JPH11349345A - Production of porous preform - Google Patents

Production of porous preform

Info

Publication number
JPH11349345A
JPH11349345A JP15779098A JP15779098A JPH11349345A JP H11349345 A JPH11349345 A JP H11349345A JP 15779098 A JP15779098 A JP 15779098A JP 15779098 A JP15779098 A JP 15779098A JP H11349345 A JPH11349345 A JP H11349345A
Authority
JP
Japan
Prior art keywords
temperature
burner
base material
preform
surface temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15779098A
Other languages
Japanese (ja)
Inventor
Yuichi Oga
裕一 大賀
Tatsuhiko Saito
達彦 齋藤
Motonori Nakamura
元宣 中村
Tomohiro Ishihara
朋浩 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15779098A priority Critical patent/JPH11349345A/en
Publication of JPH11349345A publication Critical patent/JPH11349345A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a porous preform improved in quality so as to meet its use for optical fibers through setting the deposited surface temperature change developed due to the movement of a burner at a specific level or lower to suppress the cracking of the preform. SOLUTION: This porous preform is produced by the following process: a starting rod 1 of silica glass with core/clad is disposed perpendicularly, being subjected to reciprocating motion vertically, and the objective porous preform 2 is accumulated on the outer circumference of the rod 1 using three burners 9 set up approximately rectangular to the rod 1; wherein the temperature distribution (surface temperature change) for the burners 9 is controlled so as to avoid the rapid cooling/heating phenomena on the surface of the preform, that is, the surface temperature change on the deposited surface is set at <=500 deg.C/min (pref. 200-450 deg.C/min), and it is necessary that the temperature of the preform as a whole is kept constant because the preform, in particular in the case of its continuous profile, might crack when the temperature at its edge falls, therefore the deposited surface as a whole is thermally insulated and the surface temperature is kept pref. at >=250 deg.C, more pref. at 350-450 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として光ファイ
バ用多孔質母材(ガラス微粒子堆積体)の製造方法に関
し、特に大型の多孔質母材を作製する方法に関するもの
であり、母材の割れを抑制して生産性に優れた高品質の
母材を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous preform (glass fine particle deposit) for an optical fiber, and more particularly to a method for producing a large-sized porous preform. The present invention relates to a method for producing a high-quality base material excellent in productivity by suppressing the occurrence of a base material.

【0002】[0002]

【従来の技術】光ファイバ用プリフォームを製造するた
め多孔質ガラス母材の合成は、一般にVAD法、OVD
法、MCVD法等の方法で行われている。このような方
法で多孔質母材を合成する際、特に母材が大型化するに
つれ顕在化する問題は、「割れ」である。いわゆるスス
割れは、母材合成時にその表面が急冷され、内部ススと
表面ススとに温度差が生じる結果、表面に引張応力が発
生して表層が割れると考えられる。そこで、このスス割
れを抑制するためガラス微粒子合成バーナ以外に補助加
熱手段を用いることが提案されている。例えば、シリカ
微粒子堆積用バーナに隣接させて補助加熱用バーナを2
本以上設置してスス割れを防止すること(特開平3−8
3829号公報)、OVD法による多孔質ガラス母材の
製造を一本のバーナを用いて行う際に生じるクラックを
防止するために多孔質ガラス堆積用バーナと堆積母材密
度コントロールバーナを各々独立に設けること(特開平
5−116980号公報)等である。
2. Description of the Related Art In order to produce a preform for an optical fiber, the synthesis of a porous glass base material is generally performed by a VAD method, an OVD method, or the like.
The method is performed by a method such as the MCVD method. When synthesizing a porous base material by such a method, a problem that becomes apparent particularly as the base material increases in size is “cracking”. It is considered that the so-called soot cracking is caused by the surface being rapidly cooled during the synthesis of the base material and the temperature difference between the internal soot and the surface soot resulting in the generation of tensile stress on the surface and cracking of the surface layer. Therefore, in order to suppress the soot cracking, it has been proposed to use an auxiliary heating means other than the glass particle synthesis burner. For example, two auxiliary heating burners may be provided adjacent to the silica particle deposition burner.
Preventing soot cracks by installing more than one
No. 3829), a burner for depositing a porous glass and a density control burner for depositing a base material of a porous glass are independently provided in order to prevent cracks that occur when the production of the porous glass base material by the OVD method is performed using a single burner. (Japanese Patent Laid-Open No. 5-116980).

【0003】また異物の存在しない高品質な母材を製造
するためコア用ガラス棒の全長に清浄なガス流をエアカ
ーテンとして吹きつけながらコア用ガラス棒の上にガラ
ス微粒子を堆積させること(特開平5−116979号
公報)、多孔質母材の割れ対策として径方向の嵩密度を
特定すること(特開平1−9821号公報)等が提案さ
れている。
Further, in order to produce a high-quality base material free of foreign matter, glass particles are deposited on the core glass rod while blowing a clean gas stream as an air curtain over the entire length of the core glass rod (particularly). Japanese Unexamined Patent Publication No. Hei 5-116979), and a method of specifying a bulk density in a radial direction as a measure against cracking of a porous base material (Japanese Unexamined Patent Publication No. 1-9821) have been proposed.

【0004】[0004]

【発明が解決しようとする課題】上記したように従来は
堆積面表面を保温するために、補助加熱手段を用いてい
るが、品質上の観点から、雰囲気内を清浄に保つ必要が
あり、その冷却ガスが母材を冷やし「割れ」の原因とな
っていた。冷却ガスは、ガラス微粒子合成バーナの温度
分布にも影響を与え、急冷/急加熱を伴う母材合成を避
ける必要があり、特にOVD法と称するガラス微粒子を
積層させる製造方法の場合には、堆積面表面のヒートサ
イクルに十分注意する必要があった。本発明は、このよ
うな「割れ」を抑制するために堆積面表面の急冷/急加
熱を防止するため、ガラス微粒子合成バーナの温度勾配
(温度分布)及び堆積面全域に亘る温度分布を適正領域
に保持することにより母材の割れを抑制して高品質の光
ファイバ用多孔質母材の製造方法を提供することを目的
とする。
As described above, conventionally, the auxiliary heating means is used to keep the surface of the deposition surface warm. However, from the viewpoint of quality, it is necessary to keep the atmosphere clean. The cooling gas cooled the base material and caused "cracking". The cooling gas also affects the temperature distribution of the glass particle synthesizing burner, and it is necessary to avoid synthesizing a base material accompanied by rapid cooling / rapid heating. It was necessary to pay close attention to the heat cycle on the surface. According to the present invention, the temperature gradient (temperature distribution) of the glass particle synthesis burner and the temperature distribution over the entire deposition surface are adjusted to an appropriate range in order to prevent rapid cooling / heating of the surface of the deposition surface in order to suppress such “cracking”. It is an object of the present invention to provide a method for manufacturing a high-quality porous preform for optical fibers by suppressing cracks of the preform by holding the preform.

【0005】上記の目的は、下記各発明及び実施態様に
よって達成することができる。 (1)酸化物基材の周囲に基材及び/又はバーナを往復
移動させながらガラス微粒子を積層させる多孔質母材の
製造方法において、バーナの移動により生じる堆積面の
表面温度変化が、500℃/分以下であることを特徴と
する多孔質母材の製造方法、(2)酸化物基材の周囲に
基材及び/又はバーナを往復移動させながらガラス微粒
子を積層させる多孔質母材の製造方法において、堆積面
全域の表面温度を250℃以上に保存することを特徴と
する多孔質母材の製造方法、(3)酸化物基材の周囲に
基材又はバーナを往復移動させながらガラス微粒子を積
層させる多孔質母材の製造方法において、バーナの移動
により生じる堆積面の表面温度変化が、500℃/分以
下であり、かつ堆積面全域の表面温度を250℃以上に
保持することを特徴とする多孔質母材の製造方法及び、
(4)反応容器に導入する清浄空気を200℃以上に加
温して、反応容器内に導入することを特徴とする上記
(1)〜(3)のいずれかに記載の多孔質母材の製造方
法。
[0005] The above object can be achieved by the following inventions and embodiments. (1) In a method of manufacturing a porous base material in which glass particles are laminated while reciprocating a substrate and / or a burner around an oxide substrate, a change in surface temperature of a deposition surface caused by movement of the burner is 500 ° C. Per minute or less, (2) production of a porous base material in which glass particles are laminated while reciprocating a substrate and / or a burner around an oxide substrate. A method of manufacturing a porous base material, wherein the surface temperature of the entire deposition surface is maintained at 250 ° C. or higher, and (3) glass fine particles while reciprocating a substrate or a burner around an oxide substrate. In the method for manufacturing a porous base material, the change in the surface temperature of the deposition surface caused by the movement of the burner is 500 ° C./min or less, and the surface temperature of the entire deposition surface is maintained at 250 ° C. or more. Preparation and the porous preform to,
(4) The porous base material as described in any of (1) to (3) above, wherein the clean air introduced into the reaction vessel is heated to 200 ° C. or more and introduced into the reaction vessel. Production method.

【0006】上記(1)の方法において、ガラス微粒子
合成バーナの温度分布(表面温度変化)を制御すること
により母材表面での急冷/急加熱を避ける。すなわち、
堆積面の表面温度変化を500℃/分以下、好ましくは
200〜450℃/分とする。500℃/分を超えると
割れの防止をすることが難しくなる。ここで表面温度変
化(℃/分)とは、ガラス微粒子合成バーナによって形
成される堆積面温度分布(図4参照)における堆積面上
の表面最大温度勾配(通常25℃/cm以下とするのが
好ましい)とバーナの移動速度(cm/分)(通常20
〜100cm/分とするのが好ましい)とを相乗して得
られるものである。上記(2)の方法は、堆積面全域を
保温して表面温度を250℃以上、好ましくは350〜
450℃に保持し、割れのない多孔質母材を得ることが
できる。特に、母材が長尺化した際端部温度が低下する
と割れが発生するので、母材全域を一定温度に保つ必要
がある。250℃未満では割れ防止の効果が著しく低下
してしまう。この場合、必要に応じて補助バーナを用い
る。
In the above method (1), rapid cooling / rapid heating on the surface of the base material is avoided by controlling the temperature distribution (change in surface temperature) of the glass particle synthesis burner. That is,
The change in the surface temperature of the deposition surface is 500 ° C./min or less, preferably 200 to 450 ° C./min. If it exceeds 500 ° C./min, it becomes difficult to prevent cracks. Here, the surface temperature change (° C./min) refers to the maximum surface temperature gradient on the deposition surface (usually 25 ° C./cm or less) in the deposition surface temperature distribution (see FIG. 4) formed by the glass particle synthesis burner. Preferred) and the moving speed of the burner (cm / min) (typically 20).
~ 100 cm / min is preferable). In the above method (2), the surface temperature is kept at 250 ° C. or higher, preferably 350 to
By maintaining the temperature at 450 ° C., a porous base material without cracks can be obtained. In particular, when the base material is elongated, cracks occur when the end temperature decreases, so that it is necessary to maintain the entire base material at a constant temperature. If the temperature is lower than 250 ° C., the effect of preventing cracking is significantly reduced. In this case, an auxiliary burner is used as needed.

【0007】上記(3)の方法は、割れを抑制するため
に必要なガラス微粒子合成バーナの温度勾配(温度変
化)条件と堆積表面温度条件を限定して両者の結合によ
る相乗効果を狙っている。堆積面の表面温度変化と表面
温度条件のいずれか一方でも上記範囲をはずれると相乗
効果は奏せられない。上記(4)の方法では、高温、す
なわち200℃以上に加温された清浄空気を導入して上
記(1)〜(3)のいずれかの方法をより効果的に実施
することができる。
The method (3) aims at the synergistic effect of the combination of the two by limiting the temperature gradient (temperature change) condition and the deposition surface temperature condition of the glass particle synthesis burner necessary for suppressing cracking. . If any one of the surface temperature change of the deposition surface and the surface temperature condition is out of the above range, no synergistic effect can be obtained. In the method (4), any one of the methods (1) to (3) can be more effectively performed by introducing clean air heated to a high temperature, that is, 200 ° C. or higher.

【0008】[0008]

【発明の実施の形態】以下本発明の実施形態を添付の図
面に沿って説明する。図1(a)、(b)、(c)は本
発明によりスス付けするための系を示す概略図である。
コア/クラッドを有する石英ガラス出発ロッド1を垂直
に配置すると共に上下方向に往復運動させ、出発ロッド
に対してほぼ直角に配置固定した3本のバーナ9を用い
て出発ロッド1の外周にガラス微粒子堆積層(多孔質母
材)2を積層する。図2(a)、(b)は、図1(a)
のバーナ部分の拡大図で、加熱された空気は12から供
給されニッケルカバー10及びメッシュ11からなる清
浄空気導入装置を経て清浄空気13として反応容器5内
に導入される。図2(a)をA方向から見た部分図が図
2(b)である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 (a), (b) and (c) are schematic diagrams showing a system for sooting according to the present invention.
The quartz glass starting rod 1 having a core / cladding is vertically arranged and reciprocated vertically, and three burners 9 arranged and fixed at substantially right angles to the starting rod are used to form glass fine particles on the outer periphery of the starting rod 1. A deposition layer (porous base material) 2 is laminated. FIGS. 2A and 2B are diagrams of FIG.
The heated air is supplied from 12 and is introduced into the reaction vessel 5 as clean air 13 through a clean air introducing device comprising a nickel cover 10 and a mesh 11. FIG. 2B is a partial view of FIG. 2A viewed from the direction A.

【0009】出発ロッド1の上端は、支持棒8を介して
チャック3で把持され図示しないモーターによって一定
速度に回転させている。出発ロッド1の下端は、揺れ止
め治具4で抑えられており、出発ロッドに追従して上下
に移動する機構を備えている。更にガラス微粒子の合成
は反応容器5内で実施されるが、雰囲気を清浄に保つた
めにフィルタ11を通した清浄空気13が、反応容器内
に導入される構成をなしている。この清浄空気13は、
バーナ9の周囲から導入されており、ターゲットに付着
しないガラス微粒子が効率的に排気管6から排出される
よう構成されている。清浄空気はN2 等の不活性ガスと
してもよい。後述の実施例に見られるように高温の清浄
空気は清浄空気導入口7から導入される。図1(a)は
装置全体の概念図、図1(b)は多孔質母材2の最下端
位置を示す部分図、図1(c)は同じく最上端位置を示
す部分図である。
The upper end of the starting rod 1 is gripped by the chuck 3 via the support rod 8 and is rotated at a constant speed by a motor (not shown). The lower end of the starting rod 1 is held down by an anti-sway jig 4 and has a mechanism for moving up and down following the starting rod. Further, the synthesis of the glass particles is performed in the reaction vessel 5, and a configuration is adopted in which clean air 13 passed through a filter 11 is introduced into the reaction vessel in order to keep the atmosphere clean. This clean air 13
Glass particles that are introduced from around the burner 9 and do not adhere to the target are configured to be efficiently discharged from the exhaust pipe 6. Clean air may be inert gas such as N 2. High-temperature clean air is introduced from a clean air inlet 7 as will be seen in the examples described later. 1A is a conceptual diagram of the entire apparatus, FIG. 1B is a partial view showing the lowermost position of the porous preform 2, and FIG. 1C is a partial view showing the same uppermost position.

【0010】図3(a)、(b)はそれぞれ上記反応系
で用いられるガラス微粒子生成用バーナ9の具体化例を
示す。図3(a)は8重管バーナを示し、中心管にSi
Cl 4 などの原料ガスを流し以下順にH2 −Ar−O2
−Ar−H2 −Ar−O2 を流す。図3(b)は、マル
チノズル構造のバーナを示し、中心に原料ガス供給管を
置き、その外側管に原料又はArを供給し、更に周囲に
2 供給管、複数の酸素、供給管を配置している。
FIGS. 3A and 3B respectively show the above reaction system.
Of a specific example of the burner 9 for producing glass fine particles used in
Show. FIG. 3 (a) shows an octuple tube burner, in which a central tube is made of Si.
Cl FourAnd feed the raw material gas such as HTwo-Ar-OTwo
-Ar-HTwo-Ar-OTwoFlow. FIG.
This shows a burner with a single nozzle structure, and a raw gas supply pipe in the center.
And supply the raw material or Ar to the outer tube, and further around
HTwoA supply pipe, a plurality of oxygen, and a supply pipe are arranged.

【0011】[0011]

【実施例】以下本発明を実施例により更に詳細に説明す
る。 (実施例1)出発ロッドとして直径30mmのコア/ク
ラッドを有する石英ガラスロッドを用意した。これを垂
直に把持、回転させるとともに200mm/分の移動速
度で上下往復移動させた。往復移動範囲は1,000m
mである。ガラス微粒子合成バーナは、直径45mmの
8重管バーナ(図3(a))を使用しバーナ先端からタ
ーゲット表面までの距離を150mmに設定した。各バ
ーナには、SiCl46slm(リットル/分)、水素
200slm(リットル/分)、酸素180slm(リ
ットル/分)、Ar15slm(リットル/分)を供給
してガラス微粒子を合成した。図4は、この時得られた
堆積面表面(図1(a)の円で囲んだ部分)温度を赤外
線放射温度計で全長モニタしたときの分布を示す。ガラ
ス微粒子合成バーナの温度勾配は、最高温度からバーナ
火炎の影響が小さくなるときの温度低下又は上昇のう
ち、最大の温度勾配を代表値として定義する。本例にお
ける最大温度勾配(曲線−・−の温度勾配)は22.5
℃/cmであるから表面温度変化は450℃/分であっ
た。また、堆積面全域の表面温度は310℃に保持され
た。この条件のもとで、長さ1,000mm、外径22
0mmの多孔質母材を割れずに製造することができた。
The present invention will be described in more detail with reference to the following examples. (Example 1) A quartz glass rod having a core / cladding having a diameter of 30 mm was prepared as a starting rod. This was vertically gripped and rotated, and vertically reciprocated at a moving speed of 200 mm / min. Reciprocating range is 1,000m
m. The burner for synthesizing glass fine particles used an octuple tube burner having a diameter of 45 mm (FIG. 3A), and the distance from the burner tip to the target surface was set to 150 mm. To each burner, 6 slm (liter / minute) of SiCl 4, 200 slm (liter / minute) of hydrogen, 180 slm (liter / minute) of oxygen, and 15 slm (liter / minute) of Ar were supplied to synthesize glass fine particles. FIG. 4 shows the distribution when the temperature of the surface of the deposition surface (the part circled in FIG. 1A) obtained at this time is monitored over the entire length by an infrared radiation thermometer. The temperature gradient of the glass particle synthesis burner is defined as a representative value of the maximum temperature gradient among the temperature decrease or increase when the influence of the burner flame decreases from the maximum temperature. The maximum temperature gradient in this example (the temperature gradient of the curve ----) is 22.5.
° C / cm, the change in surface temperature was 450 ° C / min. The surface temperature of the entire deposition surface was maintained at 310 ° C. Under these conditions, the length is 1,000 mm and the outer diameter is 22 mm.
A 0 mm porous base material could be manufactured without cracking.

【0012】(比較例1)実施例1と同様の実施形態に
て、バーナを8重管構造から、可燃性ガス噴出ポート内
に複数の小口径酸素ノズルを有する同口径(45mm)
のマルチノズル構造のバーナ(図3(b))に変えて、
ガラス微粒子の合成を行った。各バーナには、SiCl
4 6slm(リットル/分)、水素180slm(リッ
トル/分)、酸素60slm(リットル/分)、Ar2
slm(リットル/分)を供給してガラス微粒子を合成
した。この時得られた堆積面表面温度を赤外線放射温度
計で全長モニタしたときの分布を図4に示す。バーナ先
端から母材堆積面までの距離は、150mmとした。本
例における最大温度勾配(曲線−)は27.8℃/cm
であるから表面温度変化は555℃/分であった。ま
た、堆積面全域の表面温度は270℃に保持された。こ
の条件では、外径180mmに達したとき、母材表面に
縦方向の割れが発生した。
(Comparative Example 1) In the same embodiment as Example 1, the burner has an eight-layer structure, and the same diameter (45 mm) having a plurality of small-diameter oxygen nozzles in a combustible gas ejection port.
Instead of the multi-nozzle burner (Fig. 3 (b)),
Glass fine particles were synthesized. Each burner contains SiCl
4 6 slm (liters / min), hydrogen 180 slm (l / min), oxygen 60 slm (liters / min), Ar @ 2
The glass particles were synthesized by supplying slm (liter / minute). FIG. 4 shows the distribution when the surface temperature of the deposition surface obtained at this time was monitored over the entire length by an infrared radiation thermometer. The distance from the burner tip to the base material deposition surface was 150 mm. The maximum temperature gradient (curve-) in this example is 27.8 ° C./cm.
Therefore, the surface temperature change was 555 ° C./min. Further, the surface temperature of the entire deposition surface was maintained at 270 ° C. Under these conditions, when the outer diameter reached 180 mm, a crack in the longitudinal direction occurred on the surface of the base material.

【0013】(実施例2)比較例1と同様の構成である
が、バーナ周囲の開口部から導入する清浄空気を常温で
なく約200℃に加温して反応容器内に導入したとこ
ろ、堆積面全長の表面温度分布は、図4となり、割れを
発生させずに長さ1,000mm、外径220mmの多
孔質母材を得ることができた。本例における最大温度勾
配(曲線−−−の温度勾配)は24.8℃/cmである
から表面温度変化は495℃/分であった。また、堆積
面全域の表面温度は270℃に保持した。
(Example 2) [0013] The structure is the same as that of Comparative example 1, except that the clean air introduced from the opening around the burner is heated not to normal temperature but to about 200 ° C and introduced into the reaction vessel. FIG. 4 shows the surface temperature distribution over the entire surface, and a porous base material having a length of 1,000 mm and an outer diameter of 220 mm could be obtained without generating cracks. In this example, the maximum temperature gradient (the temperature gradient of the curve ---) was 24.8 ° C / cm, and the change in surface temperature was 495 ° C / min. The surface temperature of the entire deposition surface was kept at 270 ° C.

【0014】(比較例2)実施例2と同様の実施形態で
あるが、出発ロッドの長さを1,500mmに延長し、
更なる母材の大型化(長尺化)を実施した。出発ロッド
の移動ストロークを1,000mmから1,500mm
に延長したことにより、母材端部の表面温度が低下し
て、外径120mmになったところで縦方向の割れが発
生した。このときの最下端母材表面温度は220℃であ
った。
(Comparative Example 2) This embodiment is the same as the embodiment 2 except that the length of the starting rod is increased to 1,500 mm.
The base material was further enlarged (lengthened). Movement stroke of the starting rod from 1,000mm to 1,500mm
As a result, the surface temperature at the end of the base material was lowered, and a vertical crack occurred when the outer diameter reached 120 mm. At this time, the lowermost base material surface temperature was 220 ° C.

【0015】(実施例3)比較例2の設備構成におい
て、母材端部の温度低下を抑えるため、反応容器上部及
び下部から約400℃に加温した清浄空気を導入してガ
ラス微粒子の合成を実施したところ、割れを発生させる
ことなく、長さ1,500mm、外径220mmの多孔
質母材を得ることができた。堆積面全域の温度は320
℃以上に保たれていた。清浄空気の加熱温度は、300
℃以上が好ましい。本実施例では清浄空気を加温して母
材端部の温度を向上させたが、補助バーナ等公知の補助
加熱手段により母材端部の温度を向上させ、堆積面全域
250℃以上に保温してスス割れを抑制することも可能
である。以上の結果を纏めて、表1に示す。
Example 3 In the equipment configuration of Comparative Example 2, in order to suppress the temperature drop at the end of the base material, clean air heated to about 400 ° C. was introduced from the upper and lower parts of the reaction vessel to synthesize fine glass particles. As a result, a porous base material having a length of 1,500 mm and an outer diameter of 220 mm could be obtained without generating cracks. Temperature over the entire deposition surface is 320
℃ or above. The heating temperature of the clean air is 300
C. or higher is preferred. In this embodiment, the clean air is heated to increase the temperature of the end of the base material. However, the temperature of the end of the base material is improved by a known auxiliary heating means such as an auxiliary burner, and the temperature is kept at 250 ° C. or more over the entire deposition surface. It is also possible to suppress soot cracking. Table 1 summarizes the above results.

【0016】[0016]

【表1】 [Table 1]

【0017】以上の検討結果から、多孔質母材の割れを
抑制するためには、ガラス微粒子合成バーナの温度変化
として、500℃/以下が必要であり、堆積面全域を2
50℃以上に保つ必要があることが解った。本実施例で
は、母材を往復移動させたが、バーナを移動する場合も
同様である。
From the above examination results, in order to suppress cracking of the porous base material, it is necessary to change the temperature of the glass fine particle synthesis burner to 500 ° C./or less, and the entire area of the deposition surface is reduced by 2 ° C.
It was found that it was necessary to keep the temperature at 50 ° C. or higher. In this embodiment, the base material is reciprocated, but the same applies to the case of moving the burner.

【0018】[0018]

【発明の効果】本発明によると、バーナの移動により生
ずる堆積面の表面温度変化を特定範囲に制御して、母材
の割れを抑制し高品質の母材を製造することが可能とな
る。
According to the present invention, it is possible to control the change in the surface temperature of the deposition surface caused by the movement of the burner within a specific range, suppress cracks in the base material, and manufacture a high-quality base material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)、(b)、(c)は本発明によりス
ス付けするための系を示す概略図である。
1 (a), 1 (b) and 1 (c) are schematic views showing a system for sooting according to the present invention.

【図2】図2(a)、(b)は清浄空気をバーナ周囲よ
り供給するための装置の概略図である。
FIGS. 2A and 2B are schematic diagrams of an apparatus for supplying clean air from around a burner.

【図3】図3(a)、(b)はそれぞれ上記反応系で用
いられるガラス微粒子生成用バーナの断面図である。
FIGS. 3 (a) and 3 (b) are cross-sectional views of a burner for producing glass fine particles used in the reaction system.

【図4】図4は図1(a)の円で囲んだ堆積表面部分の
温度変化を示すグラフである。
FIG. 4 is a graph showing a temperature change of a deposition surface portion surrounded by a circle in FIG.

【符号の説明】[Explanation of symbols]

1:出発ロッド 2:多孔質母材 3:チャック 4:揺れ防止治具 5:反応容器 6:排気管 7:高温の清浄空気導入口 8:支持棒 9:微粒子合成用バーナ 10:Niカバー 11:メッシュ 12:清浄空気導入口 1: Starting rod 2: Porous base material 3: Chuck 4: Sway prevention jig 5: Reaction vessel 6: Exhaust pipe 7: High temperature clean air inlet 8: Support rod 9: Burner for fine particle synthesis 10: Ni cover 11 : Mesh 12: Clean air inlet

フロントページの続き (72)発明者 石原 朋浩 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内Continuation of the front page (72) Inventor Tomohiro Ishihara 1-chome, Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yokohama Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化物基材の周囲に基材及び/又はバー
ナを往復移動させながらガラス微粒子を積層させる多孔
質母材の製造方法において、バーナの移動により生じる
堆積面の表面温度変化が、500℃/分以下であること
を特徴とする多孔質母材の製造方法。
In a method of manufacturing a porous base material in which glass particles are laminated while reciprocating a substrate and / or a burner around an oxide substrate, a change in surface temperature of a deposition surface caused by movement of the burner is: A method for producing a porous base material, wherein the temperature is 500 ° C./minute or less.
【請求項2】 酸化物基材の周囲に基材及び/又はバー
ナを往復移動させながらガラス微粒子を積層させる多孔
質母材の製造方法において、堆積面全域の表面温度を2
50℃以上に保持することを特徴とする多孔質母材の製
造方法。
2. A method of manufacturing a porous base material comprising laminating glass fine particles while reciprocating a substrate and / or a burner around an oxide substrate, wherein the surface temperature of the entire deposition surface is set to 2 °.
A method for producing a porous base material, wherein the method is maintained at 50 ° C. or higher.
【請求項3】 酸化物基材の周囲に基材又はバーナを往
復移動させながらガラス微粒子を積層させる多孔質母材
の製造方法において、バーナの移動により生じる堆積面
の表面温度変化が、500℃/分以下であり、かつ堆積
面全域の表面温度を250℃以上に保持することを特徴
とする多孔質母材の製造方法。
3. A method of manufacturing a porous base material comprising laminating glass particles while reciprocating a substrate or a burner around an oxide substrate, wherein a change in surface temperature of a deposition surface caused by movement of the burner is 500 ° C. Per minute or less, and the surface temperature of the entire deposition surface is maintained at 250 ° C. or higher.
【請求項4】 反応容器に導入する清浄空気を200℃
以上に加温して、反応容器内に導入することを特徴とす
る請求項1〜3のいずれかに記載の多孔質母材の製造方
法。
4. The temperature of the clean air introduced into the reaction vessel is 200 ° C.
The method for producing a porous preform according to any one of claims 1 to 3, wherein the mixture is heated as described above and introduced into a reaction vessel.
JP15779098A 1998-06-05 1998-06-05 Production of porous preform Pending JPH11349345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15779098A JPH11349345A (en) 1998-06-05 1998-06-05 Production of porous preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15779098A JPH11349345A (en) 1998-06-05 1998-06-05 Production of porous preform

Publications (1)

Publication Number Publication Date
JPH11349345A true JPH11349345A (en) 1999-12-21

Family

ID=15657355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15779098A Pending JPH11349345A (en) 1998-06-05 1998-06-05 Production of porous preform

Country Status (1)

Country Link
JP (1) JPH11349345A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1284246A2 (en) * 2001-08-09 2003-02-19 Sumitomo Electric Industries, Ltd. Method and apparatus for producing porous glass soot body
WO2003062159A1 (en) * 2002-01-24 2003-07-31 Sumitomo Electric Industries, Ltd. Method of manufacturing glass particulate sedimentary body, and method of manufacturing glass base material
WO2005066085A1 (en) * 2004-01-07 2005-07-21 Shin-Etsu Chemical Co., Ltd. Process for producing porous preform for optical fiber and glass preform
US8387416B2 (en) 2001-06-25 2013-03-05 Prysmian Cavi E Sistemi Energia S.R.L. Device and method for manufacturing a preform for optical fibres by chemical vapour deposition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8387416B2 (en) 2001-06-25 2013-03-05 Prysmian Cavi E Sistemi Energia S.R.L. Device and method for manufacturing a preform for optical fibres by chemical vapour deposition
EP1284246A2 (en) * 2001-08-09 2003-02-19 Sumitomo Electric Industries, Ltd. Method and apparatus for producing porous glass soot body
EP1284246A3 (en) * 2001-08-09 2004-02-04 Sumitomo Electric Industries, Ltd. Method and apparatus for producing porous glass soot body
WO2003062159A1 (en) * 2002-01-24 2003-07-31 Sumitomo Electric Industries, Ltd. Method of manufacturing glass particulate sedimentary body, and method of manufacturing glass base material
US7143612B2 (en) 2002-01-24 2006-12-05 Sumitomo Electric Industries, Ltd. Method of manufacturing glass particulate sedimentary body, and method of manufacturing glass base material
WO2005066085A1 (en) * 2004-01-07 2005-07-21 Shin-Etsu Chemical Co., Ltd. Process for producing porous preform for optical fiber and glass preform
US8297079B2 (en) 2004-01-07 2012-10-30 Shin-Etsu Chemical Co., Ltd. Method of manufacturing porous glass base material used for optical fibers, and glass base material

Similar Documents

Publication Publication Date Title
JP4043768B2 (en) Manufacturing method of optical fiber preform
JPH10114535A (en) Production of optical fiber base material
US20040055339A1 (en) Method for producing glass-particle deposited body
JPH11349345A (en) Production of porous preform
JP4614782B2 (en) Method for producing quartz glass preform for optical fiber
WO2003062159A1 (en) Method of manufacturing glass particulate sedimentary body, and method of manufacturing glass base material
KR101157662B1 (en) Fabrication Apparatus of Porous Glass preform and Glass Preform For Optical Fiber Fabricated Thereby
JP5904967B2 (en) Burner for manufacturing porous glass base material
JP2012176861A (en) Method and apparatus for producing porous glass fine particle deposit
JP5012042B2 (en) Manufacturing method of glass base material
CN106986534B (en) Apparatus for manufacturing porous glass preform
JP2004035376A (en) Method and apparatus for manufacturing preform for optical fiber
JP4449272B2 (en) Method for producing glass particulate deposit
JPH1072231A (en) Apparatus for producing optical fiber preform and production thereof
JP3917022B2 (en) Method for producing porous preform for optical fiber
JP3654232B2 (en) Optical fiber preform manufacturing method
JP2000272929A (en) Production of optical fiber preform
JP4434083B2 (en) Manufacturing apparatus and manufacturing method of glass fine particle deposit
JPH1121143A (en) Production of preform for optical fiber
JP5907565B2 (en) Burner for manufacturing porous glass base material
JP2004231465A (en) Method and apparatus for manufacturing porous glass fine particle deposit
JP2005194135A (en) Method for manufacturing porous preform for optical fiber and glass preform
JP2003286033A (en) Method and apparatus for manufacturing glass particulate deposit
JPH107429A (en) Production of preform for optical fiber
JP2001294440A (en) Method for manufacturing preform ingot for optical fiber and preform for optical fiber obtained by processing this preform ingot

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

A02 Decision of refusal

Effective date: 20050329

Free format text: JAPANESE INTERMEDIATE CODE: A02