(図2中のX。層厚tは0.65mm、トラバース速度は100mm/min)。層厚tが0.5以下の場合はいずれも形成した堆積体32に異常はなく良好な状態であった。
【0026】
更に、光ファイバ母材の製造方法における他の実施形態について説明する。すなわち、前述の光ファイバ母材の製造方法において、バーナ4への燃料ガス及び助燃性ガスの供給量を増やすことにより、薄い層厚tを積層して、堆積体32を形成するものであってもよい。
【0027】
図1において、出発部材3を回転させながらトラバースさせ、バーナ3から火炎と共にガラス微粒子を噴出させて、出発部材3の周りに付着堆積させる際、堆積するガラス微粒子の層31の層厚tが0.5mm以下となるように、燃料ガス及び助燃性ガスのバーナ4への供給量を調整しながら光ファイバ母材を製造する。ガラス微粒子の層31を0.5mm以下の層厚tとするための燃料ガス及び助燃性ガスの供給量は、前述したようにバーナ4へのガラス原料ガス、出発部材3のトラバース速度により変わってくるが、まずガラス原料ガスを所定の供給量とし、トラバース速度を所定速度として、ガラス微粒子の噴き付けを行い、層厚測定装置6によりトラバースごとの層厚tを計測し、その層厚tが0.5mmより厚いときは制御装置7から燃料ガス及び助燃性ガスの供給量を増加させる制御信号をガス供給装置5へ出力させ、層厚tが0.5mmより極端に薄いときは燃料ガス及び助燃性ガスの供給量を減少させる制御信号を駆動装置2へ出力させることにより、バーナ4から噴き出る火炎を最適な火力に調整してガラス微粒子の噴き付けを行う。この場合、火力が大きくなって、層厚tが薄くなるがガラス微粒子の収率は変わらないので、堆積効率の上で非常に有効である。尚、この火力の調整は、制御装置7を用いずに計測した層厚tに基づいて適宜、所要な火力に人為的に行ってもよい。また、過去の試験データ等をもとに最適な火力を予めガス供給装置5に設定することにより、調整工程を省略してもよい。
【0028】
このように所定火力の火炎と共にガラス微粒子を噴き付けることにより、出発部材3へ堆積するガラス微粒子の嵩密度が高くなって、0.5mm以下の薄い層31となり、出発部材3へ繰り返し積層されていくこととなる。そして、所定の径寸法まで成長させ光ファイバ母材である堆積体32が形成される。この堆積体32は、薄い層31を多数積層して形成されるから、各層31における堆積体軸方向の層厚tにバラツキがあっても、多数積層させることにより平均化され、その軸方向の径寸法が一定で均整したものとなる。また、堆積体32は、薄い層31を多数積層させることにより、その嵩密度も平均化され、部分的に嵩密度の異なる部分も存在しないものとなる。従って、堆積体32の製造中にその堆積体32にクラックが生じることもない。このような堆積体32を炉で透明化する際、堆積体32は不整のないものであるから、その工程中に剥離などを生じることもない。
【0029】
続いて、この製造方法により堆積体32を製造した具体的な実施例について説明する。まず、直径20mmの出発部材を反応容器1内の把持部22に取り付け、所定の回転速度で回転させ、バーナ4に対する出発部材3のトラバース速度を100mm/minで駆動させる。バーナ4へ供給するガラス原料ガスとしてSiCl、燃料ガスとしてH、助燃性ガスとしてOを用い、それらのガスの供給量をSiCl:5l/minとし、H:70l/min、O:40l/minと多くして(通常は、H:60l/min、O:35l/min程度)、そのバーナ4から火炎と共にガラス原料を酸化、加水分解反応させてガラス微粒子を噴出させ、トラバースする出発部材3の外周へ付着堆積させた。そして、出発部材3へガラス微粒子の層31を積層させて、直径116mmの堆積体32が得られた。この堆積体32のガラス微粒子の層31の層厚tは0.48mmであった。この堆積体の製造中又は製造後に、堆積体32へクラックが生じることはなく、またその後、高温に保持した炉で透明化を行ったところ、不整がなく良好なプリフォームとなった。
【0030】
次に、前述の種々の実施形態における光ファイバ母材の製造方法と比較するために、従来の手法による光ファイバ母材の製造方法により具体的な比較例について説明する。図1において、出発部材4を所定の回転速度で回転させ、バーナ4のトラバース速度を100mm/minとし、バーナ4へ供給する各ガスの供給量をガラス原料ガスSiCl:5l/min、燃料ガスH:60l/min、助燃性ガスO:35l/minとして、光ファイバ母材の製造を行った。すなわち、出発部材3へガラス微粒子の層31を積層させて、直径140mmの堆積体32が得られた。しかし、この堆積体32の製造中にクラックが生じてしまい、製造後に透明化した際に剥離が生じてしまった。その堆積体32のガラス微粒子の層31の層厚tは0.6mmであった。
【0031】
尚、前述の光ファイバ母材の各製造方法にあっては、固定したバーナ4に対して出発部材4を往復移動させてトラバースを行っているが、図3に示すように、出発部材4を移動させず、出発部材4に沿ってバーナ4を移動させて行ってもよい。例えば、図3において、反応容器1内に出発部材3を軸回転させる回転装置8を設け、その回転装置8に取り付けた出発部材3に沿ってバーナ4を往復移動させる移動装置9を設けて、軸回転する出発部材3の外周に火炎と共にガラス微粒子をバーナ4から噴き付けて、薄い層31を積層して光ファイバ母材である堆積体32を形成しても、前述の各製造方法と同様に、良好な光ファイバ母材が形成可能である。
【0032】
【発明の効果】
以上説明したように本発明によれば、次のような効果を得ることができる。すなわち、光ファイバ母材が薄いガラス微粒子の層を多数積層して形成されていくので、光ファイバ母材の径寸法が均一となる。このため、光ファイバ母材の製造中や製造後の透明化する際などに、クラックが生じ、剥離を起こすことがない。また、ガラス微粒子の積層状態を測定しながらガラス微粒子の層厚を調整すれば、良好な光ファイバ母材を確実に形成することができる。
【図面の簡単な説明】
【図1】光ファイバ母材の製造工程の説明図である。
【図2】光ファイバ母材の製造におけるトラバース速度と層厚tの特性を示す図表である。
【図3】光ファイバ母材の製造工程の説明図である。
【符号の説明】
1…反応容器、2…駆動装置、3…出発部材、31…ガラス微粒子層、
32…堆積体(光ファイバ母材)、4…バーナ、5…ガス供給装置
6…層厚測定装置、7…制御装置
代理人弁理士 長谷川 芳樹
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an optical fiber preform.
[0002]
[Prior art]
An external method is known as a method for producing a glass fine particle deposit as an optical fiber preform. This manufacturing method, as described in JP-A-2-243530, a glass raw material such as SiCl 4, GeCl 4, is ejected from the burner with the combustion supporting gas such as fuel gas and O 2 such as H 2 This is performed by oxidizing or hydrolyzing in a flame into glass fine particles and spraying the particles toward a rod-shaped target member. The target member is axially rotated and the burner is repeatedly reciprocated in the axial direction of the target member. That is, by traversing, a single layer of glass fine particles is attached and deposited around the target member, and a deposited body that is an optical fiber preform is formed while controlling the temperature of the deposited surface.
[0003]
[Problems to be solved by the invention]
However, the conventional optical fiber preform manufacturing technology has the following problems. That is, even when the glass fine particles are deposited at a constant surface temperature, the thickness of the glass fine particles varies at different locations due to fluctuations in the supply amount of the glass raw material, the fuel gas, etc. The density varies. For this reason, cracks may occur in the deposited body during the deposition step, and peeling may occur when the deposit is made transparent in the step subsequent to the deposition step.
[0004]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for manufacturing an optical fiber preform capable of reliably producing a good optical fiber preform without defects. And
[0005]
[Means for Solving the Problems]
That is, the present invention supplies a glass raw material gas, a fuel gas, and a combustible gas to a burner, ejects glass fine particles together with a flame from the burner, and sprays the fine particles on the outer periphery of a rotating rod-shaped starting member. In the method for manufacturing an optical fiber preform, in which the burner and the starting member are relatively reciprocated along the axial direction of the starting member, glass fine particles are deposited and laminated around the starting member. It is characterized by being laminated on the starting member with a layer thickness of:
[0006]
Further, the present invention is characterized in that the layer thickness of the glass fine particles is adjusted by controlling the supply amount of the glass raw material gas to the burner.
[0007]
Further, the present invention is characterized in that the layer thickness of the glass fine particles is adjusted by controlling the relative reciprocating speed of the starting member and the burner.
[0008]
Further, the present invention is characterized in that the layer thickness of the glass fine particles is adjusted by controlling the supply amounts of the fuel gas and the auxiliary gas to the burner.
[0009]
According to these inventions, a glass fine particle deposit as an optical fiber preform is formed by laminating layers of thin glass fine particles of 0.5 mm or less. For this reason, a large number of layers are laminated to form a deposit having a predetermined diameter, and even if glass fine particles are sprayed unevenly in the axial direction of the deposit, the layers are averaged. In this case, the variation in the partial radial dimension in is suppressed.
[0010]
Further, the present invention is characterized in that the layer thickness of the glass fine particles is adjusted while measuring the lamination state of the glass fine particles.
[0011]
According to such an invention, the state of lamination of the glass fine particles can be confirmed. Therefore, by adjusting the layer thickness of the glass fine particles according to the lamination state, a good deposit, that is, an optical fiber preform can be formed. .
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, various examples of embodiments according to the present invention will be described with reference to the accompanying drawings. In the drawings, the same elements are denoted by the same reference numerals, and description thereof will be omitted.
[0013]
FIG. 1 is an explanatory diagram of a manufacturing process of an optical fiber preform. First, prior to the description of the method for manufacturing an optical fiber preform, an apparatus 1 for manufacturing an optical fiber preform will be described. In FIG. 1, a driving device 2 is provided above a sealed reaction vessel 1, and has a rod 21 extending downward inside the reaction vessel 1, and is capable of expanding and contracting toward the inside of the reaction vessel 1. I have. Further, a grip portion 22 to which the starting member 3 can be attached and detached is provided at the tip of the rod 21, and the grip portion 22 moves up and down by extension and contraction of the rod 21. Therefore, as shown in FIG. 1, when the starting device 3 is attached to the grip portion 22 and the driving device 2 is operated, the starting member 3 rotates reciprocally in the axial direction while rotating with the grip portion 22. That is, it traverses.
[0014]
On the other hand, a burner 4 is installed near the center of the reaction vessel 1 so that glass particles are sprayed along with the flame toward the starting member 3 attached to the above-mentioned holding portion 22. That is, the burner 4 is supplied from the gas supply device 5 with a set amount of a glass raw material gas such as SiCl 4 or GeCl 4 , a fuel gas such as H 2, and a combustible gas such as O 2 . A flame and a predetermined amount of glass particles are sprayed onto the starting member 3 to deposit the glass particles around the starting member 3. An exhaust port 11 is provided at a position facing the burner 4 of the reaction vessel 1, and unnecessary gas generated when glass fine particles are generated can be exhausted from the exhaust port 11. In addition, the reaction vessel 1 is provided with a layer thickness measuring device 6 for measuring the state of lamination of the glass particles deposited on the starting member 3. The measuring device 6 is capable of measuring the thickness t of the glass fine particle layer 31 deposited each time the starting member 3 traverses (moves downward or moves upward). It is composed of a known distance measuring device such as an ultrasonic type or a laser type.
[0015]
The layer thickness measuring device 6, the gas supply device 5, and the drive device 2 are connected to a control device 7 that controls the operation of the gas supply device 5 and the drive device 2 by electrical wiring 71. That is, the lamination data measured by the layer thickness measurement device 6 is input to the control device 7 via the wiring 71 as needed, and a control signal is transmitted from the control device 7 to the gas supply device 5 or the driving device 2 based on the lamination data. The control signal is output, and the expansion / contraction speed of the rod 21 of the driving device 2 or the supply amount of the predetermined gas of the gas supply device 5 is adjusted. Note that the optical fiber preform may be manufactured by setting the expansion / contraction speed of the rod 21 or the gas supply amount by calculation in advance without providing the layer thickness measuring device 6 and the control device 7, and the expansion / contraction speed during the manufacturing. Alternatively, the optical fiber preform may be manufactured while appropriately changing the supply amount.
[0016]
Next, a method for manufacturing an optical fiber preform will be described. In FIG. 1, first, a starting member 3 having a core and a clad is attached to a holding portion 22 and fixed so as not to easily come off. The driving device 2 is operated to reciprocate in the up-down direction, that is, traverse, while rotating the starting member 3 through the rod 21 and the grip portion 22. At the same time, a glass source gas such as SiCl 4 , a fuel gas such as H 2 , and an auxiliary combustion gas such as O 2 are supplied from the gas supply device 5 to the burner 4, and the flame is directed from the burner 4 toward the starting member 3. Is spouted, and the glass raw material gas is hydrolyzed in a flame to spray the starting material 3 as glass fine particles.
[0017]
Then, as shown in FIG. 1, the glass fine particles are gradually deposited on the outer periphery of the starting member 3, and the layer 31 of the glass fine particles is laminated every time the starting member 3 traverses. At this time, the supply amount of the glass raw material gas to the burner 4 is adjusted so that the layer thickness t of the layer 31 becomes 0.5 mm or less. The supply amount of the glass raw material gas for making the glass fine particle layer 31 have a layer thickness t of 0.5 mm or less depends on the traverse speed of the starting member 3 and the supply amount of the fuel gas or the auxiliary gas. Glass particles are sprayed at a predetermined speed and a predetermined supply amount of fuel gas or the like. Then, the layer thickness t for each traverse is measured by the layer thickness measuring device 6, and when the layer thickness t is larger than 0.5 mm, a control signal for reducing the supply amount of the glass raw material gas is sent from the control device 7 to the gas supply device 5. When the layer thickness t is extremely thinner than 0.5 mm, a control signal for increasing the supply amount of the glass source gas is output to the gas supply device 5 so that the supply amount of the glass source gas is adjusted to the optimum value. Spray glass fine particles. Note that the supply amount of the glass raw material gas may be adjusted by manually or manually adjusting the glass raw material gas supply amount of the gas supply device 5 based on the layer thickness t measured without using the control device 7. Good. Also, the adjustment step may be omitted by setting the optimum glass raw material gas supply amount in the gas supply device 5 in advance based on past test data and the like.
[0018]
By spraying the glass fine particles at a predetermined glass raw material gas supply amount, the glass fine particles deposited on the starting member 3 are repeatedly laminated in a thin layer 31 of 0.5 mm or less. In this laminating step, the deposition efficiency of the glass fine particles increases with the increase in the outer diameter of the deposition body 32. Therefore, the gas supply device 5 is set in advance so as to gradually reduce the supply amount of the glass raw material gas. Is preferred. At this time, it is preferable to keep the layer thickness t at about 0.3 to 0.4 mm so that the supply rate is not excessively reduced and the deposition rate is not excessively reduced. Then, the deposit 32 is grown to a predetermined diameter, and the formation of the optical fiber preform is completed. Since this optical fiber preform is formed by laminating a large number of thin layers 31, even if the layer thickness t of each layer 31 in the axial direction of the deposited body varies, the optical fiber preform is averaged by laminating a plurality of layers, and the axial direction Are uniform and uniform in diameter. In addition, the bulk density of the optical fiber preform is also averaged by laminating a large number of thin layers 31, so that there is no portion having a partially different bulk density. Therefore, cracks do not occur in the deposit 32 during the production of the optical fiber preform. When such an optical fiber preform is made transparent in a furnace, the optical fiber preform is free from irregularities, and therefore does not peel off during the process.
[0019]
In order to form a good optical fiber preform, it depends on various conditions such as the surface temperature of the deposit that becomes the optical fiber preform and the bulk density of the stack of deposits. By regulating the layer thickness of the body to a predetermined thickness (0.5 mm) or less, a good optical fiber preform can be reliably obtained without measuring or controlling other conditions.
[0020]
Next, a specific example in which the deposition body 32 is manufactured by the above-described manufacturing method will be described. First, a starting member having a diameter of 20 mm is attached to the grip portion 22 in the reaction vessel 1 and rotated at a predetermined rotation speed, and driven at a traverse speed of the starting member 3 with respect to the burner 4 of 100 mm / min. SiCl 4 , H 2 as a fuel gas, and O 2 as an auxiliary gas are used as the glass source gas to be supplied to the burner 4, and the supply amounts of these gases are set to H 2 : 60 l / min, O 2 : 35 l / min. 4 is a small amount of 3 l / min (usually about 5 l / min), and the glass material is oxidized and hydrolyzed with the flame from the burner 4 to eject fine glass particles and adhere and deposit on the outer periphery of the traversing starting member 3. I let it. Then, the starting member 3 was traversed 50 times (50 reciprocations), and 100 glass fine particle layers 31 were laminated. As a result, a deposit 32 having a diameter of 95 mm was obtained. The layer thickness t of the glass particle layer 31 of the deposit 32 was 0.375 mm. During or after the production of this deposit, no cracks occurred in the deposit 32. After that, the deposit was transparentized in a furnace maintained at a high temperature. As a result, a good preform without irregularities was obtained.
[0021]
Next, another embodiment of the method for manufacturing an optical fiber preform will be described. That is, in the above-described method for manufacturing the optical fiber preform, the flow rate of the glass raw material gas is reduced and the thin layer thickness t is laminated to form the deposit 32. By increasing the speed, the stacked body 32 in which the thin layer thickness t is stacked may be formed.
[0022]
In FIG. 1, when the starting member 3 is traversed while being rotated, and the glass fine particles are ejected from the burner 3 together with the flame to adhere and deposit around the starting member 3, the layer thickness t of the layer 31 of the glass fine particles to be deposited is 0. The optical fiber preform is manufactured while adjusting the traverse speed (reciprocating speed) of the starting member 3 so as to be 0.5 mm or less. The traverse speed for changing the glass fine particle layer 31 to a layer thickness t of 0.5 mm or less depends on the supply amount of the glass raw material gas, the fuel gas, or the auxiliary gas to the burner 4. Glass particles are sprayed as a predetermined supply amount, and the layer thickness t for each traverse is measured by the layer thickness measuring device 6. When the layer thickness t is larger than 0.5 mm, the control device 7 controls to increase the traverse speed. A signal is output to the driving device 2, and when the layer thickness t is extremely thinner than 0.5 mm, a control signal for lowering the traverse speed is output to the driving device 2 so that the traverse speed is adjusted to an optimum value and the glass particles are blown. Make the attachment. The traverse speed may be adjusted by artificially adjusting the traverse speed of the driving device 2 based on the layer thickness t measured without using the control device 7. The adjustment step may be omitted by setting an optimum traverse speed in the drive device 2 in advance based on past test data and the like.
[0023]
By spraying the glass particles at the predetermined traverse speed in this manner, the glass particles deposited on the starting member 3 are repeatedly laminated in a thin layer 31 of 0.5 mm or less. Then, the deposited body 32 as an optical fiber preform is formed by growing to a predetermined diameter. Since the stacked body 32 is formed by stacking a large number of thin layers 31, even if the layer thickness t of each layer 31 in the axial direction of the stacked body varies, the stack 32 is averaged by stacking a large number of layers, and the axial direction of the stacked body 32 is averaged. The diameter is constant and uniform. Further, by stacking a large number of thin layers 31 on the stacked body 32, the bulk density is also averaged, and there is no portion having a partially different bulk density. Therefore, cracks do not occur in the stacked body 32 during the manufacturing of the stacked body 32. When such a deposit 32 is made transparent in a furnace, the deposit 32 does not have irregularities, and thus does not peel off during the process.
[0024]
Next, a specific example in which the deposition body 32 is manufactured by the above-described manufacturing method will be described. First, a starting member having a diameter of 20 mm is attached to the holding portion 22 in the reaction vessel 1 and rotated at a predetermined rotation speed, and the traverse speed of the starting member 3 with respect to the burner 4 is increased to 200 mm / min in a high-speed state (normally about 100 mm / min). ). SiCl 4 , H 2 , and O 2 were used as the glass source gas and the fuel gas to be supplied to the burner 4. The supply amounts of these gases were SiCl 4 : 5 l / min, H 2 : 60 l / min, and O 2. : 35 l / min, the glass material was oxidized and hydrolyzed with the flame from the burner 4 to eject fine glass particles, which were adhered and deposited on the outer periphery of the traversing starting member 3. Then, a layer 31 of glass fine particles was laminated on the starting member 3 to obtain a deposit 32 having a diameter of 85 mm. The layer thickness t of the glass particle layer 31 of the deposit 32 was 0.325 mm. During or after the production of this deposit, no cracks occurred in the deposit 32. After that, the deposit was transparentized in a furnace maintained at a high temperature. As a result, a good preform without irregularities was obtained.
[0025]
FIG. 2 shows data of the thickness t of the glass particle layer 31 to be laminated when the traverse speed is changed under the same supply conditions of the respective gases in this manufacturing method. In FIG. 2, the traverse speed and the layer thickness t show almost inversely proportional characteristics. However, the traverse speed was reduced so that the layer thickness t formed by one traverse was 0.5 mm or more to form the deposit 32. In some cases, the deposit 32 was cracked and cracked (X in FIG. 2; the layer thickness t was 0.65 mm, and the traverse speed was 100 mm / min). In the case where the layer thickness t was 0.5 or less, the deposited body 32 formed in each case was in an excellent state without any abnormality.
[0026]
Further, another embodiment of the method for manufacturing an optical fiber preform will be described. That is, in the above-described method of manufacturing the optical fiber preform, by increasing the supply amounts of the fuel gas and the auxiliary gas to the burner 4, the thin layer thickness t is laminated to form the deposit 32. Is also good.
[0027]
In FIG. 1, when the starting member 3 is traversed while being rotated, and the glass fine particles are ejected from the burner 3 together with the flame to adhere and deposit around the starting member 3, the layer thickness t of the layer 31 of the glass fine particles to be deposited is 0. The optical fiber preform is manufactured while adjusting the supply amounts of the fuel gas and the auxiliary gas to the burner 4 so as to be 0.5 mm or less. The supply amounts of the fuel gas and the auxiliary gas for making the glass fine particle layer 31 have a layer thickness t of 0.5 mm or less depend on the glass raw material gas to the burner 4 and the traverse speed of the starting member 3 as described above. First, a glass material gas is supplied at a predetermined supply amount, a traverse speed is set at a predetermined speed, and glass fine particles are sprayed, and a layer thickness t for each traverse is measured by the layer thickness measuring device 6, and the layer thickness t is determined. When the thickness is more than 0.5 mm, a control signal for increasing the supply amount of the fuel gas and the auxiliary gas is output from the control device 7 to the gas supply device 5. By outputting a control signal to the driving device 2 to reduce the supply amount of the auxiliary combustion gas, the flame spouting from the burner 4 is adjusted to an optimum heating power, and the glass fine particles are spouted. In this case, the thermal power increases and the layer thickness t decreases, but the yield of the glass fine particles does not change, which is very effective in terms of the deposition efficiency. Note that the adjustment of the heating power may be artificially performed to a required heating power as appropriate based on the layer thickness t measured without using the control device 7. Further, the adjustment step may be omitted by setting an optimum heating power in the gas supply device 5 in advance based on past test data and the like.
[0028]
By spraying the glass microparticles together with the flame of the predetermined thermal power in this manner, the bulk density of the glass microparticles deposited on the starting member 3 is increased, and a thin layer 31 of 0.5 mm or less is formed. It will go. Then, the deposited body 32 as an optical fiber preform is formed by growing to a predetermined diameter. Since the stacked body 32 is formed by stacking a large number of thin layers 31, even if the layer thickness t of each layer 31 in the axial direction of the stacked body varies, the stack 32 is averaged by stacking a large number of layers, and the axial direction of the stacked body 32 is averaged. The diameter is constant and uniform. Further, by stacking a large number of thin layers 31 on the stacked body 32, the bulk density is also averaged, and there is no portion having a partially different bulk density. Therefore, cracks do not occur in the stacked body 32 during the manufacturing of the stacked body 32. When such a deposit 32 is made transparent in a furnace, the deposit 32 does not have irregularities, and thus does not peel off during the process.
[0029]
Subsequently, a specific example in which the deposition body 32 is manufactured by this manufacturing method will be described. First, a starting member having a diameter of 20 mm is attached to the grip portion 22 in the reaction vessel 1 and rotated at a predetermined rotation speed, and the traverse speed of the starting member 3 with respect to the burner 4 is driven at 100 mm / min. SiCl 4 is used as a glass source gas, H 2 is used as a fuel gas, and O 2 is used as a combustible gas. The supply amounts of these gases are SiCl 4 : 5 l / min, H 2 : 70 l / min, O 2 : 40 l / min (normally, H 2 : 60 l / min, O 2 : about 35 l / min), and the glass material is oxidized and hydrolyzed with the flame from the burner 4 to eject glass fine particles. Was deposited on the outer periphery of the traversing starting member 3. Then, a layer 31 of fine glass particles was laminated on the starting member 3 to obtain a deposit 32 having a diameter of 116 mm. The layer thickness t of the glass fine particle layer 31 of the deposit 32 was 0.48 mm. During or after the production of this deposit, no cracks occurred in the deposit 32. After that, the deposit was transparentized in a furnace maintained at a high temperature. As a result, a good preform without irregularities was obtained.
[0030]
Next, a specific comparative example will be described using a conventional method of manufacturing an optical fiber preform in order to compare with the methods of manufacturing an optical fiber preform in the above-described various embodiments. In FIG. 1, the starting member 4 is rotated at a predetermined rotation speed, the traverse speed of the burner 4 is set to 100 mm / min, the supply amount of each gas supplied to the burner 4 is glass source gas SiCl 4 : 5 l / min, fuel gas An optical fiber preform was manufactured with H 2 : 60 l / min and the auxiliary gas O 2 : 35 l / min. That is, the layer 31 of the glass fine particles was laminated on the starting member 3 to obtain a deposit 32 having a diameter of 140 mm. However, cracks occurred during the production of the deposit 32, and peeling occurred when the deposit 32 became transparent after production. The layer thickness t of the glass particle layer 31 of the deposit 32 was 0.6 mm.
[0031]
In each of the above-described optical fiber preform manufacturing methods, traverse is performed by reciprocating the starting member 4 with respect to the fixed burner 4, but as shown in FIG. The burner 4 may be moved along the starting member 4 without moving. For example, in FIG. 3, a rotation device 8 for rotating the starting member 3 in the reaction vessel 1 is provided, and a moving device 9 for reciprocating the burner 4 along the starting member 3 attached to the rotation device 8 is provided. Even when the glass particles are sprayed from the burner 4 along with the flame on the outer periphery of the starting member 3 rotating in the axial direction, and the thin layers 31 are laminated to form the stacked body 32 which is the optical fiber preform, the same as in the above-described respective manufacturing methods. In addition, a good optical fiber preform can be formed.
[0032]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained. That is, since the optical fiber preform is formed by laminating many layers of thin glass particles, the diameter of the optical fiber preform becomes uniform. For this reason, cracks do not occur during the production of the optical fiber preform or when the optical fiber preform is made transparent after production, and peeling does not occur. If the layer thickness of the glass particles is adjusted while measuring the lamination state of the glass particles, a good optical fiber preform can be reliably formed.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a manufacturing process of an optical fiber preform.
FIG. 2 is a table showing characteristics of a traverse speed and a layer thickness t in manufacturing an optical fiber preform.
FIG. 3 is an explanatory diagram of a manufacturing process of an optical fiber preform.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reaction container, 2 ... Drive device, 3 ... Starting member, 31 ... Glass fine particle layer,
32: Deposit (optical fiber preform), 4: Burner, 5: Gas supply device 6, Layer thickness measurement device, 7: Controller, Controller Attorney Yoshiki Hasegawa

Claims (5)

バーナへガラス原料ガス、燃料ガス及び助燃性ガスを供給しそのバーナから火炎と共にガラス微粒子を噴出させて、回転する棒状の出発部材の外周へ噴き付けさせると共に、その出発部材とバーナとを出発部材の軸方向に沿って相対的に往復移動させることにより、出発部材の周りにガラス微粒子を堆積させ積層させて行う光ファイバ母材の製造方法において、
前記ガラス微粒子を0.5mm以下の層厚で前記出発部材に積層させることを特徴とする光ファイバ母材の製造方法。
A glass raw material gas, a fuel gas, and an auxiliary gas are supplied to the burner, glass fine particles are ejected from the burner together with the flame, and are sprayed on the outer periphery of a rotating rod-shaped starting member. The starting member and the burner are separated from the starting member. By relatively reciprocating along the axial direction of, the method of manufacturing an optical fiber preform performed by depositing and laminating glass particles around the starting member,
A method for producing an optical fiber preform, wherein the glass fine particles are laminated on the starting member with a layer thickness of 0.5 mm or less.
前記バーナへのガラス原料ガスの供給量を制御することにより、前記ガラス微粒子の層厚を調整することを特徴とする請求項1に記載の光ファイバ母材の製造方法。The method for manufacturing an optical fiber preform according to claim 1, wherein a layer thickness of the glass fine particles is adjusted by controlling a supply amount of a glass raw material gas to the burner. 前記出発部材とバーナとの相対往復移動の速度を制御することにより、前記ガラス微粒子の層厚を調整することを特徴とする請求項1に記載の光ファイバ母材の製造方法。The method for manufacturing an optical fiber preform according to claim 1, wherein the layer thickness of the glass fine particles is adjusted by controlling the speed of the relative reciprocating movement between the starting member and the burner. 前記バーナへの燃料ガス及び助燃性ガスの供給量を制御することにより、前記ガラス微粒子の層厚を調整することを特徴とする請求項1に記載の光ファイバ母材の製造方法。The method for producing an optical fiber preform according to claim 1, wherein the layer thickness of the glass fine particles is adjusted by controlling the supply amounts of the fuel gas and the auxiliary gas to the burner. 前記ガラス微粒子の積層状態を測定しながら、前記ガラス微粒子の層厚を調整することを特徴とする請求項1乃至4のいずれかに記載の光ファイバ母材の製造方法。The method for producing an optical fiber preform according to any one of claims 1 to 4, wherein a layer thickness of the glass fine particles is adjusted while measuring a lamination state of the glass fine particles.
JP27907695A 1995-10-26 1995-10-26 Manufacturing method of optical fiber preform Expired - Lifetime JP3575505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27907695A JP3575505B2 (en) 1995-10-26 1995-10-26 Manufacturing method of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27907695A JP3575505B2 (en) 1995-10-26 1995-10-26 Manufacturing method of optical fiber preform

Publications (2)

Publication Number Publication Date
JPH09118539A JPH09118539A (en) 1997-05-06
JP3575505B2 true JP3575505B2 (en) 2004-10-13

Family

ID=17606086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27907695A Expired - Lifetime JP3575505B2 (en) 1995-10-26 1995-10-26 Manufacturing method of optical fiber preform

Country Status (1)

Country Link
JP (1) JP3575505B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040008223A (en) * 2001-06-14 2004-01-28 스미토모덴키고교가부시키가이샤 Device and method for producing stack of fine glass particles
CN107428590B (en) * 2015-03-31 2020-08-11 古河电气工业株式会社 Method for manufacturing porous glass base material for optical fiber
WO2017078169A1 (en) * 2015-11-04 2017-05-11 古河電気工業株式会社 Method for producing glass base material for optical fibers

Also Published As

Publication number Publication date
JPH09118539A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
KR102545712B1 (en) Method and apparatus for manufacturing porous glass preform for optical fiber
JPH10114535A (en) Production of optical fiber base material
JP2003226544A (en) Method of manufacturing optical fiber porous preform
JP3575505B2 (en) Manufacturing method of optical fiber preform
JP4424232B2 (en) Method for producing porous glass base material
JP2000272930A (en) Production of optical fiber preform
JP2003226543A (en) Method of manufacturing optical fiber preform and burner apparatus for manufacturing optical fiber using the same
JP4532386B2 (en) Method for producing porous glass preform for optical fiber
JP3744350B2 (en) Porous glass base material synthesis burner and method for producing porous glass base material
JP2000272929A (en) Production of optical fiber preform
JP2000034131A (en) Apparatus for production of porous glass material and production method
JP4097982B2 (en) Method for producing porous preform for optical fiber
JP3953820B2 (en) Method for manufacturing optical fiber porous preform
JPH09118538A (en) Production of optical fiber preform
JPH107430A (en) Production of preform for optical fiber
JPH09124333A (en) Production of preform for optical fiber
JPH107429A (en) Production of preform for optical fiber
WO2019044807A1 (en) Method for producing glass fine particle deposit, method for producing glass base material, and glass fine particle deposit
JP2004035282A (en) Process for manufacturing porous preform for optical fiber
JP3168274B2 (en) Porous glass base material
JP2005247636A (en) Method of manufacturing porous preform for optical fiber and glass preform
JP2002145635A (en) Method for manufacturing optical fiber preform
JPH09188522A (en) Torch for synthesizing glass fine particle
JPH11199238A (en) Fine glass particle deposition device
JP3941339B2 (en) Method for producing porous glass base material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040629

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term