JP3968451B2 - Optical fiber preform manufacturing method and manufacturing apparatus thereof - Google Patents

Optical fiber preform manufacturing method and manufacturing apparatus thereof Download PDF

Info

Publication number
JP3968451B2
JP3968451B2 JP2002198870A JP2002198870A JP3968451B2 JP 3968451 B2 JP3968451 B2 JP 3968451B2 JP 2002198870 A JP2002198870 A JP 2002198870A JP 2002198870 A JP2002198870 A JP 2002198870A JP 3968451 B2 JP3968451 B2 JP 3968451B2
Authority
JP
Japan
Prior art keywords
chamber
supply device
optical fiber
gas supply
starting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002198870A
Other languages
Japanese (ja)
Other versions
JP2004035376A (en
Inventor
和博 冨田
喜直 ▲兜▼玉
一郎 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2002198870A priority Critical patent/JP3968451B2/en
Priority to CNB031451144A priority patent/CN1277773C/en
Publication of JP2004035376A publication Critical patent/JP2004035376A/en
Application granted granted Critical
Publication of JP3968451B2 publication Critical patent/JP3968451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、火炎加水分解反応させて気相状態から酸化物をガラス微粒子として合成し焼結させる光ファイバ用母材の製造方法およびその製造装置に係り、特に火炎加水分解する際にガス供給装置でガス流をコア材などの出発部材の下方からチャンバーの上方に向けて吹きつけてガラス微粒子を堆積させる光ファイバ用母材の製造方法およびその製造装置に関する。
【0002】
【従来の技術】
従来から、光ファイバ用母材を製造するために、火炎加水分解反応させて気相状態から酸化物をガラス微粒子として合成し焼結させる光ファイバ用母材の製造方法が知られている。
【0003】
この製造方法は図3(a)、(b)に示すように、外付け法によってコア用ガラス棒101の外周に多孔質ガラスを堆積するために、堆積用バーナー噴出口102およびエアカーテンガス噴出口103を各々独立して設け、多孔質ガラス母材の形成と同時にコア用ガラス棒101の全長に清浄なガス流を吹きつけながらガラス微粒子を堆積させることによりスート堆積体104から成る光ファイバ用母材を形成することができる(特開平5−116979号公報参照)。このエアカーテンガス噴出口103を堆積用バーナー噴出口102とは別個に設けることにより、(1)異物や気泡の元となる未堆積スートの塊をスート堆積体から吹き飛ばすことができる、(2)生成されたガラス微粒子の流れを大きく広がらないように押さえ込むことができるので、ガラス微粒子をスート堆積体104にきれいに導くことができる、(3)スート堆積体104を冷却し堆積用バーナー噴出口102からの火炎との温度差を拡大することにより堆積効率を上げることができる。
【0004】
【発明が解決しようとする課題】
しかしながら、このような光ファイバ用母材の製造方法では、(1)エアカーテンガス噴出口103から吹きつけられるガス流110によりスート堆積体104が急速に冷却されるので、堆積中や堆積終了後に亀裂が発生しやすくなる、(2)エアカーテンガス噴出口103から吹きつけられるガス流110により堆積スートが吹き飛ばされて堆積効率が低下する、(3)堆積用バーナー噴出口102からの火炎の火力を強くしたり、図3(b)に示すようにスート堆積体104の径が太くなったりすると、エアカーテンガス噴出口103からのガス流110の強さより堆積用バーナー噴出口102からの火炎流111の強さのほうが強くなるので、ガス流110で火炎流111を抑えきれなくなるなどの難点があった。
【0005】
なお、(3)においてガス流110をさらに強くすれば(3)の難点は解消できるが、(1)(2)の影響はさらに強く出るようになる。
【0006】
本発明は、このような従来の難点を解決するためになされたもので、ガス供給装置のガス流をスート堆積体に直接吹きつけないようにコア材などの出発部材の下方からチャンバーの上方へと導くことができる光ファイバ用母材の製造方法およびその製造装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成する本発明の光ファイバ用母材の製造方法は、チャンバー内で水平に保持された出発部材上に、酸水素火炎バーナーで四塩化ケイ素を火炎加水分解させて生成するガラス微粒子を堆積させることにより外層部を成膜して光ファイバ用母材を形成するにあたり、ガス供給装置でガス流を出発部材の下方からチャンバーの上方に向けて吹きつけてガラス微粒子を堆積させるOVD法による光ファイバ用母材の製造方法において、ガス供給装置のガス流を出発部材の下方から斜め上方のチャンバーの壁面に向けて吹きつけてガス供給装置のガス流によるエアカーテンをチャンバーの上方へと導くことができるものである。
【0008】
また、上記目的を達成する本発明の光ファイバ用母材の製造装置は、チャンバー内で水平に保持された出発部材上に、当該出発部材の下方に設置された酸水素火炎バーナーで四塩化ケイ素を火炎加水分解させて生成するガラス微粒子を堆積させることにより外層部を成膜して光ファイバ用母材を形成するにあたり、ガス供給装置でガス流を出発部材の下方からチャンバーの上方に向けて吹きつけてガラス微粒子を堆積させるOVD法による光ファイバ用母材の製造装置において、ガス供給装置は、ガス供給装置のガス流を出発部材の下方から斜め上方のチャンバーの壁面に向けて吹きつけてガス供給装置のガス流によるエアカーテンをチャンバーの上方へと導くように、出発部材の軸方向から見て酸水素火炎バーナーの両側にそれぞれ設置されているものである。
【0009】
このような光ファイバ用母材の製造方法およびその製造装置によれば、ガス供給装置のガス流を出発部材の下方から斜め上方のチャンバーの壁面に向けて吹きつけて当該ガス供給装置のガス流をチャンバーの上方へと導くことができるので、当該ガス供給装置のガス流が直接スート堆積体に当たらないようになる。
【0010】
また、本発明の光ファイバ用母材の製造装置においてガス供給装置は、ガス供給装置のガス流を出発部材の下方から斜め上方のチャンバーの壁面に向けて吹きつけてガス供給装 置のガス流によるエアカーテンをチャンバーの上方へと導くためのルーバを備えていることが好ましい。これにより、ガス供給装置のガス流を整流することが可能になる。
【0011】
【発明の実施の形態】
以下、本発明の光ファイバ用母材の製造方法およびその製造装置を適用したその好ましい実施の形態例について、図面にしたがって説明する。
【0012】
本発明の光ファイバ用母材の製造方法が適用される好ましい実施の形態例としての製造装置は、例えば図1(a)、(b)に示すように、出発部材4に所定の外層部3をOVD法(外付け法)で堆積する装置で、光ファイバ用母材を製造するための反応炉となるチャンバー2と、チャンバー2内で出発部材4を水平に保持して回転させる回転機構5と、回転機構5によって回転している出発部材4上に、四塩化ケイ素を火炎加水分解させて生成するガラス微粒子から成る外層部3を堆積させる酸水素火炎バーナー6と、ガス流でエアカーテン70を設けるガス供給装置7と、酸水素火炎バーナー6と対向配置され当該酸水素火炎バーナー6による火炎加水分解反応で生成された排気ガスを排気する排気フード8と、排気フード8に接続される排気移動ダクト9と、排気移動ダクト9が挿嵌されチャンバー2の外側面2aに連結される排気固定ダクト10とを備えている。
【0013】
回転機構5は、チャンバー2外に設けられたモータなどの回転駆動部50によって出発部材4を回転させることができるので、チャンバー2を小型化させることが可能になっている。
【0014】
酸水素火炎バーナー6は、四塩化ケイ素、酸素ガスおよび水素ガスを所定の配分量で供給して点火することにより、酸水素火炎中で四塩化ケイ素を火炎加水分解させてガラス微粒子を生成するもので、回転機構5の出発部材4の下方に位置するチャンバー2内に配置され当該出発部材4の軸方向に往復直線運動できるようになっている。
【0015】
ガス供給装置7は、この装置で製造することが可能な光ファイバ用母材のための外層部3の最大長さに亘ってガス流のエアカーテン70を実質的に形成できるように、ガス供給装置自体を横型の長方形角型に形成させ、また、複数のガス供給部を一列に配置させるとよいが、形状、構造はこれらには限られない。また、このガス供給装置7は図1(b)に示すように、ガス流を回転機構5に取付けられた出発部材4の下方から斜め上方のチャンバー2の壁面2bに向けて吹きつけて当該ガス流をチャンバー2の上方へと導くように、チャンバー2内で回転機構5の出発部材4の軸方向から見て酸水素火炎バーナー6の両側にそれぞれ設置されている。これにより、ガス供給装置7のガス流を出発部材4の下方からチャンバー2の上方に向けて吹きつける際、ガス流による幕、即ち、エアカーテン70が直接スート堆積体に当たらないようにすることができる。
【0016】
また、ガス供給装置7は、ガス流を出発部材4の下方から斜め上方のチャンバー2の壁面2bに向けて吹きつけて当該ガス流をチャンバー2の上方へと導くためのルーバ71を備えている。これにより、ガス流を整流することが可能になる。なお、このガス供給装置7から流出させるガスは、フィルタなどで濾過した清浄なものであれば、エア(空気)の他、窒素ガス、ヘリウムガス、アルゴンガスなどの不活性ガスなどの何れでもよい。
【0017】
排気フード8は、酸水素火炎バーナー6の移動と同期して往復直線運動するもので、当該排気フード8の往復直線運動方向に実質的に平行配置されるようにチャンバー2の外側面2aに連結される排気固定ダクト10に挿嵌される排気移動ダクト9によって往復直線運動が行われる。また、排気移動ダクト9は、排気固定ダクト10内で排気フード8の往復直線運動方向に直線移動する部分が直管で構成されている。これにより、排気固定ダクト10内でスムーズに直線移動させることができる。
【0018】
このような排気移動ダクト9を排気固定ダクト10内で直線移動させる移動機構(図示せず)は、例えば排気移動ダクト9近傍に排気フード8の往復直線運動方向に対して平行なレールを設置し、排気移動ダクト9に取付けた車輪を介して排気移動ダクト9をレールに沿って移動させる方法などが考えられ、また、この排気移動ダクト9および酸水素火炎バーナー6の往復移動を同期させるために、それぞれ制御装置(図示せず)に接続されている。なお、この同期方法は、これに限らず、機械的に同期させてもよい。
【0019】
また、排気固定ダクト10と当該排気固定ダクト10に挿嵌されている排気移動ダクト9との間には、排気移動ダクト9から排気された排気ガスが排気固定ダクト10を介してチャンバー2内に戻らないように排気気密手段11が設けられている。これにより、未堆積スート(生成されたガラス微粒子)や未反応のガラス原料がチャンバー2内に浮遊してしまうことを防げる。このような排気気密手段11としては、例えばテフロン(登録商標)製円筒形シール部材を排気移動ダクト9と排気固定ダクト10との間に嵌め込むことなどが考えられる。
【0020】
なお、回転機構5の回転駆動部50はチャンバー2の外から出発部材4を回転させているが、この際、チャンバー2外からチャンバー2内に塵・埃が侵入しないように、チャンバー2の各貫通部はそれぞれエアシールされている。
【0021】
このように構成された光ファイバ用母材の製造装置1の動作について以下に説明する。
【0022】
まず、回転機構5に出発部材4をセットする。なお、出発部材4は、コア材や、コア材だけではなく薄いクラッド部を有するコア材なども含むものとする。次に、回転機構5の回転駆動部50によって出発部材4を回転し、酸水素火炎バーナー6で四塩化ケイ素を火炎加水分解させてクラッドなどのガラス微粒子から成る外層部3を生成する。この火炎加水分解により生成されたガラス微粒子を回転している出発部材4に付着、堆積させると共に、酸水素火炎バーナー6を出発部材4の軸方向に平行に往復直線運動させてガラス微粒子を出発部材4の軸方向に平均に堆積させてクラッド部となる外層部3を成膜する。これにより、クラッド部を有するスート積層体から成る光ファイバ用母材ができる。
【0023】
また、酸水素火炎バーナー6の両側に設置されている各ガス供給装置7が、それぞれガス流を回転機構5に取付けられた出発部材4の下方から斜め上方のチャンバー2の壁面2bに向けて吹きつけて当該ガス流をチャンバー2の上方へと導くことができるので、エアカーテン70が直接スート堆積体に当たらないようにすることができる。これにより、(1)各ガス供給装置7のガス流によるエアカーテン70が直接スート堆積体に当たらず、酸水素火炎バーナー6の火炎温度の急速な低下をなくすことができるので、スート積層体に亀裂が入りにくくなる、(2)酸水素火炎バーナー6からのガラス微粒子が吹き飛ばされずにスート堆積体に当たるので、堆積効率が向上する、(3)チャンバー2の壁面にガス供給装置7のガス流が吹きつけられるので、壁面へのスートの付着が少なくなり、気泡の原因となるスートの脱落が減少し掃除を容易となるなどの特有の効果を得ることができる。
【0024】
【実施例】
さらに、以下のような条件でガラス微粒子の堆積実験を行ない、実施例と比較例とを比較した。なお、実施例および比較例は共に、酸水素火炎バーナーに送り込む四塩化ケイ素、酸素ガスおよび水素ガスの各供給量、およびガス供給装置から噴出させるガス流の噴出量は同じなので、説明を省略する。
【0025】
実施例
実施例は図1に示す製造装置1を用いて堆積実験を行なった。
【0026】
比較例1
比較例1は図2(a)に示す製造装置200Aで、酸水素火炎バーナー201の火炎と共にガス供給装置202のガス流(エア)を、外層部3に直接吹きつけた。
【0027】
比較例2
比較例2は図2(b)に示す製造装置200Bで、酸水素火炎バーナー201の火炎と共にガス供給装置202のガス流(エア)を、外層部3に直接吹きつけ、さらに、チャンバー203の左右の壁面203a、203bにそれぞれ給気口204を設けて、フィルタを通過させた清浄なエアを給気した。
【0028】
比較例3
比較例3は図2(c)に示す製造装置300で、酸水素火炎バーナー301の両端にガス供給装置302を設け、各ガス供給装置302はそれぞれガス流(エア)が外層部3に直接吹きつけるようにした。
【0029】
実験の結果、実施例では、スート堆積体には亀裂は発生せず、堆積速度は5.5g/分で、チャンバー内の汚れは少なかった。これに対して比較例1では、スートの堆積中に亀裂が発生し、堆積速度は3.4g/分となり、チャンバー内の汚れは多く、また、比較例2では、スートの堆積終了後に亀裂が発生し、堆積速度は5.0g/分となり、チャンバー内の汚れは多く、さらに、比較例3では、スート堆積体には亀裂は発生せず、堆積速度は5.5g/分となったが、チャンバー内の汚れは多くなることが確認できた。
【0030】
【発明の効果】
以上の説明から明らかなように、本発明の光ファイバ用母材の製造方法およびその製造装置によれば、ガス供給装置のガス流を出発部材の下方から斜め上方のチャンバーの壁面に向けて吹きつけて当該ガス供給装置のガス流をチャンバーの上方へと導くことができ、当該ガス供給装置のガス流が直接スート堆積体に当たらないようになるので、スートの堆積中や堆積後に堆積体に亀裂が発生せず、堆積効率が良好になり、また、チャンバー内の汚れが少なくなる。
【図面の簡単な説明】
【図1】 本発明の光ファイバ用母材の製造方法およびその製造装置の好ましい実施の形態例を示す説明図で、(a)は説明図、(b)は(a)の断面による側面図。
【図2】 堆積実験による比較例を示す説明図。
【図3】 従来の光ファイバ用母材の製造方法を示す説明図で、(a)はスート積層体の径が小さい場合の図、(b)はスート積層体の径が大きい場合の図。
【符号の説明】
1……光ファイバ用母材の製造装置
2……チャンバー
3……外層部
4……出発部材
6……酸水素火炎バーナー
7……ガス供給装置
71……ルーバ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an optical fiber preform in which an oxide is synthesized as glass fine particles from a gas phase state by a flame hydrolysis reaction and sintered, and to a manufacturing apparatus therefor, and more particularly to a gas supply device during flame hydrolysis Then, a gas flow is blown from the lower side of a starting member such as a core material toward the upper side of the chamber to deposit glass fine particles, and a manufacturing method and an apparatus for manufacturing the optical fiber preform.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in order to manufacture an optical fiber preform, a method for producing an optical fiber preform in which a flame hydrolysis reaction is performed to synthesize and sinter oxides as glass fine particles from a gas phase state is known.
[0003]
As shown in FIGS. 3 (a) and 3 (b), this manufacturing method uses a deposition burner outlet 102 and an air curtain gas jet for depositing porous glass on the outer periphery of the core glass rod 101 by an external method. Each of the outlets 103 is provided independently, and at the same time as the formation of the porous glass base material, the glass particles are deposited while blowing a clean gas flow over the entire length of the core glass rod 101. A base material can be formed (see Japanese Patent Application Laid-Open No. 5-116979). By providing the air curtain gas outlet 103 separately from the deposition burner outlet 102, (1) it is possible to blow away undeposited soot lumps that are the source of foreign matter and bubbles from the soot deposit, (2) Since the flow of the generated glass particles can be suppressed so as not to spread greatly, the glass particles can be guided cleanly to the soot deposit 104. (3) The soot deposit 104 is cooled and discharged from the deposition burner outlet 102. The deposition efficiency can be increased by increasing the temperature difference from the flame.
[0004]
[Problems to be solved by the invention]
However, in such a method for manufacturing an optical fiber preform, (1) since the soot deposit 104 is rapidly cooled by the gas flow 110 blown from the air curtain gas outlet 103, during deposition or after completion of deposition (2) The deposition soot is blown off by the gas flow 110 blown from the air curtain gas outlet 103, and the deposition efficiency is lowered. (3) The flame thermal power from the deposition burner outlet 102 If the soot deposit 104 becomes thicker as shown in FIG. 3 (b), the flame flow from the deposition burner outlet 102 is greater than the strength of the gas flow 110 from the air curtain gas outlet 103. Since the strength of 111 is stronger, there is a problem that the flame flow 111 cannot be suppressed by the gas flow 110.
[0005]
Although difficulties if stronger gas flow 110 (3) can be solved, (1), so that the exits stronger effect of (2) in (3).
[0006]
The present invention has been made to solve such a conventional problem, and from below the starting member such as the core material to above the chamber so as not to blow the gas flow of the gas supply device directly on the soot deposit. It is an object of the present invention to provide an optical fiber preform manufacturing method and a manufacturing apparatus thereof.
[0007]
[Means for Solving the Problems]
The method for producing an optical fiber preform according to the present invention that achieves the above-described object comprises the steps of producing glass fine particles generated by flame hydrolysis of silicon tetrachloride with an oxyhydrogen flame burner on a starting member held horizontally in a chamber. in forming the optical fiber preform by depositing the outer layer by depositing, by OVD method of depositing glass particles with gas flow from below the starting member by blowing upward chamber in the gas supply device In the optical fiber preform manufacturing method, the gas flow of the gas supply device is blown from the lower side of the starting member toward the wall surface of the chamber obliquely above to guide the air curtain by the gas flow of the gas supply device to the upper side of the chamber. Is something that can be done.
[0008]
In addition, the optical fiber preform manufacturing apparatus of the present invention that achieves the above object includes a silicon tetrachloride on a starting member held horizontally in a chamber with an oxyhydrogen flame burner installed below the starting member. In forming an optical fiber preform by depositing glass fine particles generated by flame hydrolysis of an optical fiber, a gas flow is directed from below the starting member to above the chamber with a gas supply device. In an optical fiber preform manufacturing apparatus using an OVD method in which glass fine particles are deposited by spraying, the gas supply device blows the gas flow of the gas supply device from below the starting member toward the wall surface of the chamber obliquely above. an air curtain by the gas stream of the gas supply device to direct upward the chamber, respectively disposed of on both sides of the oxyhydrogen flame burner as viewed from the axial direction of the starting member And those are.
[0009]
According to such an optical fiber preform manufacturing method and manufacturing apparatus therefor, the gas flow of the gas supply device is blown from the lower side of the starting member toward the wall surface of the obliquely upper chamber, thereby the gas flow of the gas supply device. Can be guided to the upper side of the chamber, so that the gas flow of the gas supply device does not directly hit the soot deposit.
[0010]
Further, the gas supply device in the production apparatus for an optical fiber preform of the present invention, a gas stream of a gas supply apparatus from below the starting member by blowing towards the wall surface of the oblique upper chamber gas supply equipment gas stream It is preferable to provide a louver for guiding the air curtain according to the above to the upper side of the chamber. This makes it possible to rectify the gas flow of the gas supply device .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the optical fiber preform manufacturing method and manufacturing apparatus according to the present invention will be described below with reference to the drawings.
[0012]
A manufacturing apparatus as a preferred embodiment to which the method for manufacturing an optical fiber preform of the present invention is applied includes, for example, a predetermined outer layer portion 3 on a starting member 4 as shown in FIGS. 1 (a) and 1 (b). Is a device that deposits the substrate by the OVD method (external method), and a chamber 2 that serves as a reaction furnace for manufacturing the optical fiber preform, and a rotating mechanism 5 that rotates the starting member 4 while holding it horizontally in the chamber 2. And an oxyhydrogen flame burner 6 for depositing an outer layer 3 made of glass fine particles generated by flame hydrolysis of silicon tetrachloride on the starting member 4 rotated by the rotating mechanism 5, and an air curtain 70 by a gas flow. The gas supply device 7 is provided, the exhaust hood 8 is disposed opposite to the oxyhydrogen flame burner 6 and exhausts the exhaust gas generated by the flame hydrolysis reaction by the oxyhydrogen flame burner 6, and the exhaust hood 8. It includes a gas moving duct 9, and an exhaust fixed duct 10 exhaust moving duct 9 is connected to the outer surface 2a of the inserted chamber 2.
[0013]
Since the rotation mechanism 5 can rotate the starting member 4 by a rotation driving unit 50 such as a motor provided outside the chamber 2, the chamber 2 can be downsized.
[0014]
The oxyhydrogen flame burner 6 supplies silicon tetrachloride, oxygen gas, and hydrogen gas at a predetermined distribution amount and ignites to flame-hydrolyze silicon tetrachloride in an oxyhydrogen flame to generate glass particles. Thus, it is arranged in the chamber 2 positioned below the starting member 4 of the rotating mechanism 5 so that it can reciprocate linearly in the axial direction of the starting member 4.
[0015]
The gas supply device 7 supplies the gas so that an air curtain 70 of the gas flow can be substantially formed over the maximum length of the outer layer 3 for the optical fiber preform that can be produced with this device. The apparatus itself may be formed in a horizontal rectangular square shape, and a plurality of gas supply units may be arranged in a row, but the shape and structure are not limited thereto. In addition, as shown in FIG. 1B, the gas supply device 7 blows a gas flow from the lower side of the starting member 4 attached to the rotating mechanism 5 toward the wall surface 2b of the chamber 2 obliquely above, flow and to direct upward the chamber 2 are installed on both sides of the oxyhydrogen flame burner 6 as viewed from the axial direction of the starting member 4 of the rotating mechanism 5 in the chamber 2. Thus, when the gas flow of the gas supply device 7 is blown from the lower side of the starting member 4 toward the upper side of the chamber 2, the curtain by the gas flow, that is, the air curtain 70 is prevented from directly hitting the soot deposit. Can do.
[0016]
In addition, the gas supply device 7 includes a louver 71 for blowing a gas flow from the lower side of the starting member 4 toward the wall surface 2b of the chamber 2 obliquely above to guide the gas flow to the upper side of the chamber 2. . This makes it possible to rectify the gas flow. The gas flowing out from the gas supply device 7 may be any air such as an inert gas such as nitrogen gas, helium gas, argon gas, etc., as long as it is clean and filtered with a filter or the like. .
[0017]
The exhaust hood 8 reciprocates linearly in synchronization with the movement of the oxyhydrogen flame burner 6, and is connected to the outer surface 2 a of the chamber 2 so as to be arranged substantially parallel to the reciprocating linear motion direction of the exhaust hood 8. A reciprocating linear motion is performed by the exhaust moving duct 9 inserted into the exhaust fixing duct 10 to be inserted. Further, the exhaust moving duct 9 is configured by a straight pipe in a portion that linearly moves in the exhaust fixed duct 10 in the reciprocating linear motion direction of the exhaust hood 8. Thereby, it is possible to smoothly move linearly in the exhaust fixing duct 10.
[0018]
Such a moving mechanism (not shown) for moving the exhaust moving duct 9 linearly in the exhaust fixed duct 10 is provided with a rail parallel to the reciprocating linear motion direction of the exhaust hood 8 in the vicinity of the exhaust moving duct 9, for example. In order to synchronize the reciprocating movement of the exhaust moving duct 9 and the oxyhydrogen flame burner 6, a method of moving the exhaust moving duct 9 along the rail through a wheel attached to the exhaust moving duct 9 can be considered. , Each connected to a control device (not shown). Note that this synchronization method is not limited to this, and the synchronization may be performed mechanically.
[0019]
Further, between the exhaust fixing duct 10 and the exhaust moving duct 9 inserted into the exhaust fixing duct 10, the exhaust gas exhausted from the exhaust moving duct 9 enters the chamber 2 through the exhaust fixing duct 10. Exhaust airtight means 11 is provided so as not to return. Thereby, it is possible to prevent undeposited soot (generated glass fine particles) and unreacted glass raw material from floating in the chamber 2. As such an exhaust airtight means 11, for example, a Teflon (registered trademark) cylindrical seal member may be fitted between the exhaust movement duct 9 and the exhaust fixing duct 10.
[0020]
The rotation drive unit 50 of the rotation mechanism 5 rotates the starting member 4 from the outside of the chamber 2, but at this time, each dust in the chamber 2 is prevented from entering the chamber 2 from outside the chamber 2. Each penetration part is air-sealed.
[0021]
The operation of the optical fiber preform manufacturing apparatus 1 configured as described above will be described below.
[0022]
First, the starting member 4 is set on the rotating mechanism 5. The starting member 4 includes a core material and a core material having a thin clad portion as well as the core material. Next, the starting member 4 is rotated by the rotation drive unit 50 of the rotation mechanism 5, and silicon tetrachloride is flame-hydrolyzed by the oxyhydrogen flame burner 6 to generate the outer layer portion 3 made of glass fine particles such as cladding. The glass fine particles generated by the flame hydrolysis are attached to and deposited on the rotating starting member 4, and the oxyhydrogen flame burner 6 is reciprocated linearly in parallel with the axial direction of the starting member 4 so that the glass fine particles are moved to the starting member. The outer layer portion 3 is deposited in the axial direction of 4 as an average to form a cladding portion. As a result, an optical fiber preform made of a soot laminate having a cladding portion can be obtained.
[0023]
Further, each gas supply device 7 installed on both sides of the oxyhydrogen flame burner 6 blows the gas flow from the lower side of the starting member 4 attached to the rotating mechanism 5 toward the wall surface 2b of the chamber 2 obliquely above. In addition, since the gas flow can be guided upward of the chamber 2, the air curtain 70 can be prevented from directly hitting the soot deposit. Accordingly, (1) the air curtain 70 caused by the gas flow of each gas supply device 7 does not directly hit the soot deposit, and the rapid decrease in the flame temperature of the oxyhydrogen flame burner 6 can be eliminated. (2) Since the glass particles from the oxyhydrogen flame burner 6 hit the soot deposit without being blown off, the deposition efficiency is improved. (3) The gas flow of the gas supply device 7 on the wall surface of the chamber 2 Since it is sprayed, the soot adheres to the wall surface is reduced, so that the soot that causes bubbles is reduced and cleaning can be easily performed.
[0024]
【Example】
Furthermore, glass particle deposition experiments were performed under the following conditions, and the examples and comparative examples were compared. In both the examples and the comparative examples, the silicon tetrachloride, oxygen gas, and hydrogen gas supplied to the oxyhydrogen flame burner are supplied in the same amount, and the amount of gas flow ejected from the gas supply device is the same. .
[0025]
Example In the example, a deposition experiment was performed using the manufacturing apparatus 1 shown in FIG.
[0026]
Comparative Example 1
Comparative Example 1 was a manufacturing apparatus 200 </ b> A shown in FIG. 2A, and the gas flow (air) of the gas supply apparatus 202 was blown directly onto the outer layer portion 3 together with the flame of the oxyhydrogen flame burner 201.
[0027]
Comparative Example 2
Comparative Example 2 is a manufacturing apparatus 200B shown in FIG. 2B, in which the gas flow (air) of the gas supply apparatus 202 is blown directly onto the outer layer part 3 together with the flame of the oxyhydrogen flame burner 201, and An air supply port 204 was provided on each of the wall surfaces 203a and 203b to supply clean air that passed through the filter.
[0028]
Comparative Example 3
Comparative Example 3 is a manufacturing apparatus 300 shown in FIG. 2 (c), in which gas supply devices 302 are provided at both ends of the oxyhydrogen flame burner 301, and each gas supply device 302 directly blows a gas flow (air) to the outer layer portion 3. I tried to put it on.
[0029]
As a result of the experiment, in the example, no crack was generated in the soot deposit, the deposition rate was 5.5 g / min, and the contamination in the chamber was small. On the other hand, in Comparative Example 1, cracks occurred during soot deposition, the deposition rate was 3.4 g / min, and there was much dirt in the chamber. In Comparative Example 2, cracks occurred after soot deposition was completed. Generated, the deposition rate was 5.0 g / min, and there was a lot of contamination in the chamber. Further, in Comparative Example 3, no crack was generated in the soot deposit, and the deposition rate was 5.5 g / min. It was confirmed that the contamination in the chamber increased.
[0030]
【The invention's effect】
As is clear from the above description, according to the optical fiber preform manufacturing method and manufacturing apparatus of the present invention, the gas flow of the gas supply device is blown from the lower side of the starting member toward the wall surface of the obliquely upper chamber. In addition, the gas flow of the gas supply device can be guided to the upper side of the chamber, so that the gas flow of the gas supply device does not directly hit the soot deposit. Cracks do not occur, deposition efficiency is improved, and contamination in the chamber is reduced.
[Brief description of the drawings]
1A and 1B are explanatory views showing a preferred embodiment of a method for manufacturing an optical fiber preform and an apparatus for manufacturing the same according to the present invention, in which FIG. 1A is an explanatory view, and FIG. 1B is a side view in section of FIG. .
FIG. 2 is an explanatory diagram showing a comparative example based on a deposition experiment.
3A and 3B are explanatory views showing a conventional optical fiber preform manufacturing method, in which FIG. 3A is a diagram in the case where the diameter of the soot laminate is small, and FIG. 3B is a diagram in the case where the diameter of the soot laminate is large.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Manufacturing apparatus of optical fiber preform 2 ... Chamber 3 ... Outer layer 4 ... Starting material 6 ... Oxyhydrogen flame burner 7 ... Gas supply device 71 ... Louver

Claims (3)

チャンバー内で水平に保持された出発部材上に、酸水素火炎バーナーで四塩化ケイ素を火炎加水分解させて生成するガラス微粒子を堆積させることにより外層部を成膜して光ファイバ用母材を形成するにあたり、ガス供給装置でガス流を前記出発部材の下方から前記チャンバーの上方に向けて吹きつけて前記ガラス微粒子を堆積させるOVD法による光ファイバ用母材の製造方法において、
前記ガス供給装置の前記ガス流を前記出発部材の下方から斜め上方の前記チャンバーの壁面に向けて吹きつけて前記ガス供給装置の前記ガス流によるエアカーテンを前記チャンバーの上方へと導くことを特徴とする光ファイバ用母材の製造方法。
Optical fiber preform is formed by depositing glass fine particles generated by flame hydrolysis of silicon tetrachloride with an oxyhydrogen flame burner on a starting member held horizontally in the chamber. In doing so, in the method of manufacturing an optical fiber preform by the OVD method in which a gas flow is blown from the lower side of the starting member toward the upper side of the chamber to deposit the glass particles.
The gas flow of the gas supply device is blown from the lower side of the starting member toward the wall surface of the chamber obliquely above to guide the air curtain by the gas flow of the gas supply device to the upper side of the chamber. The manufacturing method of the optical fiber preform.
チャンバー内で水平に保持された出発部材上に、当該出発部材の下方に設置された酸水素火炎バーナーで四塩化ケイ素を火炎加水分解させて生成するガラス微粒子を堆積させることにより外層部を成膜して光ファイバ用母材を形成するにあたり、ガス供給装置でガス流を前記出発部材の下方から前記チャンバーの上方に向けて吹きつけて前記ガラス微粒子を堆積させるOVD法による光ファイバ用母材の製造装置において、
前記ガス供給装置は、前記ガス供給装置の前記ガス流を前記出発部材の下方から斜め上方の前記チャンバーの壁面に向けて吹きつけて前記ガス供給装置の前記ガス流によるエアカーテンを前記チャンバーの上方へと導くように、前記出発部材の軸方向から見て前記酸水素火炎バーナーの両側にそれぞれ設置されていることを特徴とする光ファイバ用母材の製造装置。
On the starting member held horizontally in the chamber, the outer layer portion is formed by depositing glass fine particles generated by flame hydrolysis of silicon tetrachloride with an oxyhydrogen flame burner installed below the starting member. and in forming a preform for optical fibers, optical fiber preform by OVD method in which by blowing toward the gas flow from the lower side of the starting member by a gas supply device above the chamber depositing the glass particles In manufacturing equipment,
The gas supply device, above the said chamber an air curtain by the gas flow of the gas supply device blown toward the gas flow on the wall of the chamber obliquely upward from below the said starting member of the gas supply device The optical fiber preform manufacturing apparatus is installed on both sides of the oxyhydrogen flame burner as viewed from the axial direction of the starting member .
前記ガス供給装置は、前記ガス供給装置の前記ガス流を前記出発部材の下方から斜め上方の前記チャンバーの壁面に向けて吹きつけて前記ガス供給装置の前記ガス流によるエアカーテンを前記チャンバーの上方へと導くためのルーバを備えていることを特徴とする請求項2記載の光ファイバ用母材の製造装置。The gas supply device, above the said chamber an air curtain by the gas flow of the gas supply device blown toward the gas flow on the wall of the chamber obliquely upward from below the said starting member of the gas supply device 3. The optical fiber preform manufacturing apparatus according to claim 2, further comprising a louver for guiding the optical fiber.
JP2002198870A 2002-07-08 2002-07-08 Optical fiber preform manufacturing method and manufacturing apparatus thereof Expired - Fee Related JP3968451B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002198870A JP3968451B2 (en) 2002-07-08 2002-07-08 Optical fiber preform manufacturing method and manufacturing apparatus thereof
CNB031451144A CN1277773C (en) 2002-07-08 2003-06-19 Method for producing primary product of optic-fibre and its producing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002198870A JP3968451B2 (en) 2002-07-08 2002-07-08 Optical fiber preform manufacturing method and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2004035376A JP2004035376A (en) 2004-02-05
JP3968451B2 true JP3968451B2 (en) 2007-08-29

Family

ID=31492026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002198870A Expired - Fee Related JP3968451B2 (en) 2002-07-08 2002-07-08 Optical fiber preform manufacturing method and manufacturing apparatus thereof

Country Status (2)

Country Link
JP (1) JP3968451B2 (en)
CN (1) CN1277773C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748758B2 (en) * 2004-03-18 2011-08-17 信越化学工業株式会社 Porous glass base material manufacturing equipment
JP5691325B2 (en) * 2010-09-14 2015-04-01 住友電気工業株式会社 Porous glass base material manufacturing apparatus and porous glass base material manufacturing method
CN106904823B (en) * 2017-02-28 2019-04-16 天津富通集团有限公司 The production technology and its large-scale optical fiber prefabricating stick of large-scale optical fiber prefabricating stick
JP6793676B2 (en) * 2018-04-02 2020-12-02 信越化学工業株式会社 Manufacturing equipment and manufacturing method for porous glass base material for optical fibers
CN110950528A (en) * 2019-12-12 2020-04-03 烽火通信科技股份有限公司 Device and method for preparing loose body of optical fiber preform rod by VAD
JP7428632B2 (en) 2020-12-14 2024-02-06 信越化学工業株式会社 Manufacturing method and manufacturing device for porous glass base material

Also Published As

Publication number Publication date
JP2004035376A (en) 2004-02-05
CN1473781A (en) 2004-02-11
CN1277773C (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JP3968451B2 (en) Optical fiber preform manufacturing method and manufacturing apparatus thereof
CN111517633B (en) Use method of high-speed deposition device for overcladding loose body of optical fiber preform
JP2006248884A (en) Method and apparatus for manufacturing porous glass preform
KR101157662B1 (en) Fabrication Apparatus of Porous Glass preform and Glass Preform For Optical Fiber Fabricated Thereby
CN1235821C (en) Outside vapor deposition apparatus for making optical fiber preform and method for making optical fiber preform using the same
JP4926165B2 (en) Optical fiber preform manufacturing method and apparatus using high frequency induction thermal plasma torch
JP2003073131A (en) Method for producing glass microparticle deposit
JP2000313625A (en) Apparatus for producing porous glass preform
US8387416B2 (en) Device and method for manufacturing a preform for optical fibres by chemical vapour deposition
JP3651129B2 (en) Optical fiber preform manufacturing apparatus and manufacturing method
KR100630117B1 (en) Optical vapor deposition apparatus for optical preform
JP5416076B2 (en) Optical fiber preform manufacturing method
JPH11157865A (en) Production of large-diameter optical fiber preform
JP4434083B2 (en) Manufacturing apparatus and manufacturing method of glass fine particle deposit
JPH1072231A (en) Apparatus for producing optical fiber preform and production thereof
JP5655418B2 (en) Method and apparatus for producing porous glass base material
JP3154768B2 (en) Manufacturing method of preform preform for optical fiber
JPH06122528A (en) Production of porous preform for optical fiber
JP2004131303A (en) Exhaust hood apparatus, exhaust method and process for manufacturing glass preform
JPH09124333A (en) Production of preform for optical fiber
JP2004231465A (en) Method and apparatus for manufacturing porous glass fine particle deposit
JPH07101744A (en) Method for synthesizing porous preform for optical fiber and device therefor
EP1412298B1 (en) Device and method for manufacturing a preform for optical fibres by chemical vapour deposition
JPH09188522A (en) Torch for synthesizing glass fine particle
JP2005194135A (en) Method for manufacturing porous preform for optical fiber and glass preform

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3968451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees