JP2004035376A - Method and apparatus for manufacturing preform for optical fiber - Google Patents

Method and apparatus for manufacturing preform for optical fiber Download PDF

Info

Publication number
JP2004035376A
JP2004035376A JP2002198870A JP2002198870A JP2004035376A JP 2004035376 A JP2004035376 A JP 2004035376A JP 2002198870 A JP2002198870 A JP 2002198870A JP 2002198870 A JP2002198870 A JP 2002198870A JP 2004035376 A JP2004035376 A JP 2004035376A
Authority
JP
Japan
Prior art keywords
chamber
starting member
gas flow
optical fiber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002198870A
Other languages
Japanese (ja)
Other versions
JP3968451B2 (en
Inventor
Kazuhiro Tomita
冨田 和博
▲兜▼玉 喜直
Yoshinao Kabuto
Ichiro Okamoto
岡本 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP2002198870A priority Critical patent/JP3968451B2/en
Priority to CNB031451144A priority patent/CN1277773C/en
Publication of JP2004035376A publication Critical patent/JP2004035376A/en
Application granted granted Critical
Publication of JP3968451B2 publication Critical patent/JP3968451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

<P>PROBLEM TO BE SOLVED: To lead a gas flow of a gas supplying unit upward of a chamber from below of a starting member such as a core material so that the gas flow is not directly blown onto a soot deposited body. <P>SOLUTION: When an optical fiber preform is formed by forming an outer layer part 3 such as a clad part by subjecting silicon tetrachloride to flame hydrolysis to form glass fine particles by using an oxyhydrogen flame burner 6 installed below the starting member 4 and depositing the formed glass fine particles on the starting member 4 in a chamber 2, the gas supplying units 7 are each installed at the both ends of the oxyhydrogen flame burner 6 so that the gas flow is blown obliquely upward to the wall surface 2b of the chamber 2 from below of the starting member 4 and led to the upper part of the chamber 2 in order to blow the gas flow upward of the chamber 2 from below of the starting member 4 by each gas supplying unit and to deposit the glass fine particles. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、火炎加水分解反応させて気相状態から酸化物をガラス微粒子として合成し焼結させる光ファイバ用母材の製造方法およびその製造装置に係り、特に火炎加水分解する際にガス供給装置でガス流をコア材などの出発部材の下方からチャンバーの上方に向けて吹きつけてガラス微粒子を堆積させる光ファイバ用母材の製造方法およびその製造装置に関する。
【0002】
【従来の技術】
従来から、光ファイバ用母材を製造するために、火炎加水分解反応させて気相状態から酸化物をガラス微粒子として合成し焼結させる光ファイバ用母材の製造方法が知られている。
【0003】
この製造方法は図3(a)、(b)に示すように、外付け法によってコア用ガラス棒101の外周に多孔質ガラスを堆積するために、堆積用バーナー噴出口102およびエアカーテンガス噴出口103を各々独立して設け、多孔質ガラス母材の形成と同時にコア用ガラス棒101の全長に清浄なガス流を吹きつけながらガラス微粒子を堆積させることによりスート堆積体104から成る光ファイバ用母材を形成することができる(特開平5−116979号公報参照)。このエアカーテンガス噴出口103を堆積用バーナー噴出口102とは別個に設けることにより、▲1▼異物や気泡の元となる未堆積スートの塊をスート堆積体から吹き飛ばすことができる、▲2▼生成されたガラス微粒子の流れを大きく広がらないように押さえ込むことができるので、ガラス微粒子をスート堆積体104にきれいに導くことができる、▲3▼スート堆積体104を冷却し堆積用バーナー噴出口102からの火炎との温度差を拡大することにより堆積効率を上げることができる。
【0004】
【発明が解決しようとする課題】
しかしながら、このような光ファイバ用母材の製造方法では、▲1▼エアカーテンガス噴出口103から吹きつけられるガス流110によりスート堆積体104が急速に冷却されるので、堆積中や堆積終了後に亀裂が発生しやすくなる、▲2▼エアカーテンガス噴出口103から吹きつけられるガス流110により堆積スートが吹き飛ばされて堆積効率が低下する、▲3▼堆積用バーナー噴出口102からの火炎の火力を強くしたり、図3(b)に示すようにスート堆積体104の径が太くなったりすると、エアカーテンガス噴出口103からのガス流110の強さより堆積用バーナー噴出口102からの火炎流111の強さのほうが強くなるので、ガス流110で火炎流111を抑えきれなくなるなどの難点があった。
【0005】
なお、▲3▼においてガス流110をさらに強くすれば▲3▼の難点は解消できるが、▲1▼、▲2▼の影響はさらに強く出るようになる。
【0006】
本発明は、このような従来の難点を解決するためになされたもので、ガス供給装置のガス流をスート堆積体に直接吹きつけないようにコア材などの出発部材の下方からチャンバーの上方へと導くことができる光ファイバ用母材の製造方法およびその製造装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成する本発明の光ファイバ用母材の製造方法は、チャンバー内で出発部材上に、酸水素火炎バーナーで四塩化ケイ素を火炎加水分解させて生成するガラス微粒子を堆積させることにより外層部を成膜して光ファイバ用母材を形成するにあたり、ガス供給装置でガス流を出発部材の下方からチャンバーの上方に向けて吹きつけてガラス微粒子を堆積させる光ファイバ用母材の製造方法において、ガス供給装置のガス流を出発部材の下方から斜め上方のチャンバーの壁面に向けて吹きつけて当該ガス流をチャンバーの上方へと導くことができるものである。
【0008】
また、上記目的を達成する本発明の光ファイバ用母材の製造装置は、チャンバー内で出発部材上に、当該出発部材の下方に設置された酸水素火炎バーナーで四塩化ケイ素を火炎加水分解させて生成するガラス微粒子を堆積させることにより外層部を成膜して光ファイバ用母材を形成するにあたり、ガス供給装置でガス流を出発部材の下方からチャンバーの上方に向けて吹きつけてガラス微粒子を堆積させる光ファイバ用母材の製造装置において、ガス供給装置は、ガス流を出発部材の下方から斜め上方のチャンバーの壁面に向けて吹きつけて当該ガス流をチャンバーの上方へと導くように酸水素火炎バーナーの両端にそれぞれ設置されているものである。
【0009】
このような光ファイバ用母材の製造方法およびその製造装置によれば、ガス供給装置のガス流を出発部材の下方から斜め上方のチャンバーの壁面に向けて吹きつけて当該ガス流をチャンバーの上方へと導くことができるので、ガス流が直接スート堆積体に当たらないようになる。
【0010】
また、本発明の光ファイバ用母材の製造装置においてガス供給装置は、ガス流を出発部材の下方から斜め上方のチャンバーの壁面に向けて吹きつけて当該ガス流をチャンバーの上方へと導くためのルーバを備えていることが好ましい。これにより、ガス流を整流することが可能になる。
【0011】
【発明の実施の形態】
以下、本発明の光ファイバ用母材の製造方法およびその製造装置を適用したその好ましい実施の形態例について、図面にしたがって説明する。
【0012】
本発明の光ファイバ用母材の製造方法が適用される好ましい実施の形態例としての製造装置は、例えば図1(a)、(b)に示すように、出発部材4に所定の外層部3をOVD法(外付け法)で堆積する装置で、光ファイバ用母材を製造するための反応炉となるチャンバー2と、チャンバー2内で出発部材4を水平に保持して回転させる回転機構5と、回転機構5によって回転している出発部材4上に、四塩化ケイ素を火炎加水分解させて生成するガラス微粒子から成る外層部3を堆積させる酸水素火炎バーナー6と、ガス流でエアカーテン70を設けるガス供給装置7と、酸水素火炎バーナー6と対向配置され当該酸水素火炎バーナー6による火炎加水分解反応で生成された排気ガスを排気する排気フード8と、排気フード8に接続される排気移動ダクト9と、排気移動ダクト9が挿嵌されチャンバー2の外側面2aに連結される排気固定ダクト10とを備えている。
【0013】
回転機構5は、チャンバー2外に設けられたモータなどの回転駆動部50によって出発部材4を回転させることができるので、チャンバー2を小型化させることが可能になっている。
【0014】
酸水素火炎バーナー6は、四塩化ケイ素、酸素ガスおよび水素ガスを所定の配分量で供給して点火することにより、酸水素火炎中で四塩化ケイ素を火炎加水分解させてガラス微粒子を生成するもので、回転機構5の出発部材4の下方に位置するチャンバー2内に配置され当該出発部材4の軸方向に往復直線運動できるようになっている。
【0015】
ガス供給装置7は、この装置で製造することが可能な光ファイバ用母材のための外層部3の最大長さに亘ってガス流のエアカーテン70を実質的に形成できるように、ガス供給装置自体を横型の長方形角型に形成させ、また、複数のガス供給部を一列に配置させるとよいが、形状、構造はこれらには限られない。また、このガス供給装置7は図1(b)に示すように、ガス流を回転機構5に取付けられた出発部材4の下方から斜め上方のチャンバー2の壁面2bに向けて吹きつけて当該ガス流をチャンバー2の上方へと導くように、チャンバー2内で回転機構5の出発部材4の軸方向から見て酸水素火炎バーナー6の両端にそれぞれ設置されている。これにより、ガス供給装置7のガス流を出発部材4の下方からチャンバー2の上方に向けて吹きつける際、ガス流による幕、即ち、エアカーテン70が直接スート堆積体に当たらないようにすることができる。
【0016】
また、ガス供給装置7は、ガス流を出発部材4の下方から斜め上方のチャンバー2の壁面2bに向けて吹きつけて当該ガス流をチャンバー2の上方へと導くためのルーバ71を備えている。これにより、ガス流を整流することが可能になる。なお、このガス供給装置7から流出させるガスは、フィルタなどで濾過した清浄なものであれば、エア(空気)の他、窒素ガス、ヘリウムガス、アルゴンガスなどの不活性ガスなどの何れでもよい。
【0017】
排気フード8は、酸水素火炎バーナー6の移動と同期して往復直線運動するもので、当該排気フード8の往復直線運動方向に実質的に平行配置されるようにチャンバー2の外側面2aに連結される排気固定ダクト10に挿嵌される排気移動ダクト9によって往復直線運動が行われる。また、排気移動ダクト9は、排気固定ダクト10内で排気フード8の往復直線運動方向に直線移動する部分が直管で構成されている。これにより、排気固定ダクト10内でスムーズに直線移動させることができる。
【0018】
このような排気移動ダクト9を排気固定ダクト10内で直線移動させる移動機構(図示せず)は、例えば排気移動ダクト9近傍に排気フード8の往復直線運動方向に対して平行なレールを設置し、排気移動ダクト9に取付けた車輪を介して排気移動ダクト9をレールに沿って移動させる方法などが考えられ、また、この排気移動ダクト9および酸水素火炎バーナー6の往復移動を同期させるために、それぞれ制御装置(図示せず)に接続されている。なお、この同期方法は、これに限らず、機械的に同期させてもよい。
【0019】
また、排気固定ダクト10と当該排気固定ダクト10に挿嵌されている排気移動ダクト9との間には、排気移動ダクト9から排気された排気ガスが排気固定ダクト10を介してチャンバー2内に戻らないように排気気密手段11が設けられている。これにより、未堆積スート(生成されたガラス微粒子)や未反応のガラス原料がチャンバー2内に浮遊してしまうことを防げる。このような排気気密手段11としては、例えばテフロン(登録商標)製円筒形シール部材を排気移動ダクト9と排気固定ダクト10との間に嵌め込むことなどが考えられる。
【0020】
なお、回転機構5の回転駆動部50はチャンバー2の外から出発部材4を回転させているが、この際、チャンバー2外からチャンバー2内に塵・埃が侵入しないように、チャンバー2の各貫通部はそれぞれエアシールされている。
【0021】
このように構成された光ファイバ用母材の製造装置1の動作について以下に説明する。
【0022】
まず、回転機構5に出発部材4をセットする。なお、出発部材4は、コア材や、コア材だけではなく薄いクラッド部を有するコア材なども含むものとする。次に、回転機構5の回転駆動部50によって出発部材4を回転し、酸水素火炎バーナー6で四塩化ケイ素を火炎加水分解させてクラッドなどのガラス微粒子から成る外層部3を生成する。この火炎加水分解により生成されたガラス微粒子を回転している出発部材4に付着、堆積させると共に、酸水素火炎バーナー6を出発部材4の軸方向に平行に往復直線運動させてガラス微粒子を出発部材4の軸方向に平均に堆積させてクラッド部となる外層部3を成膜する。これにより、クラッド部を有するスート積層体から成る光ファイバ用母材ができる。
【0023】
また、酸水素火炎バーナー6の両端に設置されている各ガス供給装置7が、それぞれガス流を回転機構5に取付けられた出発部材4の下方から斜め上方のチャンバー2の壁面2bに向けて吹きつけて当該ガス流をチャンバー2の上方へと導くことができるので、エアカーテン70が直接スート堆積体に当たらないようにすることができる。これにより、▲1▼各ガス供給装置7のガス流によるエアカーテン70が直接スート堆積体に当たらず、酸水素火炎バーナー6の火炎温度の急速な低下をなくすことができるので、スート積層体に亀裂が入りにくくなる、▲2▼酸水素火炎バーナー6からのガラス微粒子が吹き飛ばされずにスート堆積体に当たるので、堆積効率が向上する、▲3▼チャンバー2の壁面にガス供給装置7のガス流が吹きつけられるので、壁面へのスートの付着が少なくなり、気泡の原因となるスートの脱落が減少し掃除を容易となるなどの特有の効果を得ることができる。
【0024】
【実施例】
さらに、以下のような条件でガラス微粒子の堆積実験を行ない、実施例と比較例とを比較した。なお、実施例および比較例は共に、酸水素火炎バーナーに送り込む四塩化ケイ素、酸素ガスおよび水素ガスの各供給量、およびガス供給装置から噴出させるガス流の噴出量は同じなので、説明を省略する。
【0025】
実施例
実施例は図1に示す製造装置1を用いて堆積実験を行なった。
【0026】
比較例1
比較例1は図2(a)に示す製造装置200Aで、酸水素火炎バーナー201の火炎と共にガス供給装置202のガス流(エア)を、外層部3に直接吹きつけた。
【0027】
比較例2
比較例2は図2(b)に示す製造装置200Bで、酸水素火炎バーナー201の火炎と共にガス供給装置202のガス流(エア)を、外層部3に直接吹きつけ、さらに、チャンバー203の左右の壁面203a、203bにそれぞれ給気口204を設けて、フィルタを通過させた清浄なエアを給気した。
【0028】
比較例3
比較例3は図2(c)に示す製造装置300で、酸水素火炎バーナー301の両端にガス供給装置302を設け、各ガス供給装置302はそれぞれガス流(エア)が外層部3に直接吹きつけるようにした。
【0029】
実験の結果、実施例では、スート堆積体には亀裂は発生せず、堆積速度は5.5g/分で、チャンバー内の汚れは少なかった。これに対して比較例1では、スートの堆積中に亀裂が発生し、堆積速度は3.4g/分となり、チャンバー内の汚れは多く、また、比較例2では、スートの堆積終了後に亀裂が発生し、堆積速度は5.0g/分となり、チャンバー内の汚れは多く、さらに、比較例3では、スート堆積体には亀裂は発生せず、堆積速度は5.5g/分となったが、チャンバー内の汚れは多くなることが確認できた。
【0030】
【発明の効果】
以上の説明から明らかなように、本発明の光ファイバ用母材の製造方法およびその製造装置によれば、ガス供給装置のガス流を出発部材の下方から斜め上方のチャンバーの壁面に向けて吹きつけて当該ガス流をチャンバーの上方へと導くことができ、ガス流が直接スート堆積体に当たらないようになるので、スートの堆積中や堆積後に堆積体に亀裂が発生せず、堆積効率が良好になり、また、チャンバー内の汚れが少なくなる。
【図面の簡単な説明】
【図1】本発明の光ファイバ用母材の製造方法およびその製造装置の好ましい実施の形態例を示す説明図で、(a)は説明図、(b)は(a)の断面による側面図。
【図2】堆積実験による比較例を示す説明図。
【図3】従来の光ファイバ用母材の製造方法を示す説明図で、(a)はスート積層体の径が小さい場合の図、(b)はスート積層体の径が大きい場合の図。
【符号の説明】
1・・・・・光ファイバ用母材の製造装置
2・・・・・チャンバー
3・・・・・外層部
4・・・・・出発部材
6・・・・・酸水素火炎バーナー
7・・・・・ガス供給装置
71・・・・・ルーバ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a preform for an optical fiber and an apparatus for producing an optical fiber preform for synthesizing and sintering an oxide as glass particles from a gas phase state by a flame hydrolysis reaction, and particularly to a gas supply apparatus for flame hydrolysis. The present invention relates to a method and apparatus for manufacturing an optical fiber preform for depositing glass fine particles by spraying a gas flow from below a starting member such as a core material to above a chamber.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been known a method for manufacturing an optical fiber preform in which a flame hydrolysis reaction is performed to synthesize an oxide as glass fine particles from a gas phase state and sinter to produce the optical fiber preform.
[0003]
As shown in FIGS. 3 (a) and 3 (b), this manufacturing method deposits a porous glass around the core glass rod 101 by an external method. The outlets 103 are provided independently of each other, and at the same time as the formation of the porous glass preform, the glass fine particles are deposited while blowing a clean gas flow over the entire length of the core glass rod 101 to form a soot deposit 104 for an optical fiber. A base material can be formed (see Japanese Patent Application Laid-Open No. 5-116979). By providing the air curtain gas ejection port 103 separately from the deposition burner ejection port 102, (1) a lump of undeposited soot, which is a source of foreign matter and bubbles, can be blown off from the soot deposit. (2) Since the flow of the generated glass fine particles can be suppressed so as not to spread greatly, the glass fine particles can be guided to the soot deposit body 104 neatly. The deposition efficiency can be increased by enlarging the temperature difference with the flame.
[0004]
[Problems to be solved by the invention]
However, in such a method of manufacturing a preform for an optical fiber, (1) the soot deposit body 104 is rapidly cooled by the gas flow 110 blown from the air curtain gas jet port 103, so that the soot deposit body 104 is cooled during or after deposition. (2) The deposition soot is blown off by the gas flow 110 blown from the air curtain gas ejection port 103 to reduce the deposition efficiency. (3) The thermal power of the flame from the deposition burner ejection port 102 When the diameter of the soot deposit body 104 is increased as shown in FIG. 3B, or the intensity of the gas flow 110 from the air curtain gas jet port 103 increases, the flame flow from the deposition burner jet port 102 increases. Since the strength of 111 is stronger, there is a problem that the flame flow 111 cannot be completely suppressed by the gas flow 110.
[0005]
In the case of (3), if the gas flow 110 is further strengthened, the difficulty of (3) can be solved, but the effects of (1) and (2) are more pronounced.
[0006]
The present invention has been made in order to solve such conventional difficulties, and is intended to prevent the gas flow of the gas supply device from directly blowing onto the soot deposit from below a starting member such as a core material to above the chamber. It is an object of the present invention to provide a method of manufacturing a preform for an optical fiber and an apparatus for manufacturing the same, which can guide the method.
[0007]
[Means for Solving the Problems]
The method for producing an optical fiber preform of the present invention, which achieves the above object, comprises depositing glass fine particles produced by flame hydrolysis of silicon tetrachloride with an oxyhydrogen flame burner on a starting member in a chamber. A method for producing an optical fiber preform in which a gas flow is blown from below a starting member toward above a chamber by a gas supply device to deposit glass fine particles in forming an optical fiber preform by forming a portion. In the above, the gas flow of the gas supply device can be blown from below the starting member toward the wall surface of the chamber obliquely upward to guide the gas flow upward of the chamber.
[0008]
Further, the apparatus for manufacturing a preform for optical fibers of the present invention that achieves the above object is characterized in that silicon tetrachloride is flame-hydrolyzed on a starting member in a chamber by an oxyhydrogen flame burner installed below the starting member. In forming the outer layer portion by depositing the glass fine particles generated by forming the base material for the optical fiber, the gas supply device blows a gas flow from below the starting member toward the upper part of the chamber to blow the glass fine particles. In the apparatus for manufacturing an optical fiber preform for depositing a gas, the gas supply device blows the gas flow from below the starting member toward the wall surface of the chamber obliquely upward to guide the gas flow to above the chamber. These are installed at both ends of the oxyhydrogen flame burner.
[0009]
According to the method and the apparatus for manufacturing the optical fiber preform, the gas flow of the gas supply device is blown from below the starting member toward the wall surface of the chamber obliquely above, and the gas flow is blown upward of the chamber. So that the gas stream does not hit the soot deposits directly.
[0010]
Further, in the apparatus for manufacturing a preform for an optical fiber of the present invention, the gas supply device blows the gas flow from below the starting member toward the wall surface of the chamber obliquely upward to guide the gas flow upward of the chamber. The louver is preferably provided. This makes it possible to rectify the gas flow.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of a method for manufacturing a preform for an optical fiber and an apparatus for manufacturing the same according to the present invention will be described with reference to the drawings.
[0012]
A manufacturing apparatus as a preferred embodiment to which the method for manufacturing a preform for optical fiber of the present invention is applied, for example, as shown in FIGS. A chamber 2 serving as a reaction furnace for producing an optical fiber preform, and a rotating mechanism 5 for holding and rotating the starting member 4 in the chamber 2 horizontally. An oxyhydrogen flame burner 6 for depositing an outer layer portion 3 made of glass fine particles produced by flame hydrolysis of silicon tetrachloride on a starting member 4 being rotated by a rotating mechanism 5; A gas supply device 7 provided with a gas turbine, an exhaust hood 8 disposed to face the oxyhydrogen flame burner 6 and exhausting exhaust gas generated by a flame hydrolysis reaction by the oxyhydrogen flame burner 6, and connected to the exhaust hood 8. It includes a gas moving duct 9, and an exhaust fixed duct 10 exhaust moving duct 9 is connected to the outer surface 2a of the inserted chamber 2.
[0013]
The rotation mechanism 5 can rotate the starting member 4 by a rotation drive unit 50 such as a motor provided outside the chamber 2, so that the size of the chamber 2 can be reduced.
[0014]
The oxyhydrogen flame burner 6 generates silicon fine particles by flame-hydrolyzing silicon tetrachloride in an oxyhydrogen flame by igniting by supplying silicon tetrachloride, oxygen gas and hydrogen gas in a predetermined distribution amount. Thus, it is arranged in the chamber 2 located below the starting member 4 of the rotation mechanism 5 so that the starting member 4 can reciprocate linearly in the axial direction.
[0015]
The gas supply device 7 is provided with a gas supply so that an air curtain 70 of the gas flow can be substantially formed over the maximum length of the outer layer 3 for the optical fiber preform that can be manufactured with this device. The device itself may be formed in a horizontal rectangular shape and a plurality of gas supply units may be arranged in a line, but the shape and structure are not limited to these. As shown in FIG. 1B, the gas supply device 7 blows the gas flow from below the starting member 4 attached to the rotating mechanism 5 toward the wall surface 2b of the chamber 2 obliquely above. In order to guide the flow to the upper part of the chamber 2, they are provided at both ends of the oxyhydrogen flame burner 6 in the chamber 2 when viewed from the axial direction of the starting member 4 of the rotating mechanism 5. Thereby, when blowing the gas flow of the gas supply device 7 from below the starting member 4 toward above the chamber 2, the curtain by the gas flow, that is, the air curtain 70 is prevented from directly hitting the soot deposit. Can be.
[0016]
Further, the gas supply device 7 includes a louver 71 for blowing the gas flow from below the starting member 4 toward the wall surface 2b of the chamber 2 obliquely above and starting the gas flow above the chamber 2. . This makes it possible to rectify the gas flow. The gas discharged from the gas supply device 7 may be any gas such as an inert gas such as a nitrogen gas, a helium gas, or an argon gas, as long as it is a clean gas filtered by a filter or the like. .
[0017]
The exhaust hood 8 reciprocates linearly in synchronization with the movement of the oxyhydrogen flame burner 6, and is connected to the outer surface 2 a of the chamber 2 so as to be arranged substantially parallel to the reciprocating linear movement direction of the exhaust hood 8. A reciprocating linear motion is performed by the exhaust moving duct 9 inserted into the exhaust fixed duct 10. The portion of the exhaust moving duct 9 that moves linearly in the reciprocating linear motion direction of the exhaust hood 8 in the exhaust fixed duct 10 is formed of a straight pipe. Thereby, it is possible to smoothly linearly move in the exhaust fixed duct 10.
[0018]
Such a moving mechanism (not shown) for linearly moving the exhaust moving duct 9 in the exhaust fixed duct 10 includes, for example, installing a rail near the exhaust moving duct 9 in parallel with the reciprocating linear movement direction of the exhaust hood 8. In order to synchronize the reciprocating movement of the exhaust moving duct 9 and the oxyhydrogen flame burner 6, a method of moving the exhaust moving duct 9 along a rail via wheels attached to the exhaust moving duct 9 is considered. , Respectively, are connected to a control device (not shown). Note that this synchronization method is not limited to this, and mechanical synchronization may be performed.
[0019]
Further, between the exhaust fixed duct 10 and the exhaust moving duct 9 inserted into the exhaust fixed duct 10, the exhaust gas exhausted from the exhaust moving duct 9 enters the chamber 2 via the exhaust fixed duct 10. An exhaust airtight means 11 is provided so as not to return. This prevents undeposited soot (generated glass fine particles) and unreacted glass raw material from floating in the chamber 2. As such an exhaust airtight means 11, for example, a Teflon (registered trademark) cylindrical sealing member may be fitted between the exhaust moving duct 9 and the exhaust fixed duct 10.
[0020]
The rotation drive unit 50 of the rotation mechanism 5 rotates the starting member 4 from outside the chamber 2. At this time, each of the chambers 2 is controlled so that dust does not enter the chamber 2 from outside the chamber 2. The through portions are each air-sealed.
[0021]
The operation of the thus-configured optical fiber preform manufacturing apparatus 1 will be described below.
[0022]
First, the starting member 4 is set on the rotating mechanism 5. The starting member 4 includes not only a core material and a core material having a thin clad portion but also a core material. Next, the starting member 4 is rotated by the rotation drive unit 50 of the rotation mechanism 5 and the silicon tetrachloride is flame-hydrolyzed by the oxyhydrogen flame burner 6 to generate the outer layer part 3 made of glass fine particles such as clad. The glass fine particles generated by the flame hydrolysis are attached to and deposited on the rotating starting member 4, and the oxyhydrogen flame burner 6 is reciprocated linearly in parallel with the axial direction of the starting member 4 to remove the glass fine particles. The outer layer 3 serving as a clad is formed by being deposited evenly in the axial direction of 4. Thereby, an optical fiber preform made of a soot laminate having a clad portion can be obtained.
[0023]
Further, each gas supply device 7 installed at both ends of the oxyhydrogen flame burner 6 blows a gas flow from below the starting member 4 attached to the rotating mechanism 5 toward the wall surface 2b of the chamber 2 obliquely above. In addition, since the gas flow can be guided above the chamber 2, the air curtain 70 can be prevented from directly hitting the soot deposit. Thereby, {circle around (1)} the air curtain 70 due to the gas flow of each gas supply device 7 does not directly hit the soot deposit, and it is possible to eliminate a rapid decrease in the flame temperature of the oxyhydrogen flame burner 6. (2) The glass particles from the oxyhydrogen flame burner 6 hit the soot deposit without being blown off, so that the deposition efficiency is improved. (3) The gas flow of the gas supply device 7 is applied to the wall surface of the chamber 2. Because of the spraying, soot adhesion to the wall surface is reduced, so that it is possible to obtain a specific effect such that soot that causes bubbles is reduced, and cleaning is facilitated.
[0024]
【Example】
Further, an experiment for depositing glass fine particles was performed under the following conditions, and Examples and Comparative Examples were compared. In each of the examples and comparative examples, the supply amounts of silicon tetrachloride, oxygen gas, and hydrogen gas fed into the oxyhydrogen flame burner, and the ejection amount of the gas flow ejected from the gas supply device are the same, and thus the description is omitted. .
[0025]
Example In this example, a deposition experiment was performed using the manufacturing apparatus 1 shown in FIG.
[0026]
Comparative Example 1
In Comparative Example 1, the gas flow (air) of the gas supply device 202 was directly blown against the outer layer 3 together with the flame of the oxyhydrogen flame burner 201 in the production apparatus 200A shown in FIG.
[0027]
Comparative Example 2
Comparative Example 2 is a manufacturing apparatus 200B shown in FIG. 2B, in which the gas flow (air) of the gas supply device 202 is directly blown to the outer layer portion 3 together with the flame of the oxyhydrogen flame burner 201. An air supply port 204 was provided on each of the wall surfaces 203a and 203b, and clean air passed through the filter was supplied.
[0028]
Comparative Example 3
Comparative Example 3 is a production apparatus 300 shown in FIG. 2C, in which gas supply devices 302 are provided at both ends of an oxyhydrogen flame burner 301, and each gas supply device 302 directly blows a gas flow (air) to the outer layer 3. I put it on.
[0029]
As a result of the experiment, in the example, no crack was generated in the soot deposit, the deposition rate was 5.5 g / min, and the contamination in the chamber was small. On the other hand, in Comparative Example 1, cracks were generated during the soot deposition, the deposition rate was 3.4 g / min, and there was much dirt in the chamber. In Comparative Example 2, cracks were formed after the soot deposition was completed. However, the deposition rate was 5.0 g / min, the amount of dirt in the chamber was large, and in Comparative Example 3, no crack was generated in the soot deposit, and the deposition rate was 5.5 g / min. It was confirmed that dirt in the chamber increased.
[0030]
【The invention's effect】
As is apparent from the above description, according to the method for manufacturing the optical fiber preform of the present invention and the apparatus for manufacturing the same, the gas flow of the gas supply device is blown from below the starting member toward the wall surface of the chamber obliquely above. The soot gas flow can be directed to the upper part of the chamber so that the gas flow does not directly hit the soot deposit, so that the deposit does not crack during or after soot deposition, and the deposition efficiency is improved. Better, and less dirt in the chamber.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a preferred embodiment of a method for manufacturing an optical fiber preform and an apparatus for manufacturing the same according to the present invention, wherein FIG. 1 (a) is an explanatory view and FIG. .
FIG. 2 is an explanatory view showing a comparative example by a deposition experiment.
3A and 3B are explanatory diagrams showing a conventional method for manufacturing a preform for optical fiber, wherein FIG. 3A is a diagram when the diameter of the soot laminate is small, and FIG. 3B is a diagram when the diameter of the soot laminate is large.
[Explanation of symbols]
1 ··· Optical fiber base material manufacturing apparatus 2 ···· Chamber 3 ····· Outer layer part 4 ····· Starting member 6 ····· Oxy-hydrogen flame burner 7 ··· ... Gas supply device 71 ... Louver

Claims (3)

チャンバー内で出発部材上に、酸水素火炎バーナーで四塩化ケイ素を火炎加水分解させて生成するガラス微粒子を堆積させることにより外層部を成膜して光ファイバ用母材を形成するにあたり、ガス供給装置でガス流を前記出発部材の下方から前記チャンバーの上方に向けて吹きつけて前記ガラス微粒子を堆積させる光ファイバ用母材の製造方法において、
前記ガス供給装置の前記ガス流を前記出発部材の下方から斜め上方の前記チャンバーの壁面に向けて吹きつけて当該ガス流を前記チャンバーの上方へと導くことを特徴とする光ファイバ用母材の製造方法。
In order to form an outer layer by depositing glass fine particles generated by flame hydrolysis of silicon tetrachloride with an oxyhydrogen flame burner on a starting member in a chamber, a gas is supplied to form an optical fiber base material. In a method for producing a preform for an optical fiber, in which a gas flow is blown from below the starting member toward above the chamber by an apparatus to deposit the glass fine particles,
The optical fiber preform, wherein the gas flow of the gas supply device is blown from below the starting member toward a wall surface of the chamber obliquely above to guide the gas flow upward of the chamber. Production method.
チャンバー内で出発部材上に、当該出発部材の下方に設置された酸水素火炎バーナーで四塩化ケイ素を火炎加水分解させて生成するガラス微粒子を堆積させることにより外層部を成膜して光ファイバ用母材を形成するにあたり、ガス供給装置でガス流を前記出発部材の下方から前記チャンバーの上方に向けて吹きつけて前記ガラス微粒子を堆積させる光ファイバ用母材の製造装置において、
前記ガス供給装置は、前記ガス流を前記出発部材の下方から斜め上方の前記チャンバーの壁面に向けて吹きつけて当該ガス流を前記チャンバーの上方へと導くように前記酸水素火炎バーナーの両端にそれぞれ設置されていることを特徴とする光ファイバ用母材の製造装置。
An outer layer portion is formed on the starting member in the chamber by depositing glass fine particles generated by flame hydrolysis of silicon tetrachloride with an oxyhydrogen flame burner installed below the starting member, and forming an outer layer portion for an optical fiber. In forming the base material, in a manufacturing apparatus of a base material for an optical fiber that deposits the glass fine particles by blowing a gas flow from below the starting member toward above the chamber with a gas supply device,
The gas supply device blows the gas stream from below the starting member toward a wall surface of the chamber obliquely above and at both ends of the oxyhydrogen flame burner so as to guide the gas stream to above the chamber. An apparatus for manufacturing a preform for an optical fiber, the apparatus being provided for each.
前記ガス供給装置は、前記ガス流を前記出発部材の下方から斜め上方の前記チャンバーの壁面に向けて吹きつけて当該ガス流を前記チャンバーの上方へと導くためのルーバを備えていることを特徴とする請求項2記載の光ファイバ用母材の製造装置。The gas supply device includes a louver for blowing the gas flow from below the starting member toward a wall surface of the chamber obliquely upward to guide the gas flow upward of the chamber. The apparatus for manufacturing a preform for an optical fiber according to claim 2.
JP2002198870A 2002-07-08 2002-07-08 Optical fiber preform manufacturing method and manufacturing apparatus thereof Expired - Fee Related JP3968451B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002198870A JP3968451B2 (en) 2002-07-08 2002-07-08 Optical fiber preform manufacturing method and manufacturing apparatus thereof
CNB031451144A CN1277773C (en) 2002-07-08 2003-06-19 Method for producing primary product of optic-fibre and its producing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002198870A JP3968451B2 (en) 2002-07-08 2002-07-08 Optical fiber preform manufacturing method and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2004035376A true JP2004035376A (en) 2004-02-05
JP3968451B2 JP3968451B2 (en) 2007-08-29

Family

ID=31492026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002198870A Expired - Fee Related JP3968451B2 (en) 2002-07-08 2002-07-08 Optical fiber preform manufacturing method and manufacturing apparatus thereof

Country Status (2)

Country Link
JP (1) JP3968451B2 (en)
CN (1) CN1277773C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736448A1 (en) * 2004-03-18 2006-12-27 Shin-Etsu Chemical Company, Ltd. Manufacturing apparatus for porous glass preform and glass preform for optical fiber
JP2012062203A (en) * 2010-09-14 2012-03-29 Sumitomo Electric Ind Ltd Apparatus and method for producing porous glass preform
CN110342807A (en) * 2018-04-02 2019-10-18 信越化学工业株式会社 The manufacturing device and manufacturing method of porous glass base material for optical fiber
US11667557B2 (en) 2020-12-14 2023-06-06 Shin-Etsu Chemical Co., Ltd. Apparatus and method for producing porous glass preform

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106904823B (en) * 2017-02-28 2019-04-16 天津富通集团有限公司 The production technology and its large-scale optical fiber prefabricating stick of large-scale optical fiber prefabricating stick
CN110950528A (en) * 2019-12-12 2020-04-03 烽火通信科技股份有限公司 Device and method for preparing loose body of optical fiber preform rod by VAD

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736448A1 (en) * 2004-03-18 2006-12-27 Shin-Etsu Chemical Company, Ltd. Manufacturing apparatus for porous glass preform and glass preform for optical fiber
EP1736448A4 (en) * 2004-03-18 2010-12-29 Shinetsu Chemical Co Manufacturing apparatus for porous glass preform and glass preform for optical fiber
JP2012062203A (en) * 2010-09-14 2012-03-29 Sumitomo Electric Ind Ltd Apparatus and method for producing porous glass preform
CN110342807A (en) * 2018-04-02 2019-10-18 信越化学工业株式会社 The manufacturing device and manufacturing method of porous glass base material for optical fiber
US11667557B2 (en) 2020-12-14 2023-06-06 Shin-Etsu Chemical Co., Ltd. Apparatus and method for producing porous glass preform

Also Published As

Publication number Publication date
CN1277773C (en) 2006-10-04
JP3968451B2 (en) 2007-08-29
CN1473781A (en) 2004-02-11

Similar Documents

Publication Publication Date Title
RU2391298C2 (en) Plasma burner for making synthetic silicon dioxide
KR102545712B1 (en) Method and apparatus for manufacturing porous glass preform for optical fiber
JP2004035376A (en) Method and apparatus for manufacturing preform for optical fiber
JP4424232B2 (en) Method for producing porous glass base material
KR101157662B1 (en) Fabrication Apparatus of Porous Glass preform and Glass Preform For Optical Fiber Fabricated Thereby
JP3744350B2 (en) Porous glass base material synthesis burner and method for producing porous glass base material
JP3551006B2 (en) Method for producing porous preform for optical fiber
JP2001019463A (en) Production of porous preform for optical fiber and production apparatus therefor
JP4926165B2 (en) Optical fiber preform manufacturing method and apparatus using high frequency induction thermal plasma torch
JP5416076B2 (en) Optical fiber preform manufacturing method
JP3651129B2 (en) Optical fiber preform manufacturing apparatus and manufacturing method
JPH1072231A (en) Apparatus for producing optical fiber preform and production thereof
JP5655418B2 (en) Method and apparatus for producing porous glass base material
JP2010285330A (en) Method for producing glass porous body and apparatus for producing glass porous body
KR20060094002A (en) Optical vapor deposition apparatus for optical preform
JPH11349345A (en) Production of porous preform
JP4434083B2 (en) Manufacturing apparatus and manufacturing method of glass fine particle deposit
JPH09124333A (en) Production of preform for optical fiber
JPH11157865A (en) Production of large-diameter optical fiber preform
JP4449272B2 (en) Method for producing glass particulate deposit
JP2004231465A (en) Method and apparatus for manufacturing porous glass fine particle deposit
JP2004091309A (en) Apparatus for manufacturing preform for optical fiber
JPS62162646A (en) Production of glass fine particle deposit
JP2994136B2 (en) Glass fiber attachment system for optical fiber
JPH07101744A (en) Method for synthesizing porous preform for optical fiber and device therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3968451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees