JPH107430A - Production of preform for optical fiber - Google Patents

Production of preform for optical fiber

Info

Publication number
JPH107430A
JPH107430A JP8163333A JP16333396A JPH107430A JP H107430 A JPH107430 A JP H107430A JP 8163333 A JP8163333 A JP 8163333A JP 16333396 A JP16333396 A JP 16333396A JP H107430 A JPH107430 A JP H107430A
Authority
JP
Japan
Prior art keywords
glass
moving speed
optical fiber
particle generator
descending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8163333A
Other languages
Japanese (ja)
Other versions
JP3510425B2 (en
Inventor
Masahide Kuwabara
正英 桑原
Sadanori Ishida
禎則 石田
Yukio Komura
幸夫 香村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP16333396A priority Critical patent/JP3510425B2/en
Publication of JPH107430A publication Critical patent/JPH107430A/en
Application granted granted Critical
Publication of JP3510425B2 publication Critical patent/JP3510425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the productivity of the preform for an optical fiber by depositing fine particles of glass to the soot rod in both directions back and forth by reciprocating a plurality of burners. SOLUTION: The target rod 1 is vertically set and rotated, a plurality of burners A, B, C are vertically reciprocated, as they are vertically arranged at a certain interval and their jetting nozzles are directed toward the target rod 1. The moving rate of the burners are made to differ on ascending and on descending. The lower moving rate is set to >=25mm/sec, while the higher rate is to >=450mm/sec. Within the range of the moving rate, the deposition rate of the fine particles of glass per unit time becomes equal when the burner ascends to that when descending and the mutual interference, when the burners cross each other. Thus, fine particles of glass soot can be deposited on both ascending and descending of the burners.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ母材の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical fiber preform.

【0002】[0002]

【従来の技術】光ファイバ母材の製造方法の一つとし
て、ガラス微粒子発生装置を回転するターゲット棒に沿
って往復移動させ、ガラス微粒子発生装置で発生したガ
ラス微粒子をターゲット棒上に堆積させていく方法が公
知である。ガラス微粒子発生装置としては、バーナーの
酸素/水素火炎中に四塩化ケイ素などの原料ガスを導入
して火炎加水分解によりガラス微粒子を発生させるもの
が一般的であるが、これ以外にも高周波誘導プラズマト
ーチなどを用いる場合もある。またターゲット棒として
はガラス棒や耐火物製マンドレルなどが使用される。こ
の方法で製造された多孔質の光ファイバ母材は、加熱に
より透明ガラス化した後、光ファイバの製造に用いられ
る。
2. Description of the Related Art As one method of manufacturing an optical fiber preform, a glass fine particle generator is reciprocated along a rotating target rod, and glass fine particles generated by the glass fine particle generator are deposited on the target rod. Several methods are known. As a device for generating fine glass particles, a device is generally used in which a raw material gas such as silicon tetrachloride is introduced into an oxygen / hydrogen flame of a burner to generate fine glass particles by flame hydrolysis. A torch or the like may be used. A glass rod, a refractory mandrel, or the like is used as the target rod. The porous optical fiber preform manufactured by this method is used for manufacturing an optical fiber after it is turned into a transparent glass by heating.

【0003】この方法で、ガラス微粒子の堆積効率を高
め、光ファイバ母材の生産性を高めるためには、複数の
ガラス微粒子発生装置を用いることが有効である。従
来、複数のガラス微粒子発生装置を用いる場合には、各
々のガラス微粒子発生装置を、ターゲット棒の一端側か
ら他端側へ移動させるときは吹き出し口をターゲット棒
に向けてゆっくりと移動させ(このときガラス微粒子を
堆積させる)、他端側から一端側へ戻るときは吹き出し
口をターゲット棒に向けないで早戻りさせるという方法
が提案されている(特公平5−57216号公報)。
In order to increase the deposition efficiency of glass fine particles and increase the productivity of an optical fiber preform by this method, it is effective to use a plurality of glass fine particle generators. Conventionally, when a plurality of glass particle generators are used, when moving each glass particle generator from one end of the target rod to the other end, the outlet is slowly moved toward the target rod. When returning from the other end to the one end, a method has been proposed in which the outlet is quickly returned without directing the outlet toward the target rod (Japanese Patent Publication No. 5-57216).

【0004】[0004]

【発明が解決しようとする課題】しかしこの方法では、
各々のガラス微粒子発生装置が他端側から一端側へ戻る
ときは、ガラス微粒子の堆積に寄与しない無駄な時間と
なる。このため生産性の向上に限界がある。
However, in this method,
When each of the glass particle generators returns from the other end to the one end, it becomes a wasteful time that does not contribute to the deposition of the glass particles. Therefore, there is a limit in improving the productivity.

【0005】複数のガラス微粒子発生装置を用いて、往
路も復路もガラス微粒子を堆積させようとすると、ガラ
ス微粒子発生装置がすれ違うときに相互の火炎の干渉を
さけることが難しい。特にターゲット棒が水平に配置さ
れている場合は、ガラス微粒子発生装置が上下の関係で
すれ違うことになるため、火炎の干渉が生じやすい。ま
た従来の製造方法では、ガラス微粒子を堆積させるとき
のガラス微粒子発生装置の移動速度が低いため、従来の
移動速度のままで往路も復路もガラス微粒子を堆積させ
ようとすると、ターゲット棒上に堆積したガラス微粒子
の温度が高くなりすぎて、母材表面に結晶ができてしま
い、良好な品質を確保できない。
[0005] When a plurality of glass fine particle generators are used to deposit glass fine particles both in the forward path and in the return path, it is difficult to avoid mutual flame interference when the glass fine particle generators pass each other. In particular, when the target rods are arranged horizontally, the glass particle generators pass each other up and down, so that flame interference is likely to occur. In addition, in the conventional manufacturing method, the moving speed of the glass fine particle generator when depositing the glass fine particles is low. The temperature of the produced glass particles becomes too high, and crystals are formed on the surface of the base material, so that good quality cannot be secured.

【0006】本発明の目的は、複数のガラス微粒子発生
装置を用いて往路、復路ともガラス微粒子を堆積させる
ことができる、生産性にすぐれた光ファイバ母材の製造
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an optical fiber preform having excellent productivity, in which glass particles can be deposited using a plurality of glass particle generators in both the forward path and the return path.

【0007】[0007]

【課題を解決するための手段】ガラス微粒子発生装置を
ターゲット棒に沿って移動させ、ガラス微粒子を堆積さ
せるときのガラス微粒子発生装置の移動速度は、従来の
方法では2.5mm/秒程度である(特公平5−572
16号公報)。本発明者等は、ガラス微粒子発生装置が
すれ違うときの火炎の干渉をできるだけ少なくするた
め、ターゲット棒を垂直に配置し、ガラス微粒子発生装
置の移動速度を従来より大幅に高くして、ガラス微粒子
の堆積状態を調べた。その結果、次のようなことが明ら
かとなった。
The moving speed of the glass particle generator when the glass particle generator is moved along the target bar to deposit the glass particles is about 2.5 mm / sec in the conventional method. (Tokuhei 5-572
No. 16). The present inventors have set the target rod vertically, and set the moving speed of the glass particle generator significantly higher than before so as to minimize the interference of the flame when the glass particle generators pass each other. The state of deposition was examined. As a result, the following became clear.

【0008】 ガラス微粒子発生装置の移動速度を高
くしても、ガラス微粒子発生装置への燃料ガスおよび原
料ガスの供給量をその速度に合うように調節すれば、従
来と同等の堆積速度を得ることが可能である。 ターゲット棒を垂直に配置した場合は、上昇するガ
ラス微粒子発生装置と下降するガラス微粒子発生装置が
すれ違う時の相対速度をある程度以上に高くすれば、す
れ違い時の火炎の干渉は問題のないレベルとなる。
[0008] Even if the moving speed of the glass fine particle generator is increased, if the supply amounts of the fuel gas and the raw material gas to the glass fine particle generator are adjusted to match the speeds, it is possible to obtain a deposition rate equivalent to the conventional one. Is possible. When the target rod is arranged vertically, if the relative speed when the ascending glass particle generator and the descending glass particle generator pass each other is increased to a certain degree or more, the interference of the flame at the time of passing will be a problem-free level .

【0009】本発明は、基本的にはこのような知見に基
づいてなされたものである。すなわち本発明の光ファイ
バ母材の製造方法は、ターゲット棒を垂直に配置して回
転させ、複数のガラス微粒子発生装置を、上下方向に間
隔をあけて、吹き出し口をターゲット棒に向けたまま、
周方向に異なる位置で上下方向に往復移動させ、ガラス
微粒子発生装置への燃料ガスおよび原料ガスの供給条件
は上昇時、下降時とも同じとし、ガラス微粒子発生装置
が上昇する時の移動速度と下降する時の移動速度は、上
昇するガラス微粒子発生装置と下降するガラス微粒子発
生装置がすれ違う時に相互の干渉が問題とならない程度
の相対速度が得られ、かつ上昇時と下降時で単位時間当
たりのガラス微粒子堆積量が実質的に同じになるように
設定し、これによりガラス微粒子発生装置が上昇する時
と下降する時の両方でガラス微粒子を堆積させることを
特徴とするものである。
The present invention has been basically made based on such findings. That is, the manufacturing method of the optical fiber preform of the present invention, the target rod is vertically arranged and rotated, a plurality of glass particle generators, spaced apart in the vertical direction, with the outlet facing the target rod,
It is reciprocated vertically at different positions in the circumferential direction, and the supply conditions of the fuel gas and the raw material gas to the glass fine particle generator are the same at the time of ascending and descending, and the moving speed and lowering when the glass fine particle generator ascends The moving speed at the time of moving is such that when the ascending glass particle generator and the descending glass particle generator pass each other, a relative speed that does not cause a problem of mutual interference is obtained, and the glass per unit time when ascending and descending The method is characterized in that the amount of deposited fine particles is set to be substantially the same, whereby glass fine particles are deposited both when the glass fine particle generator rises and falls.

【0010】実験によれば、上昇するガラス微粒子発生
装置と下降するガラス微粒子発生装置がすれ違う時に相
互の干渉が問題とならないレベルにするためには、すれ
違い時の相対速度を475mm/秒以上にすればよいこ
とが分かった。したがってガラス微粒子発生装置の移動
速度は、上昇時、下降時とも同じにする場合は、23
7.5mm/秒以上にすればよい。この移動速度は従来
方法に比べると約100倍近い速さである。
According to an experiment, the relative speed at the time of passing each other should be 475 mm / sec or more so that mutual interference does not become a problem when the ascending glass particle generating device and the descending glass particle generating device pass each other. I just found out. Therefore, when the moving speed of the glass particle generator is the same at the time of ascending and descending, 23
What is necessary is just to make it 7.5 mm / sec or more. This moving speed is about 100 times faster than the conventional method.

【0011】ガラス微粒子発生装置の移動速度を種々の
レベルに設定して、ターゲット棒を垂直に配置した場合
と、水平に配置した場合の、多孔質光ファイバ母材の外
径変動を調べた結果は図4のとおりであった。この結果
からターゲット棒を垂直に配置した方が、外径変動を格
段に小さくできることが確認された。
[0011] Results of examining the variation in the outer diameter of the porous optical fiber preform when the moving speed of the glass particle generating apparatus is set to various levels and the target rod is arranged vertically and horizontally. Was as shown in FIG. From this result, it was confirmed that when the target rod was arranged vertically, the fluctuation of the outer diameter could be significantly reduced.

【0012】ところで、ガラス微粒子発生装置の移動速
度を従来より大幅に高くすれば、上昇時と下降時の両方
でガラス微粒子を堆積させることができ、効率のよい生
産が可能となるが、上昇時と下降時の移動速度が同じ場
合は、次のような問題のあることが判明した。すなわ
ち、ガラス微粒子堆積層の密度が低下し、母材にクラッ
クが生じやすくなるということである。
By the way, if the moving speed of the glass particle generator is made much higher than before, the glass particles can be deposited both at the time of ascending and at the time of descent, and efficient production becomes possible. When the moving speed at the time of descent is the same as that at the time of descent, the following problems were found. That is, the density of the glass fine particle deposition layer is reduced, and cracks are easily generated in the base material.

【0013】そこで、上昇時と下降時でガラス微粒子発
生装置の移動速度を異ならせて(移動速度を上昇時と下
降時の一方で高く、他方で低くして)、さらに実験を重
ねた結果、図5のような知見が得られた。図5のグラフ
は、ガラス微粒子発生装置の高い方の移動速度を低い方
の移動速度の10倍とし、低い方の移動速度のときに単
位時間当たりのガラス微粒子堆積量が最大となるように
原料ガス、燃料ガスの供給量を設定し(高い方の移動速
度のときもガス供給条件は同じ)、各移動速度毎に、高
い方の移動速度のときの単位時間当たりのガラス微粒子
堆積量と低い方の移動速度のときの単位時間当たりのガ
ラス微粒子堆積量との比をプロットしたものである。こ
の結果によると、ガラス微粒子発生装置の移動速度をあ
る程度以上高くすると(低い方の移動速度を25mm/
秒以上にすると)、上昇時と下降時でガラス微粒子発生
装置の移動速度を異ならせても、単位時間当たりのガラ
ス微粒子堆積量がほとんど変わらない領域があることが
分かる。そしてこの領域ではガラス微粒子堆積層の密度
の低下もなく、クラックも生じないことも分かった。し
たがってこの領域で往路、復路ともガラス微粒子を堆積
させれば、きわめて効率のよい堆積を行うことができ
る。
[0013] Therefore, the moving speed of the glass particle generating apparatus is made different between ascending and descending (moving speed is increased in one of the ascending and descending directions, and decreased in the other), and as a result of further experiments, The findings as shown in FIG. 5 were obtained. The graph of FIG. 5 shows that the higher moving speed of the glass fine particle generator is set to be 10 times the lower moving speed, and that the lower the moving speed, the larger the amount of the glass fine particles deposited per unit time is. The gas and fuel gas supply amounts are set (the gas supply conditions are the same even at the higher moving speed). For each moving speed, the amount of glass particles deposited per unit time at the higher moving speed is lower. 7 is a plot of a ratio of the moving speed to the amount of glass particles deposited per unit time. According to this result, when the moving speed of the glass particle generator is increased to a certain level or more (the lower moving speed is set to 25 mm /
It can be seen that there is a region where the amount of glass particles deposited per unit time hardly changes even if the moving speed of the glass particle generator is changed between rising and falling. It was also found that in this region, the density of the glass fine particle deposition layer did not decrease and no cracks occurred. Therefore, if glass particles are deposited in this area on both the outward path and the return path, extremely efficient deposition can be performed.

【0014】したがって本発明においては、ガラス微粒
子発生装置の移動速度を、上昇時と下降時で異ならせ、
低い方の移動速度を高い方の移動速度のときと単位時間
当たりのガラス微粒子堆積量が実質的に同じになるよう
に設定することが好ましい。この場合、低い方の移動速
度は25mm/秒以上とし、高い方の移動速度は450
mm/秒以上(すれ違い時の相対速度が475mm/秒
以上)とすることが好ましい。
Therefore, in the present invention, the moving speed of the glass fine particle generating device is made different between the rising time and the falling time,
It is preferable to set the lower moving speed so that the amount of glass particles deposited per unit time is substantially the same as that of the higher moving speed. In this case, the lower moving speed is 25 mm / sec or more, and the higher moving speed is 450 mm / sec.
mm / sec or more (the relative speed at the time of passing each other is 475 mm / sec or more).

【0015】次に、上昇時と下降時でガラス微粒子発生
装置の移動速度を異ならせたときの、得られる多孔質光
ファイバ母材の外径変動を調べた結果は図6のとおりで
あった。これによると、低い方の移動速度は25mm/
秒以上、高い方の移動速度は500mm/秒にすること
が好ましい。
Next, FIG. 6 shows the result of examining the outer diameter variation of the obtained porous optical fiber preform when the moving speed of the glass fine particle generator is made different between the rising time and the falling time. . According to this, the lower moving speed is 25 mm /
It is preferable that the higher moving speed be 500 mm / sec.

【0016】[0016]

【発明の実施の形態】図1および図2は本発明の一実施
形態を示す。この実施形態では、ターゲット棒1を垂直
に配置し、3本のバーナーA、B、Cをターゲット棒1
に向けたまま上下方向に往復移動させている。2はター
ゲット棒1の表面に堆積したガラス微粒子堆積層であ
る。ターゲット棒1の上端はチャック3で把持し、図示
しないモーターによって回転させている。ターゲット棒
1の下端は揺れ止めガイド4で定位置に保持している。
図1(イ)はバーナーA、B、Cが上昇するときの状
態、同図(ロ)は下降するときの状態、図2はバーナー
A、B、Cの周方向の位置を示すため真上から見た状態
である。
1 and 2 show an embodiment of the present invention. In this embodiment, the target rod 1 is arranged vertically, and three burners A, B, and C are attached to the target rod 1.
It is reciprocating up and down with facing. Reference numeral 2 denotes a glass fine particle deposition layer deposited on the surface of the target rod 1. The upper end of the target rod 1 is gripped by a chuck 3 and rotated by a motor (not shown). The lower end of the target rod 1 is held at a fixed position by an anti-sway guide 4.
FIG. 1A shows a state where the burners A, B and C rise, FIG. 1B shows a state where the burners A descend, and FIG. 2 shows the positions of the burners A, B and C in the circumferential direction. It is the state seen from.

【0017】3本のバーナーA、B、Cは上昇するとき
も、下降するときも上下方向に間隔をあけて移動する。
移動の様子を図3に示す。バーナーA、B、Cは上昇す
るときは比較的遅い一定の速度で上昇し、下降するとき
は上昇時よりかなり速い一定の速度で下降する。バーナ
ーA、B、Cには上昇するときも下降するときも、同じ
条件で原料ガスおよび燃料ガスが供給される。すなわち
移動速度が高いときも低いときも火炎加水分解の条件は
同じである。バーナーA、B、Cの間隔は、上端部およ
び下端部でガラス微粒子発生装置が方向転換するときの
停止時間を調整することにより一定に保たれる。上昇時
と下降時のバーナーA、B、Cの間隔は同じでも異なっ
ていてもよいが、通常の場合は下降時の方が(移動速度
が高いときの方が)間隔が広くなる。
The three burners A, B, and C move up and down at intervals in both the ascending and descending directions.
FIG. 3 shows the movement. The burners A, B and C rise at a constant speed which is relatively slow when ascending, and descend at a constant speed which is considerably faster than when ascending. The source gas and the fuel gas are supplied to the burners A, B, and C under the same conditions when ascending and descending. That is, the conditions of flame hydrolysis are the same when the moving speed is high and low. The interval between the burners A, B and C is kept constant by adjusting the stop time when the glass particle generator turns around at the upper end and the lower end. The intervals between the burners A, B and C at the time of ascent and at the time of descent may be the same or different. However, in the normal case, the intervals at the time of descent (when the moving speed is high) are wider.

【0018】この方法では、バーナーA、B、Cが上端
側と下端側で方向転換するときに一時的に停止するた
め、その部分はガラス微粒子の堆積密度が高くなってし
まい、光ファイバ母材として使用できない。このためバ
ーナーA、B、Cの方向転換は、有効堆積範囲(光ファ
イバ母材として使用する範囲)の限界からバーナーの口
径の1/2以上オーバーランした所で行うようにする。
このようにすれば有効堆積範囲内のガラス微粒子堆積密
度は一定となる。
In this method, since the burners A, B, and C temporarily stop when turning at the upper end and the lower end, the deposition density of the glass fine particles becomes high in that portion, and the optical fiber preform Can not be used as For this reason, the direction change of the burners A, B, and C is performed at a place where the diameter of the burner is overrun by 1/2 or more from the limit of the effective deposition range (the range used as the optical fiber preform).
In this way, the glass particle deposition density within the effective deposition range becomes constant.

【0019】バーナーA、B、Cを往復移動させると、
上昇するバーナーと下降するバーナーのすれ違いが発生
する。このすれ違い時の火炎の干渉の影響は、すれ違う
バーナーの相対速度が大きくなるほど小さくなり、相対
速度が475mm/秒以上になれば全く問題が生じない
ことが実験により確認された。したがって図5のグラフ
より低い方の移動速度を25mm/秒に設定した場合、
高い方の移動速度は450mm/秒以上に設定すればよ
いことになる。また図6からは高い方の移動速度は50
0mm/秒以上に設定することが好ましいことになる。
When the burners A, B and C are reciprocated,
Passing of the ascending burner and the descending burner occurs. It has been confirmed by experiments that the influence of the flame interference at the time of passing each other decreases as the relative speed of the passing burners increases, and no problem occurs when the relative speed becomes 475 mm / sec or more. Therefore, when the lower moving speed than the graph of FIG. 5 is set to 25 mm / sec,
The higher moving speed may be set to 450 mm / sec or more. From FIG. 6, the higher moving speed is 50.
It is preferable to set the speed to 0 mm / sec or more.

【0020】[0020]

【実施例】ターゲット棒として直径30mmのコア用石
英ガラス棒使用し、これを垂直に配置して150rpm
で回転させた。このターゲット棒に向けて3本の酸水素
バーナーを上下方向に往復移動させた。往復移動範囲は
1500mmである。バーナーの口径は60mm、バー
ナーの先端からターゲット棒表面までの距離は120m
mである。各バーナーにはガス供給装置から水素200
リットル/分、酸素80リットル/分を供給し、酸水素
火炎を生させた。この火炎中にガス供給装置から四塩化
ケイ素100g/分を導入し、酸化反応によってSiO
2 ガラス微粒子を生成した。このガラス微粒子をターゲ
ット棒に堆積させ、多孔質光ファイバ母材を製造した。
EXAMPLE A quartz glass rod for a core having a diameter of 30 mm was used as a target rod, and the rod was vertically arranged at 150 rpm.
And rotated. Three oxyhydrogen burners were reciprocated up and down toward the target rod. The reciprocating range is 1500 mm. The diameter of the burner is 60 mm, and the distance from the tip of the burner to the surface of the target rod is 120 m.
m. Each burner receives 200 hydrogen from the gas supply.
1 liter / minute and 80 liter / minute of oxygen were supplied to generate an oxyhydrogen flame. 100 g / min of silicon tetrachloride was introduced into the flame from a gas supply device, and SiO.
Two glass particles were produced. The glass particles were deposited on a target rod to produce a porous optical fiber preform.

【0021】まずバーナーの移動速度を上昇時、下降時
とも同じにして、移動速度を変えて単位時間当たりのガ
ラス微粒子堆積量を調べた。その結果、移動速度を従来
より大幅に高くしても単位時間当たりのガラス微粒子堆
積量が得られることがわかった。またバーナーの火炎は
水素の浮力により上下方向に広がるが、バーナーの移動
方向が上下方向であるため、バーナーがすれ違うときの
火炎の干渉は比較的小さく、相対速度475mm/秒以
上で問題のないレベルになることが確認された。
First, the moving speed of the burner was increased and lowered, and the moving speed was changed to examine the amount of glass particles deposited per unit time. As a result, it was found that even if the moving speed was significantly increased, the amount of glass particles deposited per unit time could be obtained. The flame of the burner spreads vertically due to the buoyancy of hydrogen. However, since the moving direction of the burner is the vertical direction, the interference of the flame when the burners pass each other is relatively small, and the relative speed is 475 mm / sec or more, which is no problem It was confirmed that.

【0022】この結果から、各バーナーの移動速度を、
上昇時、下降時とも同じ250mm/秒に設定し(バー
ナーへのガス供給条件は上記と同じ)、光ファイバ母材
を製造した。その結果、長さ1500mm、外径220
mmの母材を約10時間で製造することができた。
From this result, the moving speed of each burner is
The same 250 mm / sec was set for both ascending and descending (gas supply conditions to the burner were the same as above), and an optical fiber preform was manufactured. As a result, the length was 1500 mm and the outer diameter was 220
mm base metal could be manufactured in about 10 hours.

【0023】次にバーナーの移動速度を上昇時と下降時
で異ならせ、高い方の移動速度を低い方の移動速度の1
0倍とし、低い方の移動速度のときに単位時間当たりの
ガラス微粒子堆積量が最大となるように原料ガス、燃料
ガスの供給条件を設定し(高い方の移動速度のときもガ
ス供給条件は同じ)、各移動速度毎に、高い方の移動速
度のときの単位時間当たりのガラス微粒子堆積量と低い
方の移動速度のときの単位時間当たりのガラス微粒子堆
積量を調べた結果、図5のような結果が得られた。
Next, the moving speed of the burner is made different between the ascending and descending times, and the higher moving speed is set to one of the lower moving speeds.
The supply conditions of the source gas and the fuel gas are set so that the amount of glass particles deposited per unit time is maximized when the moving speed is lower (the gas supply condition is also higher when the moving speed is higher). 5) For each moving speed, as a result of examining the amount of glass fine particles deposited per unit time at the higher moving speed and the amount of glass fine particles deposited per unit time at the lower moving speed, FIG. Such a result was obtained.

【0024】この結果から、各バーナーの移動速度を、
上昇時25mm/秒、下降時475mm/秒に設定し
(バーナーへのガス供給条件は上記と同じ)、光ファイ
バ母材を製造した。その結果、長さ1500mm、外径
220mmの母材を約10時間で製造することができ
た。
From these results, the moving speed of each burner was calculated as
An ascending 25 mm / sec and a descending 475 mm / sec were set (gas supply conditions to the burner were the same as above), and an optical fiber preform was manufactured. As a result, a base material having a length of 1500 mm and an outer diameter of 220 mm could be manufactured in about 10 hours.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、複
数のガラス微粒子発生装置をターゲット棒に沿って往復
移動させ、往路、復路ともガラス微粒子を堆積させるこ
とができるので、光ファイバ母材の生産性を大幅に向上
させることができる。
As described above, according to the present invention, a plurality of glass fine particle generators can be reciprocated along the target rod, and glass fine particles can be deposited on both the forward path and the return path. Can greatly improve productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造方法で、(イ)は3本のバーナ
ーが上昇しているときの状態、(ロ)は3本のバーナー
が下降しているときの状態を示す正面図。
FIG. 1 is a front view showing a state in which three burners are rising, and FIG. 1B is a state in which three burners are falling, in the manufacturing method of the present invention.

【図2】 ターゲット棒のまわりの3本のバーナーの配
置を示す平面図。
FIG. 2 is a plan view showing an arrangement of three burners around a target rod.

【図3】 3本のバーナーが上下方向に往復移動する状
態を示すグラフ。
FIG. 3 is a graph showing a state in which three burners reciprocate vertically.

【図4】 ターゲット棒を垂直配置にしたときと水平配
置にしたときの光ファイバ母材の外径変動を示すグラ
フ。
FIG. 4 is a graph showing the variation in the outer diameter of the optical fiber preform when the target rod is arranged vertically and horizontally.

【図5】 バーナーの移動速度が上昇時と下降時で異な
る場合のガラス微粒子堆積量の変化を示すグラフ。
FIG. 5 is a graph showing a change in the amount of deposited glass particles when the moving speed of the burner is different between when the burner moves up and when it moves down.

【図6】 バーナーの移動速度が上昇時と下降時で異な
る場合の光ファイバ母材の外径変動の有無を示すグラ
フ。
FIG. 6 is a graph showing the presence or absence of a change in the outer diameter of the optical fiber preform when the moving speed of the burner is different between when ascending and when ascending.

【符号の説明】[Explanation of symbols]

1:ターゲット棒 2:ガラス微粒子堆積層 A、B、C:バーナー 1: Target rod 2: Glass fine particle deposition layer A, B, C: Burner

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ターゲット棒を垂直に配置して回転させ、 複数のガラス微粒子発生装置を、上下方向に間隔をあけ
て、吹き出し口をターゲット棒に向けたまま、周方向に
異なる位置で上下方向に往復移動させ、 ガラス微粒子発生装置への燃料ガスおよび原料ガスの供
給条件は上昇時、下降時とも同じとし、 ガラス微粒子発生装置が上昇する時の移動速度と下降す
る時の移動速度は、上昇するガラス微粒子発生装置と下
降するガラス微粒子発生装置がすれ違う時に相互の干渉
が問題とならない程度の相対速度が得られ、かつ上昇時
と下降時で単位時間当たりのガラス微粒子堆積量が実質
的に同じになるように設定し、 これによりガラス微粒子発生装置が上昇する時と下降す
る時の両方でガラス微粒子を堆積させることを特徴とす
る光ファイバ母材の製造方法。
1. A target rod is vertically arranged and rotated, and a plurality of glass particle generators are vertically spaced at different positions in a circumferential direction while leaving an outlet facing the target rod at intervals in the vertical direction. The conditions for supplying the fuel gas and raw material gas to the glass particle generator are the same both when rising and lowering.The moving speed when the glass particle generator rises and when moving down increases. The relative speed is such that mutual interference is not a problem when the falling glass particle generator and the descending glass particle generator pass each other, and the amount of glass particles deposited per unit time during ascending and descending is substantially the same. The optical fiber motherboard is characterized in that glass particles are deposited both when the glass particle generator rises and when it descends. The method of manufacturing the material.
【請求項2】ガラス微粒子発生装置の移動速度が、上昇
時、下降時とも同じで、上昇するガラス微粒子発生装置
と下降するガラス微粒子発生装置がすれ違う時の相対速
度が475mm/秒以上になるように設定されているこ
とを特徴とする請求項1記載の光ファイバ母材の製造方
法。
2. The moving speed of the glass fine particle generating device is the same both when ascending and when descending, and the relative speed when the ascending glass fine particle generating device and the descending glass fine particle generating device pass each other is 475 mm / sec or more. The method for producing an optical fiber preform according to claim 1, wherein
【請求項3】ガラス微粒子発生装置の移動速度が、上昇
時と下降時で異なり、低い方の移動速度が高い方の移動
速度のときと単位時間当たりのガラス微粒子堆積量が実
質的に同じになるように設定されていることを特徴とす
る請求項1記載の光ファイバ母材の製造方法。
3. The moving speed of the glass fine particle generator differs between rising and lowering, and the amount of glass fine particles deposited per unit time is substantially the same as when the lower moving speed is the higher moving speed. The method for producing an optical fiber preform according to claim 1, wherein the optical fiber preform is set to be as follows.
【請求項4】低い方の移動速度を25mm/秒以上と
し、高い方の移動速度を450mm/秒以上としたこと
を特徴とする請求項3記載の光ファイバ母材の製造方
法。
4. The method of manufacturing an optical fiber preform according to claim 3, wherein the lower moving speed is at least 25 mm / sec, and the higher moving speed is at least 450 mm / sec.
【請求項5】上端部および下端部でのガラス微粒子発生
装置の方向転換は、ガラス微粒子発生装置が有効堆積範
囲の限界からガラス微粒子発生装置の口径の1/2以上
オーバーランした所で行うことを特徴とする請求項1な
いし4のいずれかに記載の光ファイバ母材の製造方法。
5. The direction change of the glass fine particle generator at the upper end and the lower end is performed when the glass fine particle generator overruns at least 1/2 of the diameter of the glass fine particle generator from the limit of the effective deposition range. The method for producing an optical fiber preform according to any one of claims 1 to 4, wherein:
JP16333396A 1996-06-24 1996-06-24 Manufacturing method of optical fiber preform Expired - Lifetime JP3510425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16333396A JP3510425B2 (en) 1996-06-24 1996-06-24 Manufacturing method of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16333396A JP3510425B2 (en) 1996-06-24 1996-06-24 Manufacturing method of optical fiber preform

Publications (2)

Publication Number Publication Date
JPH107430A true JPH107430A (en) 1998-01-13
JP3510425B2 JP3510425B2 (en) 2004-03-29

Family

ID=15771873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16333396A Expired - Lifetime JP3510425B2 (en) 1996-06-24 1996-06-24 Manufacturing method of optical fiber preform

Country Status (1)

Country Link
JP (1) JP3510425B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126355A (en) * 2006-12-11 2007-05-24 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber
JP2016003153A (en) * 2014-06-16 2016-01-12 信越化学工業株式会社 Method for manufacturing optical fiber preform
CN107759070A (en) * 2016-08-16 2018-03-06 信越化学工业株式会社 The manufacture device and manufacture method of powder accumulation body
WO2022158421A1 (en) 2021-01-20 2022-07-28 古河電気工業株式会社 Device for manufacturing optical fiber preform and method for manufacturing optical fiber preform

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6006185B2 (en) * 2012-09-24 2016-10-12 信越化学工業株式会社 Method for producing porous glass deposit for optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126355A (en) * 2006-12-11 2007-05-24 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber
JP4691008B2 (en) * 2006-12-11 2011-06-01 古河電気工業株式会社 Optical fiber manufacturing method
JP2016003153A (en) * 2014-06-16 2016-01-12 信越化学工業株式会社 Method for manufacturing optical fiber preform
CN107759070A (en) * 2016-08-16 2018-03-06 信越化学工业株式会社 The manufacture device and manufacture method of powder accumulation body
WO2022158421A1 (en) 2021-01-20 2022-07-28 古河電気工業株式会社 Device for manufacturing optical fiber preform and method for manufacturing optical fiber preform

Also Published As

Publication number Publication date
JP3510425B2 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
US4627867A (en) Method for producing highly pure glass preform for optical fiber
JP3521681B2 (en) Manufacturing method of optical fiber preform
KR102545712B1 (en) Method and apparatus for manufacturing porous glass preform for optical fiber
JP4043768B2 (en) Manufacturing method of optical fiber preform
JP3512027B2 (en) Method for producing porous base material
KR101035467B1 (en) Burner for deposition of optical fiber preform
KR19980079932A (en) Porous glass base material manufacturing equipment for optical fiber
JPH107430A (en) Production of preform for optical fiber
KR101157662B1 (en) Fabrication Apparatus of Porous Glass preform and Glass Preform For Optical Fiber Fabricated Thereby
JP3744350B2 (en) Porous glass base material synthesis burner and method for producing porous glass base material
JP4690979B2 (en) Optical fiber preform manufacturing method
JP2000272929A (en) Production of optical fiber preform
JP3575505B2 (en) Manufacturing method of optical fiber preform
JP3169409B2 (en) Manufacturing method of preform for optical fiber
JP4140839B2 (en) Optical fiber preform manufacturing method
JP3917022B2 (en) Method for producing porous preform for optical fiber
JPH11157865A (en) Production of large-diameter optical fiber preform
JP5204194B2 (en) Formation of microstructured fiber preforms by porous glass deposition
JPH11349345A (en) Production of porous preform
JP2002338256A (en) Method and apparatus for manufacturing glass particulate deposit
JP2023184015A (en) Method for manufacturing glass preform
JP3654232B2 (en) Optical fiber preform manufacturing method
JP3977082B2 (en) Optical fiber preform manufacturing method
JP2017100910A (en) Production method of optical fiber preform
JPH1121143A (en) Production of preform for optical fiber

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031225

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

EXPY Cancellation because of completion of term