JP2004131303A - Exhaust hood apparatus, exhaust method and process for manufacturing glass preform - Google Patents

Exhaust hood apparatus, exhaust method and process for manufacturing glass preform Download PDF

Info

Publication number
JP2004131303A
JP2004131303A JP2002294597A JP2002294597A JP2004131303A JP 2004131303 A JP2004131303 A JP 2004131303A JP 2002294597 A JP2002294597 A JP 2002294597A JP 2002294597 A JP2002294597 A JP 2002294597A JP 2004131303 A JP2004131303 A JP 2004131303A
Authority
JP
Japan
Prior art keywords
gas
exhaust
exhaust hood
opening
hood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002294597A
Other languages
Japanese (ja)
Other versions
JP4096684B2 (en
Inventor
Takashi Kogo
向後 隆司
Tomomi Moriya
守屋 知巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002294597A priority Critical patent/JP4096684B2/en
Publication of JP2004131303A publication Critical patent/JP2004131303A/en
Application granted granted Critical
Publication of JP4096684B2 publication Critical patent/JP4096684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust hood apparatus which inhibits attachment of soot-like glass fine particles or other foreign matters to its exhaust hood to prevent the foreign matters from dropping, an exhaust method and a process for manufacturing a glass preform. <P>SOLUTION: The exhaust hood apparatus used in the exhaust method has a rectangular aperture F and a shape which broadens from an exhaust pipe orifice G toward the aperture. The apparatus is equipped with gas-feeding means which blow a gas P from the aperture toward the exhaust pipe orifice along the inner wall of the exhaust hood. The gas-feeding means on two adjacent sides blow the gas P at different flow rates, or one of the gas-feeding means on two adjacent sides at the corner of the aperture stops blowing the gas. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス母材等の製造過程で発生する排出すべき浮遊ガラス微粒子やガス気体を排出する排気フード装置及び排気方法並びにガラス母材の製造方法に関する。
【0002】
【従来の技術】
光ファイバ用のガラス母材は、例えば、反応炉内でガラス原料ガスを火炎加水分解させてガラス微粒子を生成し、これを出発ガラスロッド等に堆積させてガラス微粒子堆積体(多孔質ガラス母材)とし、これを脱水、燒結して透明ガラス化して製造される。また、ガラス微粒子堆積体の製造には、VAD法(気相軸付法)、OVD法(外付け気相蒸着法)等が知られている。
【0003】
図5は、OVD法を用いたガラス微粒子堆積体の製造例を示す図で、図5(A)は反応炉の概略を示す図、図5(B)は排気フードの一例を示す図である。図中、1は反応炉、2はバーナ、3はバーナ駆動部、4はガラスロッド駆動部、5は出発ガラスロッド、6はガラス微粒子堆積体、7は排気フード、8は排気管、9はダンパを示す。
【0004】
ガラス微粒子堆積体6の製造に際して、先ず、出発ガラスロッド5がガラスロッド駆動部4に取付けられ、回転可能とされる。次いで、バーナからSiCl,GeCl等のガラス原料ガス及びHガス,Oガス等の燃焼用ガスが出発ガラスロッド5の外周に吹付けられる。ガラス原料ガスの火炎加水分解によりガラス微粒子が生成され、生成されたガラス微粒子は出発ガラスロッド5上に堆積される。バーナ2を出発ガラスロッド5の長手方向に所定の回数往復移動させることにより、所望の外径のガラス微粒子堆積体6が作製される。
【0005】
上記の製造過程で、ガラス原料ガスの加水分解により塩酸ガスが発生し、反応炉外に排気する必要がある。また、生成された全てのガラス微粒子が堆積されるわけではなく、堆積されなかったガラス微粒子は、反応炉1内で浮遊する。この浮遊状態にあるガラス微粒子が堆積の終えたガラス微粒子堆積体6に再付着するのを防止するために反応炉外に排気する必要がある。
【0006】
このため、反応炉1には、排気管口から開口側に向けて末広がり形状の排気フード7が設けられる(例えば、特許文献1参照)。排気フード7は、例えば、図5(A)に示すように、ガラス微粒子堆積体6に沿って開口側の面積を大きくし、排気管側にダンパ9を取付けた複数の排気管8を設ける。バーナ2の移動に同期させて順次ダンパ9を開閉することにより、排気フード7を移動させることなく固定状態で排気する。
【0007】
【特許文献1】
特開平7−172859号公報
【0008】
【発明が解決しようとする課題】
しかしながら、図5(B)に示すように、排気フード7の内側壁面7aには、吸引により浮遊中のガラス微粒子やガスが当たり、これらが次第にスス状に付着した状態となる。前記特許文献1のように、排気フード7を固定して動かさないようにして使用したとしても、排気フード7に付着したスス状のガラス微粒子が堆積中のガラス微粒子堆積体6上に落下することがある。これにより、ガラス微粒子堆積体6を脱水、透明ガラス化したガラス母材内に、異物あるいは気泡として残り、光ファイバとしたときに光学特性や強度を低下させる原因になるという問題があった。
【0009】
反応炉1内では、バーナ2の移動やガラス微粒子堆積体6の回転駆動がなされ、排気による気体流も生じており、これらによる振動がガラス微粒子の堆積中に常時生じている。また、排気フード7自体は、加熱、冷却による膨張収縮サイクルを受けており、排気フード7に付着するガラス微粒子等の異物の量が多くなると自然落下もある。したがって、排気フード7にガラス微粒子等の異物が付着する状態下で使用される限り、振動や膨張収縮サイクルにより、ガラス微粒子が剥がれ落ちる恐れがあり、排気フードを固定状態にして使用するだけでは十分な解決にはならない。
【0010】
本発明は、上述した実情に鑑みてなされたもので、排気フードにスス状のガラス微粒子やその他異物が付着しないようにすることにより、異物落下の生じない排気フード装置及び排気方法並びにガラス母材の製造方法を提供することを課題とする。
【0011】
【課題を解決するための手段】
本発明による排気フード装置又は排気方法は、開口面が矩形状であり排気管口から開口側に向けて末広がり形状の排気フード装置であって、開口側から排気管口に向けて排気フード内壁面に沿って気体を吹出す気体供給手段を備え、隣り合う2辺の気体供給手段からの吹出し気体の流速を異ならせるか、又は、開口側の隅部で隣り合う2辺の一方の気体供給手段からの気体吹き出しを停止させるようにしたものである。
【0012】
また、本発明によるガラス母材の製造方法は、開口面が矩形状であり排気管口から開口側に向けて末広がり形状の排気フードの開口側から排気管口に向けて排気フード内壁面に沿って気体を吹出させ、隣り合う2辺の吹出し気体の流速を異ならせて排気するか、又は、開口側の隅部で隣り合う2辺の一方の気体吹き出しを停止させて排気し、ガラス母材の製造過程で生じる浮遊ガラス微粒子又はガス気体を排出するようにするものである。
【0013】
【発明の実施の形態】
図1により、本発明による排気フード装置の実施形態の概略を説明する。図1(A)は排気フードを2重壁で形成した例を示す図、図1(B)は排気フードの外周に管状体を設けた例を示す図である。図中、10a,10bは排気フード、11はフード本体、12はフード外側壁、13は間隙、13aは気体吹出し口、14は気体供給口、15は排気管、16は管状体、16aは気体吹出し口、Fは開口面、Gは排気管口、Pは吹出し気体、Qは排気気体を示す。
【0014】
排気フード10a,10bは、開口面Fが矩形状であり、排気管口Gから開口面F側に向けて末広がり形状のものを対象とする。なお、開口面Fは正方形又は長方形の矩形状で形成されるが、角部は丸みを持たせて円弧状に形成されたものであってもよい。排気フード10a,10bは、フード本体11の内側壁面を吸込み面とし、中央に設けた排気管15から排気される構成である。本発明においては、フード本体11の開口面F側の周縁から内側壁面に沿って吹出し気体が供給されるように、気体供給手段を備えている。供給される吹出し気体としては、単なる空気であってもよく、その他不活性ガスであってもよいが、粉塵等を含まない清浄気体であることが好ましい。
【0015】
図1(A)に示す排気フード10aは、フード本体11の外側に外側壁12を設けて、2重壁の構造とした例である。フード本体11と外側壁12との間にできる間隙13を、気体供給手段としたもので、フード本体11の開口面F側の周縁に外側壁12の下部周縁を折り返す形状として、気体吹出し口13aを形成する。気体吹出し口13aは、スリット状の連続的に開口する形状であってもよいが、適当な間隔で開けられた孔形状であってもよい。ただ、いずれの場合も吹出し気体Pがフード本体11の開口面F側の周縁から内側壁面に沿って排気管口Gに向かうように形成する。
【0016】
また、フード本体11と外側壁12との間にできる間隙13は、仕切り壁等を用いて複数に分割する構成で合ってもよい。仕切り壁により吹出し気体Pの流路を分割することにより、気体流速を吹出し位置によって異ならせることができる。吹出し気体Pを供給する気体供給口14は、外側壁12の中央寄りの適当な位置に設ける。また、前記のように流路を分割した場合は、それぞれの流路に対して気体供給口14を設ける。
【0017】
図1(B)に示す排気フード10bは、フード本体11の開口面F側の周縁に管状体16を取付ける構造とした例である。管状体16の断面は図に示すような円形であってもよく、矩形状であってもよい。この例は、管状体16を気体供給手段としたもので、フード本体11の開口面F側の周縁に沿って気体吹出し口16aを形成する。気体吹出し口16aは、スリット状の連続的に開口する形状であってもよいが、適当な間隔で開けられた孔形状であってもよい。ただ、いずれの場合も吹出される気体がフード本体11の開口面F側の周縁から内側壁面に沿って排気管口Gに向かうように形成する。
【0018】
また、管状体16を複数に分割し、それぞれの管状体16に別々に吹出し気体を供給し、気体流速を吹出し位置によって異ならせることができる。吹出し気体を供給する気体供給口14は、それぞれの管状体16の適当な位置に設ける。
【0019】
上述の如くに構成された排気フード10aあるいは10bを用い、気体供給口14から吹出し気体を供給し、気体吹出し口13aあるいは16aから吹出し気体Pを吹出させる。吹出し気体Pはフードの内側壁面に沿って排気管15に向かって吸込まれると同時に、浮遊微粒子やガス等の排気気体Qも排気管15に吸込まれる。排出される浮遊微粒子や排気気体Qは、吹出し気体Pによってフードの内側壁面に直接当たるのを阻止するか又は緩和されて、浮遊微粒子がフードの内側壁面に付着するのを防止する。
【0020】
図2は、長方形状の開口面を有する排気フードの例を示す図で、図2(A)はフードを下面側から見た図、図2(B)は長辺側の側面図、図2(C)は短辺側の側面図を示す。図中、17はフード開口面の長辺、18はフード開口面の短辺、P1は長辺側からの吹出し気体、P2は短辺側からの吹出し気体、θ1,θ2はフードの傾斜角度を示す。なお、長辺17側の傾斜角度θ1は、短辺18側の傾斜角度θ2より大きい角度となる。
【0021】
図2(A)に示すように、フード開口面の4辺から吹出し気体を、各辺均一な流速で各辺に直交する方向で一様に吹出させると、2辺が交差する隅部の領域Sにおいて、吹出し気体が互いにぶつかり合う状態が生じる。吹出し気体が互いにぶつかり合うと、吹出し気体流に乱れを生じ、排気管口方向に向かって吸引されつつある浮遊微粒子を吹飛ばし、スムーズな排出を阻害する恐れがある。また、旋盤を用いてガラス母材を火炎で加熱する装置において、排気フードはガラス母材の真上に配して使用されるが、吹出し気体の乱れは火炎に揺らぎを生じさせる恐れがある。
【0022】
本発明の第1の実施形態として、隣り合う2辺の吹出し気体P1とP2の流速を異ならせることにより、吹出し気体がぶつかり合う状態の発生を軽減している。例えば、長辺17側から吹出す気体P1の流速をV1とし、短辺18側から吹出す気体P2の流速をV2としたとき、V2>V1とする。これにより、吹出し気体P1とP2がぶつかる領域Sでは、流速の速い方の吹出し気体P2が支配的となり、遅い方の吹出し気体P1がこれに従う形態となって、吹出し気体P1とP2とがぶつかることによる気体流の乱れを軽減することができる。また、異ならせる流速の比V2/V1は1.5以上とするのが望ましい。
【0023】
また、図2のように、開口面が長辺17と短辺18で形成される矩形状の末広がり排気フードである場合は、排気管15から距離の長い短辺18側(傾斜角度θ2)からの吹出し気体P2の流速V2を、排気管15から距離が短い長辺17側(傾斜角度θ1)からの吹出し気体P1の流速V1よりも速くするのが望ましい。排気管15から距離が長く傾斜角度も小さくなる短辺18側からの吹出し気体P2の流速V2を、長辺17側のそれより遅くすると、浮遊微粒子が吹出し気体P2に混入して付着する確率が大きくなる。
【0024】
また、短辺18側のフードの傾斜角度θ2は、45度以下で形成するのが好ましい。更に、(長辺の長さ/短辺の長さ)が1.5以上とすると、上述した効果は顕著に表れる。また、吹出し気体の温度は、室温より高く、対象とする局所排気の加熱源からの気流温度より低い温度とするのが好ましい。
【0025】
図3は第2の実施形態を示す図で、フードを下面側から見た図のみを示す。図中の符号は図2と同じ符号を用いることにより説明を省略する。図3の形態は、形状、構造は図2と同じであるが、隣り合う2辺の隅部で、一方の辺の気体吹出しを停止させることにより、気体がぶつかり合う状態の発生を軽減している。例えば、長辺17側の両端部分の気体吹き出し口を封鎖する。これにより、長辺17側から吹出す気体P1と短辺側18から吹出す気体P2とがぶつかり合う領域Sでは、短辺側18からの吹出し気体P2のみとなり、気体流の乱れを軽減することができる。
【0026】
開口面Fが長辺と短辺の長方形で形成されている場合は、長辺17側の端部分で気体吹き出し口を封鎖するのが好ましく、正方形の場合は長辺17側、短辺18側の何れの側であってもよい。また、上述のように、隣り合う2辺の隅部で、一方の辺の気体吹出し停止した場合、隣り合う2辺からの吹出し気体の流速を変える必要はなく、同じとしてもよい。しかし長辺17側の吹き出し気体P1と短辺側18から吹出す気体P2を、図2の形態と同様に異ならせてもよい。
【0027】
図4は、本発明による排気フード装置をガラス母材の製造に適用した例を示す図である。図4(A)はガラス微粒子堆積体を製造する例を示す図、図4(B)は旋盤を用いてガラス母材を加熱加工する例を示す図である。図中の符号は、既に使用した符号と同じ符号を用いることにより説明を省略する。
【0028】
図4(A)に示すように、ガラス微粒子堆積体6の製造に際して、図5で説明したのと同様に、先ず、出発ガラスロッド5がガラスロッド駆動部4に取付けられ、回転可能とされる。次いで、バーナからSiCl等のガラス原料ガス及びHガス,Oガス等の燃焼用ガスが吹出され、ガラス原料ガスの火炎加水分解によりガラス微粒子が生成され、生成されたガラス微粒子は出発ガラスロッド5上に堆積される。バーナ2を出発ガラスロッド5の長手方向に所定の回数往復移動させることにより、所望の外径のガラス微粒子堆積体6が作製される。
【0029】
上記の製造過程で生じるガラス原料ガスの加水分解による塩酸ガス、及び、堆積されなかった浮遊状態にあるガラス微粒子を、排気フード10aにより炉外に排出する。排気フード10aは、開口面が矩形状であり排気管15側から開口側に向けて末広がり形状で形成される。図1で説明したように、排気フード10aの開口側の気体吹出し口13aから排気管15側に向けて排気フード本体11の内壁面に沿って気体を吹出させる。気体の吹出しに際して、開口面の隣り合う2辺の吹出し気体の流速を異ならせて排気するか、又は、開口側の隅部で隣り合う2辺の一方の気体吹き出しを停止して排気する。
【0030】
上述した排気フード装置と排気方法を用いることにより、反応炉1内に浮遊するガラス微粒子が、排気フード10aのフード内壁面にスス状になって付着するのを効果的に防止する。このため、排気フードからの異物の落下がなく、異物あるいは気泡が存在しない高品質のガラス母材の作製が可能となる。
【0031】
また、図4(B)に示すように、透明ガラス化されたガラス母材の表面を火炎研磨で加工する場合、ガラスロッドをガラス管に入れてバーナ加熱でコラプスし一体化するガラス母材の製造、ガラス母材をバーナで加熱して延伸する場合など、各種の排気を必要とするガラス母材の製造に用いることができる。これらの製造においても、排気フード10aのフード内壁面にスス状になってガラス微粒子等の異物が付着するのを効果的に防止し、加工中のガラス母材上への異物の落下付着がなくなり、高品質のガラス母材の作製が可能となる。
【0032】
上述の排気フード装置の効果を確認するため、図4(B)の旋盤装置を用いた実施形態で、以下に示す実施例と比較例で評価を行なった。評価に用いた旋盤装置の長さMは2.5m、奥行き0.7mである。排気フードの本体はステンレスで形成し、排気フードの設置高さTは旋盤装置の据付面から2.0mの位置とし、排気フードの長辺Lを3.0m、奥行きを1.0m、排気管内径Dを0.25m、短辺側の傾斜角θ2を30°〜60°で選定した。
【0033】
また、排気管からの排気量を90m/分、気体吹出し口からの気体吹出し量を30m/分とし、気体吹出し口は10mm間隔で吹出し孔を形成し、吹出し孔径(直径)を4mm〜6mmで選定した。上記の条件で、ガラス管をバーナで加熱し、1ヶ月間稼働させ、排気フード内壁面へのガラス微粒子の付着状態を調べた。
【0034】
(実施例1)
排気フード開口面の長辺側の吹出し孔径を5.5mm、短辺側の吹出し孔径を4.5mmとし、図2に示す短辺18側から吹出る気体の流速V2を長辺17側から吹出る気体の流速V1の1.5倍になるように設定した。また、長辺側の吹出し孔径を6.0mm、短辺側の吹出し孔径を4.0mmとした。何れの場合も、排気フード内壁面へのガラス微粒子の付着はなかった。
【0035】
(実施例2)
実施例1と同様に、排気フード開口面の長辺側の吹出し孔径を5.5mm、短辺18側の吹出し孔径を4.5mmとし、短辺から吹出る気体の流速V2を長辺側から吹出る気体の流速V1の流速の1.5倍になるように設定した。また、排気フードの短辺側傾斜角θ2を変えて行なったところ、傾斜角θ2を45°以下とすることにより、短辺側からの吹出し気体の流速を長辺側からの吹出し流速より大きくすることによる効果を確認することができた。しかし、45°超では、吹出し気体の流速比を変えても差が見られなかった。
【0036】
(実施例3)
図3に示すように、長辺17側の両端部分を0.5mずつ封鎖して、この部分からの気体の吹出しを停止させた。また、長辺側及び短辺側からの吹出し気体の流速は同じとした。この結果、実施例1と同様に排気フード内壁面へのガラス微粒子の付着はなかった。
【0037】
(実施例4)
短辺側の吹出し孔径を4.6mm、長辺側の吹出し孔径を5.4mmとし、流速比が約1.4倍となるようにした。この場合も、開口側の4隅部分で0.5mm程度のガラス微粒子の付着が生じていたが、バーナ火炎に揺らぎはほとんどなかった。
【0038】
(比較例1)
気体吹出し口からの気体吹出し量30m/分を取止め、その他は実施例1と同じ条件で排気を行なった。この結果、排気フード内壁面に2〜3mmのガラス微粒子の付着が生じていた。また、付着の一部が落下していた。
【0039】
(比較例2)
吹出し孔径を、長辺側及び短辺側のいずれも5.0mmとし、吹出し気体の流速V1とV2を同じとし、その他の条件は、実施例1と同じとした。この結果、開口側の4隅部分で、1.0mm程度のガラス微粒子の付着が生じていたが、その他の部分にガラス微粒子の付着はなかった。また、フードの長辺側の両端位置で、バーナ火炎に多少の揺らぎが見られた。
【0040】
以上の結果を総合的に見ると、比較例1及び比較例2から、開口面の周縁から気体を排気管口に向けて吹出させることにより、フード内壁面へのガラス微粒子の付着を防止に有効なことは明らかであった。しかし、開口面が矩形状である場合、開口側4隅の隣り合う2辺からの吹出し気体がぶつかり合う部分で、多少の異物付着が生じ、また、バーナ使用に対しては火炎に揺らぎを生じさせることがあり、完全ではない。これに対し、隣り合う2辺の流速を異ならせ、又は、開口側の4隅部分で隣り合う2辺の一方の辺の気体吹出しを停止させることは、極めて有効であることが判明した。
【0041】
【発明の効果】
上述したように、本発明によれば、フード壁面にスス状のガラス微粒子やその他異物の付着を効果的に防止することができる。この結果、ガラス母材等の製造中にフード壁面からの異物混入をなくすことが可能となり、高品質で信頼性のある製品を製造することができる。
【図面の簡単な説明】
【図1】本発明による排気フード装置の概略を説明する図である。
【図2】本発明による排気フード装置及び排気方法の第1の実施形態を説明する図である。
【図3】本発明による排気フード装置及び排気方法の第2の実施形態を説明する図である。
【図4】本発明によるガラス母材の製造方法を説明する図である。
【図5】従来の技術を説明する図である。
【符号の説明】
1…反応炉、2…バーナ、3…バーナ駆動部、4…ガラスロッド駆動部、5…出発ガラスロッド、6…ガラス微粒子堆積体、8排気管、9…ダンパ、7,10a,10b…排気フード、11…フード本体、12…フード外側壁、13…間隙、13a…気体吹出し口、14…気体供給口、15…排気管、16…管状体、16a…気体吹出し口、17…フード開口面の長辺、18…フード開口面の短辺、F…開口面、G…排気管口、P…吹出し気体、Q…排気気体、P1…長辺側の吹出し気体、P2…短辺側の吹出し気体、θ1,θ2…フードの傾斜角度。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust hood device, an exhaust method, and a method of manufacturing a glass base material for discharging floating glass particles and gaseous gas to be discharged generated in a process of manufacturing a glass base material and the like.
[0002]
[Prior art]
A glass base material for an optical fiber is produced, for example, by subjecting a glass raw material gas to flame hydrolysis in a reaction furnace to generate glass fine particles, and depositing the glass fine particles on a starting glass rod or the like to form a glass fine particle deposit (porous glass base material). ), Which is dehydrated and sintered to produce a transparent glass. In addition, a VAD method (a gas-phase shaping method), an OVD method (an external gas-phase vapor deposition method), and the like are known as methods for manufacturing a glass fine particle deposit.
[0003]
FIG. 5 is a diagram showing an example of manufacturing a glass particle deposit using the OVD method. FIG. 5 (A) is a diagram showing an outline of a reaction furnace, and FIG. 5 (B) is a diagram showing an example of an exhaust hood. . In the figure, 1 is a reaction furnace, 2 is a burner, 3 is a burner driving unit, 4 is a glass rod driving unit, 5 is a starting glass rod, 6 is a glass particle deposit, 7 is an exhaust hood, 8 is an exhaust pipe, 9 is Shows a damper.
[0004]
At the time of manufacturing the glass particle deposit body 6, first, the starting glass rod 5 is attached to the glass rod driving unit 4 and is rotatable. Next, a glass source gas such as SiCl 4 and GeCl 4 and a combustion gas such as H 2 gas and O 2 gas are sprayed from the burner to the outer periphery of the starting glass rod 5. Fine glass particles are generated by flame hydrolysis of the glass raw material gas, and the generated fine glass particles are deposited on the starting glass rod 5. By reciprocating the burner 2 a predetermined number of times in the longitudinal direction of the starting glass rod 5, a glass particle deposit 6 having a desired outer diameter is produced.
[0005]
In the above manufacturing process, hydrochloric acid gas is generated by hydrolysis of the glass raw material gas, and it is necessary to exhaust the gas outside the reaction furnace. Also, not all the generated glass particles are deposited, and the glass particles that are not deposited float in the reaction furnace 1. In order to prevent the glass particles in a floating state from re-adhering to the deposited glass particle stack 6, it is necessary to exhaust the gas to the outside of the reactor.
[0006]
Therefore, the reactor 1 is provided with an exhaust hood 7 having a divergent shape from the exhaust pipe opening toward the opening side (for example, refer to Patent Document 1). For example, as shown in FIG. 5A, the exhaust hood 7 is provided with a plurality of exhaust pipes 8 having a larger opening area along the glass particle deposit body 6 and a damper 9 attached to the exhaust pipe side. By opening and closing the damper 9 sequentially in synchronization with the movement of the burner 2, the exhaust hood 7 is exhausted in a fixed state without moving.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 7-172859
[Problems to be solved by the invention]
However, as shown in FIG. 5 (B), the floating glass particles and gas hit the inner wall surface 7a of the exhaust hood 7 by suction, and these gradually become soot-like. Even if the exhaust hood 7 is fixed and not moved as in Patent Document 1, the soot-like glass fine particles adhering to the exhaust hood 7 may fall onto the glass fine particle depositing body 6 being deposited. There is. As a result, there is a problem in that the glass fine particle deposit 6 remains as debris or air bubbles in the glass base material obtained by dehydrating and vitrifying the glass so as to cause a reduction in optical characteristics and strength when formed into an optical fiber.
[0009]
In the reaction furnace 1, the burner 2 is moved and the glass particle deposit body 6 is driven to rotate, so that a gas flow is generated by the exhaust gas, and the vibration due to these is constantly generated during the deposition of the glass particle. Further, the exhaust hood 7 itself has undergone an expansion / contraction cycle due to heating and cooling, and if the amount of foreign matter such as glass particles attached to the exhaust hood 7 increases, the exhaust hood 7 may fall naturally. Therefore, as long as the exhaust hood 7 is used in a state in which foreign matter such as glass particles adheres, there is a possibility that the glass particles may peel off due to vibration and expansion / shrinkage cycles. There is no solution.
[0010]
The present invention has been made in view of the above-described circumstances, and has an exhaust hood device, an exhaust method, and a glass base material that do not cause foreign matters to fall by preventing soot-like glass particles and other foreign matters from adhering to the exhaust hood. It is an object of the present invention to provide a method for manufacturing the same.
[0011]
[Means for Solving the Problems]
An exhaust hood device or an exhaust method according to the present invention is an exhaust hood device having an opening surface having a rectangular shape and diverging from an exhaust pipe opening toward the opening side, and an exhaust hood inner wall surface extending from the opening side toward the exhaust pipe opening. Gas supply means for blowing gas along the air supply means, the flow rates of the blown gas from two adjacent gas supply means are made different, or one of two adjacent gas supply means at the corner on the opening side This is to stop the gas blowing from the air.
[0012]
Further, in the method for manufacturing a glass base material according to the present invention, the opening surface is rectangular and extends from the exhaust pipe opening toward the opening side. To discharge the gas at different flow rates of the blowing gas on two adjacent sides, or to stop and discharge the gas blowing on one of the two adjacent sides at the corner on the opening side, and to exhaust the glass base material. In this case, floating glass particles or gaseous gas generated in the production process of the above are discharged.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 schematically illustrates an exhaust hood device according to an embodiment of the present invention. FIG. 1A is a diagram showing an example in which the exhaust hood is formed by a double wall, and FIG. 1B is a diagram showing an example in which a tubular body is provided on the outer periphery of the exhaust hood. In the figure, 10a and 10b are exhaust hoods, 11 is a hood main body, 12 is a hood outer wall, 13 is a gap, 13a is a gas outlet, 14 is a gas supply port, 15 is an exhaust pipe, 16 is a tubular body, 16a is gas An outlet, F is an opening surface, G is an exhaust pipe opening, P is an outlet gas, and Q is an exhaust gas.
[0014]
The exhaust hoods 10a and 10b have an opening surface F of a rectangular shape and are divergent from the exhaust pipe opening G toward the opening surface F. Although the opening surface F is formed in a square or rectangular shape, the corners may be rounded and formed in an arc shape. The exhaust hoods 10a and 10b are configured such that the inner wall surface of the hood main body 11 is used as a suction surface and exhaust is performed from an exhaust pipe 15 provided at the center. In the present invention, a gas supply unit is provided so that the blown gas is supplied from the peripheral edge of the hood main body 11 on the opening surface F side along the inner wall surface. The blown gas to be supplied may be simple air or other inert gas, but is preferably a clean gas containing no dust or the like.
[0015]
The exhaust hood 10a shown in FIG. 1A is an example in which an outer wall 12 is provided outside a hood main body 11 to have a double wall structure. The gap 13 formed between the hood main body 11 and the outer wall 12 is used as a gas supply means, and has a shape in which the lower peripheral edge of the outer wall 12 is folded back on the peripheral edge of the hood main body 11 on the opening surface F side, so that the gas outlet 13 a To form The gas outlet 13a may have a slit-like shape that continuously opens, or may have a hole shape that is opened at an appropriate interval. However, in any case, the blowout gas P is formed so as to go from the peripheral edge of the hood body 11 on the opening surface F side to the exhaust pipe port G along the inner wall surface.
[0016]
The gap 13 formed between the hood main body 11 and the outer wall 12 may be divided into a plurality of parts by using a partition wall or the like. By dividing the flow path of the blown gas P by the partition wall, the gas flow velocity can be varied depending on the blow position. The gas supply port 14 for supplying the blown gas P is provided at an appropriate position near the center of the outer wall 12. When the flow paths are divided as described above, a gas supply port 14 is provided for each flow path.
[0017]
The exhaust hood 10b shown in FIG. 1B is an example in which a tubular body 16 is attached to a peripheral edge of the hood main body 11 on the opening surface F side. The cross section of the tubular body 16 may be circular as shown in the figure or rectangular. In this example, the tubular body 16 is used as gas supply means, and a gas outlet 16a is formed along the periphery of the hood main body 11 on the opening surface F side. The gas outlet 16a may have a slit-shaped continuous opening shape, or may have a hole shape formed at an appropriate interval. However, in any case, the gas to be blown out is formed so as to go from the peripheral edge on the opening surface F side of the hood main body 11 to the exhaust port G along the inner wall surface.
[0018]
Further, the tubular body 16 can be divided into a plurality of parts, and the blowout gas can be separately supplied to each of the tubular bodies 16 so that the gas flow rate can be varied depending on the blowout position. A gas supply port 14 for supplying the blown gas is provided at an appropriate position on each tubular body 16.
[0019]
By using the exhaust hood 10a or 10b configured as described above, the blown gas is supplied from the gas supply port 14 and the blown gas P is blown from the gas blowout port 13a or 16a. The blown gas P is sucked toward the exhaust pipe 15 along the inner wall surface of the hood, and the exhaust gas Q such as suspended particulates and gas is also sucked into the exhaust pipe 15. The discharged suspended particulates and the exhaust gas Q are prevented or directly mitigated by the blown gas P on the inner wall surface of the hood, thereby preventing the suspended particulate from adhering to the inner wall surface of the hood.
[0020]
2A and 2B are diagrams illustrating an example of an exhaust hood having a rectangular opening surface. FIG. 2A is a diagram of the hood as viewed from below, FIG. 2B is a side view of a long side, and FIG. (C) shows a side view of the short side. In the figure, 17 is the long side of the hood opening surface, 18 is the short side of the hood opening surface, P1 is the gas blown out from the long side, P2 is the gas blown out from the short side, θ1, θ2 are the inclination angles of the hood. Show. Note that the inclination angle θ1 on the long side 17 side is larger than the inclination angle θ2 on the short side 18 side.
[0021]
As shown in FIG. 2A, when the gas blown out from the four sides of the hood opening surface is blown out uniformly in a direction perpendicular to each side at a uniform flow velocity on each side, the area of the corner where the two sides intersect is obtained. In S, a state occurs in which the blown gases collide with each other. When the blown gas collides with each other, the blown gas flow may be disturbed, and the suspended fine particles being sucked toward the exhaust pipe opening may be blown off to hinder smooth discharge. In an apparatus for heating a glass base material with a flame using a lathe, an exhaust hood is used just above the glass base material. However, turbulence of blown gas may cause the flame to fluctuate.
[0022]
As a first embodiment of the present invention, the occurrence of a state in which the blown gases collide with each other is reduced by making the flow rates of the blown gases P1 and P2 adjacent to each other different. For example, when the flow rate of the gas P1 blown from the long side 17 is V1 and the flow rate of the gas P2 blown from the short side 18 is V2, V2> V1. As a result, in the region S where the blown gases P1 and P2 collide, the blown gas P2 with the higher flow velocity becomes dominant, and the blown gas P1 with the slower flow velocity follows this, and the blown gases P1 and P2 collide with each other. The turbulence of the gas flow due to the above can be reduced. Further, it is desirable that the ratio V2 / V1 of the different flow rates is 1.5 or more.
[0023]
Further, as shown in FIG. 2, in the case of a rectangular divergent exhaust hood having an opening surface formed by a long side 17 and a short side 18, from the side of the short side 18 that is long from the exhaust pipe 15 (inclination angle θ2). It is desirable that the flow velocity V2 of the blown gas P2 is higher than the flow velocity V1 of the blown gas P1 from the long side 17 (inclination angle θ1), which is short from the exhaust pipe 15. If the flow velocity V2 of the blown gas P2 from the short side 18 where the distance from the exhaust pipe 15 is long and the inclination angle is small is made slower than that of the long side 17 side, there is a probability that the suspended particulates are mixed into the blown gas P2 and adhere. growing.
[0024]
Further, it is preferable that the inclination angle θ2 of the hood on the short side 18 side be 45 degrees or less. Further, when (the length of the long side / the length of the short side) is 1.5 or more, the above-described effects are remarkably exhibited. Further, it is preferable that the temperature of the blown gas be higher than room temperature and lower than the temperature of the air flow from the target local exhaust heat source.
[0025]
FIG. 3 is a view showing the second embodiment, and shows only a view of the hood as viewed from the lower surface side. The reference numerals in the figure are the same as those in FIG. The form and structure of FIG. 3 are the same as those of FIG. 2 except that the gas blowing on one side is stopped at the corners of two adjacent sides to reduce the occurrence of a state in which the gases collide. I have. For example, the gas outlets at both ends on the long side 17 side are closed. Thus, in the region S where the gas P1 blown out from the long side 17 and the gas P2 blown out from the short side 18 collide, only the gas P2 blown out from the short side 18 is provided, and the turbulence of the gas flow is reduced. Can be.
[0026]
When the opening face F is formed of a rectangle having a long side and a short side, it is preferable to close the gas outlet at an end portion on the long side 17 side, and in the case of a square, the long side 17 side and the short side 18 side On either side. Further, as described above, when the gas blowing of one side is stopped at the corner of two adjacent sides, it is not necessary to change the flow rate of the gas blown out from the two adjacent sides, and the flow rate may be the same. However, the gas P1 blown out from the long side 17 and the gas P2 blown out from the short side 18 may be made different from each other as in the embodiment of FIG.
[0027]
FIG. 4 is a diagram showing an example in which the exhaust hood device according to the present invention is applied to the production of a glass base material. FIG. 4A is a diagram illustrating an example of manufacturing a glass particle deposit, and FIG. 4B is a diagram illustrating an example of heating a glass base material using a lathe. The description of the reference numerals in the drawing is omitted by using the same reference numerals as those already used.
[0028]
As shown in FIG. 4 (A), at the time of manufacturing the glass particle deposit body 6, first, the starting glass rod 5 is attached to the glass rod drive unit 4 and made rotatable, as described with reference to FIG. . Next, a glass raw material gas such as SiCl 4 and a combustion gas such as H 2 gas and O 2 gas are blown out from the burner, and glass fine particles are generated by flame hydrolysis of the glass raw material gas, and the generated glass fine particles are used as starting glass. It is deposited on the rod 5. By reciprocating the burner 2 a predetermined number of times in the longitudinal direction of the starting glass rod 5, a glass particle deposit 6 having a desired outer diameter is produced.
[0029]
Hydrochloric acid gas generated by hydrolysis of the glass raw material gas generated in the above manufacturing process, and glass particles in a floating state that have not been deposited are discharged outside the furnace by the exhaust hood 10a. The exhaust hood 10a has a rectangular opening surface and is formed in a divergent shape from the exhaust pipe 15 side toward the opening side. As described in FIG. 1, the gas is blown out from the gas outlet 13 a on the opening side of the exhaust hood 10 a toward the exhaust pipe 15 along the inner wall surface of the exhaust hood main body 11. When the gas is blown, the gas is blown out at different flow rates of the blowout gas on two sides adjacent to the opening surface, or one of the two sides adjacent to the opening side is stopped and gas is blown out.
[0030]
By using the exhaust hood device and the exhaust method described above, it is possible to effectively prevent the glass particles floating in the reaction furnace 1 from adhering to the inner wall surface of the hood of the exhaust hood 10a in the form of soot. For this reason, a foreign substance does not fall from the exhaust hood, and a high-quality glass base material free of foreign substances or bubbles can be manufactured.
[0031]
In addition, as shown in FIG. 4B, when the surface of a transparent vitrified glass base material is processed by flame polishing, a glass rod is put into a glass tube, collapsed by burner heating, and integrated with the glass base material. It can be used for manufacturing a glass base material that requires various kinds of exhaust, for example, when manufacturing and stretching the glass base material by heating with a burner. Also in these manufactures, soot-like foreign matters such as glass fine particles are effectively prevented from adhering to the inner wall surface of the hood of the exhaust hood 10a, and fall-off of foreign matters onto the glass base material being processed is eliminated. Thus, a high-quality glass base material can be manufactured.
[0032]
In order to confirm the effect of the exhaust hood device described above, evaluation was performed in the following example and comparative example in an embodiment using the lathe device of FIG. 4B. The length M of the lathe used for the evaluation is 2.5 m and the depth is 0.7 m. The main body of the exhaust hood is made of stainless steel, the installation height T of the exhaust hood is 2.0 m from the installation surface of the lathe device, the long side L of the exhaust hood is 3.0 m, the depth is 1.0 m, and the exhaust pipe is The inner diameter D was selected to be 0.25 m, and the shorter side inclination angle θ2 was selected to be 30 ° to 60 °.
[0033]
In addition, the amount of gas exhausted from the exhaust pipe is 90 m 3 / min, the amount of gas blown from the gas outlet is 30 m 3 / min, the gas outlets are formed with blow holes at 10 mm intervals, and the blow hole diameter (diameter) is 4 mm to 4 mm. It was selected at 6 mm. Under the above conditions, the glass tube was heated with a burner, operated for one month, and the state of adhesion of glass particles to the inner wall surface of the exhaust hood was examined.
[0034]
(Example 1)
The blow hole diameter on the long side of the exhaust hood opening surface is 5.5 mm and the blow hole diameter on the short side is 4.5 mm, and the flow velocity V2 of the gas blown from the short side 18 shown in FIG. The flow rate was set to be 1.5 times the flow rate V1 of the gas. Further, the diameter of the blowout hole on the long side was 6.0 mm, and the diameter of the blowout hole on the short side was 4.0 mm. In each case, no glass particles adhered to the inner wall surface of the exhaust hood.
[0035]
(Example 2)
As in the first embodiment, the diameter of the outlet hole on the long side of the exhaust hood opening surface is 5.5 mm, the diameter of the outlet hole on the short side 18 is 4.5 mm, and the flow velocity V2 of the gas blown from the short side is from the long side. The flow rate was set to be 1.5 times the flow rate V1 of the blowing gas. Further, when the inclination angle θ2 of the short side of the exhaust hood was changed, the flow velocity of the gas blown out from the short side was made larger than the flow velocity blown out from the long side by setting the inclination angle θ2 to 45 ° or less. The effect of this was confirmed. However, above 45 °, no difference was observed even when the flow rate ratio of the blown gas was changed.
[0036]
(Example 3)
As shown in FIG. 3, both end portions on the long side 17 side were sealed by 0.5 m, and the blowing of gas from this portion was stopped. Further, the flow rates of the blown gas from the long side and the short side were set to be the same. As a result, as in Example 1, no glass particles adhered to the inner wall surface of the exhaust hood.
[0037]
(Example 4)
The diameter of the outlet on the short side was 4.6 mm, the diameter of the outlet on the long side was 5.4 mm, and the flow rate ratio was about 1.4 times. In this case as well, glass particles of about 0.5 mm were adhered at the four corners on the opening side, but the burner flame had almost no fluctuation.
[0038]
(Comparative Example 1)
Exhausting was performed under the same conditions as in Example 1 except that the gas blowing amount from the gas blowing port was 30 m 3 / min. As a result, glass particles of 2 to 3 mm were adhered to the inner wall surface of the exhaust hood. In addition, part of the adhesion was falling.
[0039]
(Comparative Example 2)
The blowing hole diameter was 5.0 mm on both the long side and the short side, the flow rates V1 and V2 of the blowing gas were the same, and the other conditions were the same as in Example 1. As a result, glass particles of about 1.0 mm were attached at the four corners on the opening side, but no glass particles were attached to other portions. In addition, the burner flame slightly fluctuated at both ends on the long side of the hood.
[0040]
Comprehensively looking at the above results, from Comparative Examples 1 and 2, it is effective to prevent the adhesion of glass particles to the inner wall surface of the hood by blowing gas toward the exhaust port from the periphery of the opening surface. That was clear. However, when the opening surface is rectangular, a small amount of foreign matter adheres at a portion where the blown gas from two adjacent sides at the four corners on the opening side collide, and the flame fluctuates when a burner is used. May not be complete. On the other hand, it has been found that it is extremely effective to make the flow speeds of the two adjacent sides different or to stop the gas blowing on one of the two adjacent sides at the four corners on the opening side.
[0041]
【The invention's effect】
As described above, according to the present invention, it is possible to effectively prevent soot-like glass particles and other foreign substances from adhering to the hood wall surface. As a result, it is possible to eliminate the intrusion of foreign matter from the hood wall surface during the production of the glass base material and the like, and it is possible to produce a high-quality and reliable product.
[Brief description of the drawings]
FIG. 1 is a diagram schematically illustrating an exhaust hood device according to the present invention.
FIG. 2 is a diagram illustrating a first embodiment of an exhaust hood device and an exhaust method according to the present invention.
FIG. 3 is a diagram illustrating a second embodiment of the exhaust hood device and the exhaust method according to the present invention.
FIG. 4 is a diagram illustrating a method for manufacturing a glass base material according to the present invention.
FIG. 5 is a diagram illustrating a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reactor, 2 ... Burner, 3 ... Burner drive part, 4 ... Glass rod drive part, 5 ... Starting glass rod, 6 ... Glass fine particle deposit, 8 Exhaust pipe, 9 ... Damper, 7, 10a, 10b ... Exhaust Hood, 11: Hood main body, 12: Hood outer wall, 13: Gap, 13a: Gas outlet, 14: Gas supply port, 15: Exhaust pipe, 16: Tubular body, 16a: Gas outlet, 17: Hood opening surface Long side, 18: Short side of hood opening surface, F: Opening surface, G: Exhaust port, P: Blowing gas, Q: Exhaust gas, P1: Blowing gas on long side, P2: Blowing on short side Gas, θ1, θ2 ... The inclination angle of the hood.

Claims (8)

開口面が矩形状であり排気管口から開口側に向けて末広がり形状の排気フード装置であって、前記開口側から前記排気管口に向けて排気フード内壁面に沿って気体を吹出す気体供給手段を備え、隣り合う2辺の前記気体供給手段からの吹出し気体の流速を異ならせたことを特徴とする排気フード装置。An exhaust hood device having an opening surface having a rectangular shape and diverging from an exhaust pipe opening toward an opening side, wherein a gas supply blows gas from the opening side toward the exhaust pipe opening along an inner wall surface of the exhaust hood. An exhaust hood device comprising means for changing the flow rates of the gas blown out from the gas supply means on two adjacent sides. 排気フードの前記開口側が長辺と短辺からなる矩形状で形成され、前記吹出し気体の短辺側の流速を長辺側の流速より速くしたことを特徴とする請求項1に記載の排気フード装置。2. The exhaust hood according to claim 1, wherein the opening side of the exhaust hood is formed in a rectangular shape having a long side and a short side, and the flow velocity of the blown gas on the short side is higher than the flow velocity on the long side. 3. apparatus. 排気フードの短辺側傾斜角が45°以下であることを特徴とする請求項1または2に記載の排気フード装置。The exhaust hood device according to claim 1, wherein the short side inclination angle of the exhaust hood is 45 ° or less. 開口面が矩形状であり排気管口から開口側に向けて末広がり形状の排気フード装置であって、前記開口側から前記排気管口に向けて排気フード内壁面に沿って気体を吹出す気体供給手段を備え、前記開口側の隅部で隣り合う2辺の一方の前記気体供給手段からの気体吹出しを停止させたことを特徴とする排気フード装置。An exhaust hood device having an opening surface having a rectangular shape and diverging from an exhaust pipe opening toward an opening side, wherein a gas supply blows gas from the opening side toward the exhaust pipe opening along an inner wall surface of the exhaust hood. An exhaust hood device, comprising: means for stopping gas blowing from the gas supply means on one of two sides adjacent to each other at the corner on the opening side. 開口面が矩形状であり排気管口から開口側に向けて末広がり形状の排気フードの前記開口側から前記排気管口に向けて排気フード内壁面に沿って気体を吹出させ、隣り合う2辺の吹出し気体の流速を異ならせて排気することを特徴とする排気方法。The opening surface is rectangular, and gas is blown out from the opening side of the exhaust hood toward the opening side of the exhaust hood along the inner wall surface of the exhaust hood from the opening side of the exhaust hood toward the opening side. An exhaust method, wherein the exhaust gas is exhausted at different flow rates. 開口面が矩形状であり排気管口から開口側に向けて末広がり形状の排気フードの前記開口側から前記排気管口に向けて排気フード内壁面に沿って気体を吹出させ、前記開口側の隅部で隣り合う2辺の一方の気体吹出しを停止させて排気することを特徴とする排気方法。An opening surface is rectangular, and gas is blown out from the opening side of the exhaust hood toward the opening of the exhaust pipe along the inner wall surface of the exhaust hood. An exhaust method characterized by stopping gas blowing on one of two sides adjacent to each other and exhausting the gas. 開口面が矩形状であり排気管口から開口側に向けて末広がり形状の排気フードの前記開口側から前記排気管口に向けて排気フード内壁面に沿って気体を吹出させ、隣り合う2辺の吹出し気体の流速を異ならせて排気し、ガラス母材の製造過程で生じる浮遊ガラス微粒子ないしガス気体を排出することを特徴とするガラス母材の製造方法。The opening surface is rectangular, and gas is blown out from the opening side of the exhaust hood toward the opening side of the exhaust hood along the inner wall surface of the exhaust hood from the opening side of the exhaust hood toward the opening side. A method of manufacturing a glass base material, wherein the blowing gas is exhausted at different flow rates, and floating glass particles or a gaseous gas generated in the manufacturing process of the glass base material are discharged. 開口面が矩形状であり排気管口から開口側に向けて末広がり形状の排気フードの前記開口側から前記排気管口に向けて排気フード内壁面に沿って気体を吹出させ、前記開口側の隅部で隣り合う2辺の一方の気体吹き出しを停止させて排気し、ガラス母材の製造過程で生じる浮遊ガラス微粒子ないしガス気体を排出することを特徴とするガラス母材の製造方法。An opening surface is rectangular, and gas is blown out from the opening side of the exhaust hood toward the opening of the exhaust pipe along the inner wall surface of the exhaust hood. A method of manufacturing a glass base material, comprising: stopping and evacuating one of two adjacent sides of a gas at a portion to discharge air, and discharging floating glass particles or a gaseous gas generated in a manufacturing process of the glass base material.
JP2002294597A 2002-10-08 2002-10-08 Exhaust hood device, exhaust method, and glass base material manufacturing method Expired - Fee Related JP4096684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002294597A JP4096684B2 (en) 2002-10-08 2002-10-08 Exhaust hood device, exhaust method, and glass base material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002294597A JP4096684B2 (en) 2002-10-08 2002-10-08 Exhaust hood device, exhaust method, and glass base material manufacturing method

Publications (2)

Publication Number Publication Date
JP2004131303A true JP2004131303A (en) 2004-04-30
JP4096684B2 JP4096684B2 (en) 2008-06-04

Family

ID=32285094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002294597A Expired - Fee Related JP4096684B2 (en) 2002-10-08 2002-10-08 Exhaust hood device, exhaust method, and glass base material manufacturing method

Country Status (1)

Country Link
JP (1) JP4096684B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332967A (en) * 2003-04-30 2004-11-25 Fujio Hori Hood device
JP2012198008A (en) * 2011-03-22 2012-10-18 National Taiwan Univ Of Science & Technology Exhaust device having deflection plates
JP2016070507A (en) * 2014-09-26 2016-05-09 パナソニックIpマネジメント株式会社 Range hood
WO2019097557A1 (en) * 2017-11-17 2019-05-23 Prysmian S.P.A. Apparatus and method for manufacturing glass preforms for optical fibers
CN110657518A (en) * 2018-06-29 2020-01-07 宁波方太厨具有限公司 Kitchen air conditioning system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332967A (en) * 2003-04-30 2004-11-25 Fujio Hori Hood device
JP4526780B2 (en) * 2003-04-30 2010-08-18 富士夫 堀 Food equipment
JP2012198008A (en) * 2011-03-22 2012-10-18 National Taiwan Univ Of Science & Technology Exhaust device having deflection plates
JP2016070507A (en) * 2014-09-26 2016-05-09 パナソニックIpマネジメント株式会社 Range hood
WO2019097557A1 (en) * 2017-11-17 2019-05-23 Prysmian S.P.A. Apparatus and method for manufacturing glass preforms for optical fibers
CN111386248A (en) * 2017-11-17 2020-07-07 普睿司曼股份公司 Apparatus and method for manufacturing glass preform for optical fiber
US11370690B2 (en) 2017-11-17 2022-06-28 Prysmian S.P.A. Apparatus and method for manufacturing glass preforms for optical fibers
CN111386248B (en) * 2017-11-17 2022-11-15 普睿司曼股份公司 Apparatus and method for manufacturing glass preform for optical fiber
CN110657518A (en) * 2018-06-29 2020-01-07 宁波方太厨具有限公司 Kitchen air conditioning system

Also Published As

Publication number Publication date
JP4096684B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
KR100691668B1 (en) Glass base material manufacturing apparatus and glass base material manufacturing method
JP3998450B2 (en) Porous optical fiber preform manufacturing equipment
JP4096684B2 (en) Exhaust hood device, exhaust method, and glass base material manufacturing method
JPH069665B2 (en) Method and apparatus for coating a substrate with powdered material
EP1046617B1 (en) Synthetic quartz glass manufacturing process
JP5150365B2 (en) Apparatus and method for manufacturing glass preform for optical fiber
US20050199014A1 (en) Apparatus for producing glass particles deposit
AU739089B2 (en) Method of manufacturing a porous glass preform for an optical fiber
EP1925600B1 (en) Manufacturing apparatus for porous glass base material
US20030015004A1 (en) Apparatus for producing glass particles deposit
JP3154768B2 (en) Manufacturing method of preform preform for optical fiber
JP4466997B2 (en) Porous glass base material manufacturing equipment
JP2004035376A (en) Method and apparatus for manufacturing preform for optical fiber
US11370690B2 (en) Apparatus and method for manufacturing glass preforms for optical fibers
JPH01242431A (en) Fine glass particle depositing device
JP7399835B2 (en) Method for manufacturing porous glass deposit for optical fiber
JP2000319024A (en) Apparatus for production of porous glass preform and production of porous glass preform using the same
JPH09132422A (en) Apparatus for producing preform for optical fiber
JPH0725631A (en) Equipment for thin glass film production
JP4110893B2 (en) Method and apparatus for producing glass particulate deposit
JP3619637B2 (en) Porous optical fiber preform manufacturing equipment
JPH092830A (en) Production device for glass preform
JPH0660023B2 (en) Method for manufacturing glass particulate deposit
JP2000109329A (en) Production of porous preform
JP5264369B2 (en) Optical fiber preform manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Ref document number: 4096684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees