JP2002338256A - Method and apparatus for manufacturing glass particulate deposit - Google Patents

Method and apparatus for manufacturing glass particulate deposit

Info

Publication number
JP2002338256A
JP2002338256A JP2001140955A JP2001140955A JP2002338256A JP 2002338256 A JP2002338256 A JP 2002338256A JP 2001140955 A JP2001140955 A JP 2001140955A JP 2001140955 A JP2001140955 A JP 2001140955A JP 2002338256 A JP2002338256 A JP 2002338256A
Authority
JP
Japan
Prior art keywords
glass
burners
burner
glass fine
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001140955A
Other languages
Japanese (ja)
Inventor
Motonori Nakamura
元宣 中村
Toshihiro Oishi
敏弘 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001140955A priority Critical patent/JP2002338256A/en
Publication of JP2002338256A publication Critical patent/JP2002338256A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/64Angle
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a glass particulate deposit which is capable of decreasing the tapered segments formed at an end, and an apparatus for the same. SOLUTION: The method for manufactures the glass particulate deposit by moving a rotating glass rod 1 and a plurality of glass particulate-synthesizing burners 8 and 9 relatively back and forth in parallel and depositing the glass particulates (soot) 6 on the surface of the glass rod while moving the turn back position of traversing in a specified direction is characterized in that the deposition of the soot is performed in the state of inclining the burners at both ends to the burner side on the inner side adjacent thereto.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラスロッドとガ
ラス微粒子合成用バーナーとを相対運動させながら、ガ
ラスロッド上に径方向にガラス微粒子を堆積させるガラ
ス微粒子堆積体の製造方法及びそのための装置に関し、
特にガラス微粒子堆積体の両端に形成されるテーパ部が
少ない多孔質ガラス母材が得られる多孔質ガラス母材の
製造方法及びそのための装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a glass particle deposit body for depositing glass particles in a radial direction on a glass rod while relatively moving a glass rod and a burner for synthesizing glass particles, and an apparatus therefor. ,
In particular, the present invention relates to a method of manufacturing a porous glass base material that can obtain a porous glass base material having a small number of tapered portions formed at both ends of a glass fine particle deposit, and an apparatus therefor.

【0002】[0002]

【従来の技術】大型の光ファイバプリフォームを高速で
製造する方法として、図3に示すように容器4内のガラ
スロッド1に対向させて複数のガラス微粒子合成用バー
ナー7を一定間隔で配置し、回転するガラスロッド1と
前記バーナー7の列を相対的に往復移動させ(図にはガ
ラスロッド1を上下に往復運動させる例を示した)、ガ
ラスロッド1の表面にガラス微粒子(スス)を層状に堆
積させてガラス微粒子堆積体(スス体)6を得る方法
(多層スス付け)がある。
2. Description of the Related Art As a method of manufacturing a large-sized optical fiber preform at a high speed, a plurality of burners 7 for synthesizing glass fine particles are arranged at regular intervals in opposition to a glass rod 1 in a container 4 as shown in FIG. The row of the rotating glass rod 1 and the burner 7 are relatively reciprocated (in the figure, an example is shown in which the glass rod 1 is reciprocated up and down), and fine glass particles (soot) are deposited on the surface of the glass rod 1. There is a method of obtaining a glass fine particle deposit (soot body) 6 by depositing in a layered manner (multilayer soot attachment).

【0003】このようなガラス微粒子堆積方法(スス付
け方法)においては、品質向上の観点からガラス微粒子
堆積体6の長手方向にわたって外径変動を少くするこ
と、生産性の観点からガラス微粒子堆積体6の端部に形
成されるテーパ部(非有効部)の長さをできるだけ短く
すること、堆積効率を高めること、などが主要な課題で
あり、種々の方法が提案されている。例えば、ガラスロ
ッドとバーナーとの相対運動(トラバース)ごとにトラ
バースの開始位置を移動させていき、所定の位置まで移
動した後は逆方向へ移動させて最初のトラバース開始位
置に戻すことで実質的にスス付け時間が長くなっている
トラバース端部やバーナー火炎等のガラス微粒子堆積体
への当たり方の変動をガラス微粒子堆積体全体に分散
し、ガラス微粒子堆積体全体の実質ガラス微粒子の堆積
時間や雰囲気を平均的に一致させることでガラス微粒子
の堆積量を長手方向に等しくし、外径変動を低減する方
法が提案されている(特許第2612949号公報)。
In such a method for depositing fine glass particles (soot attachment method), the variation in outer diameter in the longitudinal direction of the fine glass particle deposit 6 is reduced from the viewpoint of quality improvement, and the fine glass particle deposit 6 is reduced from the viewpoint of productivity. The main issues are to reduce the length of the tapered portion (ineffective portion) formed at the end of the substrate as much as possible and to increase the deposition efficiency, and various methods have been proposed. For example, the start position of the traverse is moved for each relative movement (traverse) between the glass rod and the burner, and after moving to a predetermined position, the traverse is moved in the opposite direction to return to the first traverse start position. Dispersion of the variation of how to hit the glass particle deposit such as the traverse end or burner flame where the sooting time is longer is dispersed throughout the glass particle deposit, There has been proposed a method of reducing the outer diameter fluctuation by equalizing the atmosphere to equalize the deposition amount of the glass fine particles in the longitudinal direction (Japanese Patent No. 2612949).

【0004】また、各バーナーがトラバースの端部領域
を除く中間領域にあるときには、これらバーナーを一定
間隔かつ一定の向きに保持し、各バーナーがトラバース
の端部領域にあるときには、最外側のバーナーを動かす
ことなく第2番目のバーナーを含む少なくとも1つ以上
のバーナーを最外側のバーナー方向に傾斜させることに
よって、多孔質ガラス層の端部側へ集中的にガラス微粒
子を噴射かつ堆積させ、多孔質ガラス層の両端に生じる
テーパ部を短くする方法も提案されている(特開平5−
221660号公報)。
[0004] When each burner is located in the middle area except for the end area of the traverse, the burners are held at a fixed interval and in a fixed direction. When each burner is located in the end area of the traverse, the outermost burner is located. By inclining at least one or more burners including the second burner in the direction of the outermost burner without moving the second burner, the glass particles are intensively sprayed and deposited on the end side of the porous glass layer, A method of shortening the tapered portions generated at both ends of the glass layer has also been proposed (Japanese Patent Laid-Open No. Hei 5-
221660 publication).

【0005】前記特許第2612949号公報の方法の
場合、ガラス微粒子堆積体の長手方向の外径変動を低減
させる効果はあるが、トラバースの折り返し位置を移動
させるので端部のバーナーで合成されるガラス微粒子の
堆積する領域が長くなり、その結果、テーパ部の長さが
長くなるという問題がある。また、特開平5−2216
60号公報の方法では、トラバースの端部領域でバーナ
ーを外側に向ける際にその部分のガラス微粒子堆積量が
減少し、その部分に外径変動が生じることとなる。さら
にこの方法は各バーナーをガラス微粒子堆積体の略全長
にわたって移動させるので、バーナーの数を増やすと端
部の長さが長くなり、ガラス微粒子堆積体の有効部は長
くならず、生産性の向上は望めない。
The method disclosed in Japanese Patent No. 2612949 has an effect of reducing the variation in the outer diameter of the glass fine particle deposit in the longitudinal direction. However, since the folding position of the traverse is moved, the glass synthesized by the burner at the end is used. There is a problem that the region where the fine particles are deposited becomes longer, and as a result, the length of the tapered portion becomes longer. Also, Japanese Patent Application Laid-Open No.
According to the method disclosed in Japanese Patent Application Publication No. 60-260, when the burner is directed outward in the end region of the traverse, the amount of glass fine particles deposited on that portion is reduced, and the outer diameter fluctuates in that portion. Furthermore, since this method moves each burner over substantially the entire length of the glass fine particle deposit, increasing the number of burners increases the length of the end portion, so that the effective portion of the glass fine particle deposit does not become longer, thereby improving productivity. Can not hope.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来技術における問題点を解決し、ガラス微粒子堆積体
の端部に形成されるテーパ部分を短くすることができ、
しかも早い合成速度で効率よくガラス微粒子の堆積を行
うことができるガラス微粒子堆積体の製造方法及びその
ための装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves such a problem in the prior art, and can shorten the tapered portion formed at the end of the glass fine particle deposit.
In addition, it is an object of the present invention to provide a method for producing a glass particle deposited body capable of efficiently depositing glass particles at a high synthesis rate, and an apparatus therefor.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
する手段として、次の(1)〜(7)に示す構成を採る
ものである。 (1)回転するガラスロッドに対向させて複数本のガラ
ス微粒子合成用バーナーを配置し、前記ガラスロッドと
ガラス微粒子合成用バーナーとを平行に相対的に往復運
動させ、トラバースの折り返し位置をバーナー間隔の略
整数分の一ずつ一定方向に移動させ、折り返し位置がバ
ーナーの間隔分移動したところで逆方向に移動させるよ
うにし、順次この操作を繰り返してバーナーで合成され
るガラス微粒子をガラスロッドの表面に順次堆積させて
ガラス微粒子堆積体を製造する方法において、両端のバ
ーナーをそれらに隣接するバーナー側に傾斜させた状態
でガラス微粒子の堆積を行うことを特徴とするガラス微
粒子堆積体の製造方法。 (2)前記両端のバーナーの中心線とガラスロッドの中
心線とのなす角度が30°〜75°となるように設定す
ることを特徴とする前記(1)のガラス微粒子堆積体の
製造方法。 (3)前記両端のバーナーとそれらに隣接するバーナー
との間隔を、両端のバーナー以外の中間バーナーどうし
の間隔よりも大きくなるように設定することを特徴とす
る前記(1)又は(2)のガラス微粒子堆積体の製造方
法。
According to the present invention, as means for solving the above problems, the following constitutions (1) to (7) are employed. (1) A plurality of burners for synthesizing glass microparticles are arranged in opposition to a rotating glass rod, and the glass rod and the burner for synthesizing glass microparticles are relatively reciprocated in parallel, and the traverse turning position is determined by the burner interval. Is moved in a fixed direction by a fraction of an integer, and when the turn-back position is moved by the distance of the burner, it is moved in the opposite direction, and this operation is sequentially repeated, so that the glass fine particles synthesized by the burner are put on the surface of the glass rod. A method for producing a glass fine particle deposit by sequentially depositing glass fine particles, wherein the glass fine particles are deposited while the burners at both ends are inclined toward a burner adjacent to them. (2) The method according to (1), wherein the angle between the center line of the burner at each end and the center line of the glass rod is set to 30 ° to 75 °. (3) The method according to (1) or (2), wherein an interval between the burners at both ends and a burner adjacent thereto is set to be larger than an interval between intermediate burners other than the burners at both ends. A method for producing a glass particle deposit.

【0008】(4)前記両端のバーナーの中心線がガラ
ス微粒子堆積面と交わる点と、両端のバーナーに隣接す
るバーナーの中心線がガラス微粒子堆積面と交わる点と
の距離が、両端のバーナー以外の中間バーナーの中心線
がガラス微粒子堆積面と交わる点どうしの距離と等しく
なるように設定することを特徴とする前記(3)のガラ
ス微粒子堆積体の製造方法。
(4) The distance between the point at which the center lines of the burners at both ends intersect the glass particle deposition surface and the point at which the center lines of the burners adjacent to the burners at both ends intersect with the glass particle deposition surface are different from those at both ends. Wherein the center line of the intermediate burner is set to be equal to the distance between points where the center line intersects the glass particle deposition surface.

【0009】(5)回転するガラスロッドに対向させて
複数本のガラス微粒子合成用バーナーを配置し、前記ガ
ラスロッドとガラス微粒子合成用バーナーとを平行に相
対的に往復運動させ、前記バーナーで合成されるガラス
微粒子をガラスロッドの表面に順次堆積させてガラス微
粒子堆積体を製造する装置であって、両端のバーナーが
それらに隣接するバーナー側に傾斜した状態で配置され
てなることを特徴とするガラス微粒子堆積体の製造装
置。 (6)前記両端のバーナーがガラスロッドに対する角度
を任意に調節可能に取付けられていることを特徴とする
前記(5)のガラス微粒子堆積体の製造装置。 (7)前記両端のバーナーがそれらに隣接するバーナー
との間隔を任意に調節可能に取付けられていることを特
徴とする前記(5)又は(6)のガラス微粒子堆積体の
製造装置。
(5) A plurality of burners for synthesizing glass particles are arranged in opposition to the rotating glass rod, and the glass rod and the burner for synthesizing glass particles are relatively reciprocated in parallel and synthesized by the burner. An apparatus for manufacturing a glass fine particle deposit by sequentially depositing glass fine particles to be formed on the surface of a glass rod, wherein the burners at both ends are arranged in a state inclined to the burner side adjacent to them. Equipment for manufacturing glass particle deposits. (6) The apparatus for producing a glass fine particle deposit according to the above (5), wherein the burners at both ends are attached so as to be able to adjust the angle with respect to the glass rod arbitrarily. (7) The apparatus for producing a glass fine particle deposit according to the above (5) or (6), wherein the burners at both ends are attached so as to be able to arbitrarily adjust a distance between the burners adjacent to the burners.

【0010】[0010]

【発明の実施の形態】複数のバーナーを配列し、ターゲ
ットロッド(ガラスロッド)と相対的に往復運動(トラ
バース)させつつ、そのトラバースの折り返し位置を一
定量ずつ移動させ、移動幅が略バーナーの間隔分に相当
するだけ移動した後は、順次逆向きに折り返し位置を移
動させていくパターンを繰り返すガラス微粒子堆積体の
製造方法では、移動幅が略バーナーの間隔分なので理論
的にはバーナー間隔分の外径非定常部(テーパ部)が生
じるはずであるが、実際には外側から2番目以降のバー
ナーで合成されるガラス微粒子もテーパ部の傾斜方向に
流れるので、テーパ部の長さ(テーパ長)はバーナーの
間隔分よりも相当に長くなる。
BEST MODE FOR CARRYING OUT THE INVENTION A plurality of burners are arranged, and while being reciprocated (traverse) relative to a target rod (glass rod), the turning position of the traverse is moved by a fixed amount, and the moving width is substantially equal to that of the burner. In the method for manufacturing a glass fine particle deposit body that repeats a pattern in which the turning position is sequentially moved in the opposite direction after moving by an amount corresponding to the interval, the moving width is approximately the interval of the burner, so it is theoretically the burner interval. The outer diameter unsteady portion (tapered portion) should be generated. However, since the glass fine particles synthesized by the second and subsequent burners from the outside also flow in the inclined direction of the tapered portion, the length of the tapered portion (tapered portion) Length) is considerably longer than the interval between the burners.

【0011】本発明は、前記方法において相対移動方向
の両端に位置するバーナーをそれらに隣接するバーナー
側に傾斜させた状態でガラス微粒子の堆積を行うことに
よって、ガラス微粒子が端部側へ流れるのを抑制し、端
部に形成されるテーパ長が短くなるようにしたものであ
る。ここで、両端のバーナーをそれらに隣接するバーナ
ー側に傾斜させるということは、バーナーとテーパ部の
傾斜面とのなす角度が90°に近づくように傾けること
を意味する。図1に各バーナーによるガラス微粒子の堆
積の状況を模式的に示す。従来技術においては図1
(a)に示すように端部バーナー8とそれ以外の中間バ
ーナー9はいずれもバーナーの中心線とガラスロッド1
の中心線とのなす角度(図1のθに相当する)は90°
であり、両端に位置する端部バーナー8から噴出される
ガラス微粒子は、ガラス微粒子堆積体(スス体6)の外
径の増加に伴い徐々にテーパ部2が長くなる方向(図1
(a)の白抜き矢印の方向)に流れていく。
According to the present invention, in the above-mentioned method, the glass fine particles flow toward the end by depositing the glass fine particles in a state where the burners located at both ends in the relative movement direction are inclined toward the burners adjacent to them. And the taper length formed at the end is reduced. Here, to incline the burners at both ends to the side of the burner adjacent to them means to incline so that the angle between the burner and the inclined surface of the tapered portion approaches 90 °. FIG. 1 schematically shows the state of deposition of glass particles by each burner. In the prior art, FIG.
As shown in (a), the end burner 8 and the other intermediate burners 9 are both the center line of the burner and the glass rod 1.
Is 90 ° (corresponding to θ in FIG. 1).
The glass fine particles ejected from the end burners 8 located at both ends are gradually increased in the taper portion 2 as the outer diameter of the glass fine particle deposit (soot body 6) increases (see FIG. 1).
(The direction of the white arrow in (a)).

【0012】ここで端部バーナー8を隣接する中間バー
ナー9側に傾斜させる、すなわち、図1のθを90°よ
りも小さくすることによってスス体6の端部の形状を変
化させることができる。端部バーナー8の傾斜の度合い
が大きくなりすぎるとかえってテーパ長を長くしてしま
うことになるので、製造条件に合わせて適切な角度に設
定する必要がある。この端部バーナー8の傾斜角度を変
化させたときの各バーナーから噴出されるガラス微粒子
の堆積形状を図1(b)に、そのときのテーパ部の形状
を図1(c)にそれぞれ示す。
Here, the shape of the end of the soot body 6 can be changed by inclining the end burner 8 toward the adjacent intermediate burner 9, that is, making θ in FIG. 1 smaller than 90 °. If the degree of inclination of the end burner 8 is too large, the taper length will be lengthened rather. Therefore, it is necessary to set an appropriate angle in accordance with manufacturing conditions. FIG. 1B shows the deposited shape of the glass particles ejected from each burner when the inclination angle of the end burner 8 is changed, and FIG. 1C shows the shape of the tapered portion at that time.

【0013】また、ガラス微粒子堆積量を変化させるこ
とで、テーパ長を調節することも可能で、角度の小さい
条件では両端に位置するバーナーへ供給するガラス原
料、可燃性ガス、酸素ガス及びシールガスのうちの1種
以上の供給量を少なくすることで、逆に角度の大きい条
件ではガスの流量を多くすることでテーパ長を短くする
ことができる。
Also, the taper length can be adjusted by changing the amount of glass particles deposited, and when the angle is small, the glass raw material, flammable gas, oxygen gas, and seal gas to be supplied to the burners located at both ends. By reducing the supply amount of at least one of the above, and conversely, under conditions where the angle is large, the taper length can be shortened by increasing the gas flow rate.

【0014】本発明者らの検討結果によれば、ガラス微
粒子堆積のテーパ部の状態は端部バーナーがターゲット
ロッド(ガラスロッド)に対して90°のときが最も長
くなり、傾斜させることによりテーパ長が短くなること
が確認できた。すなわち、ガラス原料の供給量が一定の
場合、バーナー角度(θ)は30°〜75°の範囲がテ
ーパ長の低減効果が大きい。バーナー角度が75°を超
えるとテーパ長の低減効果は小さくなり、また、0〜1
5°ではススの堆積効率が低下しテーパ長は長くなり、
15〜30°ではテーパ長は短くなるものの隣接バーナ
ーとの火炎の干渉が発生し、その部分でのスス体外径が
大きくなることがわかった。この点についてはその部分
に供給するガラス微粒子合成用原料を減量することによ
り、堆積効率を落としスス体形状の安定化を図ることが
できる。
According to the results of the study by the present inventors, the state of the tapered portion of the glass fine particle deposition becomes the longest when the end burner is at 90 ° with respect to the target rod (glass rod). It was confirmed that the length became shorter. That is, when the supply amount of the glass raw material is constant, the effect of reducing the taper length is large when the burner angle (θ) is in the range of 30 ° to 75 °. When the burner angle exceeds 75 °, the effect of reducing the taper length decreases, and
At 5 °, soot deposition efficiency decreases and the taper length increases,
At 15 ° to 30 °, although the taper length was reduced, flame interference with adjacent burners occurred, and it was found that the soot body outer diameter at that portion increased. In this regard, by reducing the amount of the raw material for synthesizing glass particles supplied to the portion, the deposition efficiency can be reduced and the soot body shape can be stabilized.

【0015】図2(a)に示すように、端部バーナー8
と隣接する中間バーナー9との間隔a1 を中間バーナー
9どうしの間隔b1 と同じとしたままで端部バーナー8
を中間バーナー9側へ傾斜させると、前記のようにスス
体6の外径定常部とテーパ部との間に外径が太い部分が
生じる場合がある。この場合には、端部バーナー8への
ガラス原料供給量を減少させる方法の他に、図2(b)
に示すように端部バーナー8の中心線がガラス微粒子堆
積面と交わる点と、端部バーナー8に隣接する中間バー
ナー9の中心線がガラス微粒子堆積面と交わる点との距
離a2 が、端部バーナー8以外の中間バーナー9の中心
線がガラス微粒子堆積面と交わる点どうしの距離b2
等しくなるように設定することによって、外径が太くな
るのを抑制するすることができる。
As shown in FIG. 2A, the end burner 8
The end burner 8 is maintained with the distance a 1 between the intermediate burner 9 and the adjacent intermediate burner 9 being the same as the distance b 1 between the intermediate burners 9.
Is inclined toward the intermediate burner 9, a portion having a large outer diameter may be formed between the constant outer diameter portion and the tapered portion of the soot body 6 as described above. In this case, in addition to the method of reducing the supply amount of the glass raw material to the end burner 8, FIG.
The distance a 2 between the point at which the center line of the end burner 8 intersects the glass particle deposition surface and the point at which the center line of the intermediate burner 9 adjacent to the end burner 8 intersects the glass particle deposition surface, as shown in FIG. by the center line of the middle burner 9 except parts burners 8 is set to be equal to the distance b 2 of each other point of intersection with the glass particle deposition surface, it is possible to restrain the outer diameter becomes thicker.

【0016】端部バーナーの傾斜角度やそれに隣接する
中間バーナーとの間隔の大きさはバーナーの特性、ガラ
ス微粒子の堆積条件等に応じて適宜設定すればよい。バ
ーナーの傾斜角度や間隔の調整は、予め所定の角度、間
隔にバーナーを設定した装置を使用してもよいが、両端
の端部バーナーが傾斜角度を任意に調整する機構や隣接
の中間バーナーとの間隔を任意に設定できる機能を備え
た装置を使用するのが好都合である。
The angle of inclination of the end burner and the size of the interval between the end burner and the intermediate burner adjacent to the end burner may be appropriately set according to the characteristics of the burner, the conditions for depositing the glass particles, and the like. For adjustment of the inclination angle and interval of the burner, a device in which the burner is set at a predetermined angle and interval in advance may be used, but a mechanism that arbitrarily adjusts the inclination angle at the end burners at both ends and an adjacent intermediate burner and It is convenient to use a device having a function that can arbitrarily set the interval between the images.

【0017】[0017]

【実施例】以下、実施例により本発明の方法をさらに具
体的に説明するが、本発明はこれに限定されるものでは
ない。 (実施例1)ガラスロッド(コア部の大きさは直径25
mm、長さ750mm)に対向させて6本のバーナーを
150mm間隔で配置し、出発ロッドを上下に往復運動
させる方式でガラス微粒子の堆積を行った。各バーナー
へは四塩化珪素:3リットル/分、水素:40リットル
/分、酸素:50リットル/分、アルゴン:5リットル
/分ずつをそれぞれ同じ条件で供給した。トラバース距
離はバーナー間隔分とし、トラバースの折り返し位置を
25mmずつずらしていき、バーナー間隔分ずれた時点
で逆向きに折り返し位置を変更していくようにし、ガラ
ス微粒子堆積体の外径(外径定常部)が170mmとな
るまでガラス微粒子の堆積を行った。
EXAMPLES Hereinafter, the method of the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. (Example 1) Glass rod (core part has a diameter of 25
(mm, length: 750 mm), six burners were arranged at an interval of 150 mm, and glass particles were deposited by a method in which a starting rod was reciprocated up and down. To each burner, silicon tetrachloride: 3 L / min, hydrogen: 40 L / min, oxygen: 50 L / min, and argon: 5 L / min were supplied under the same conditions. The traverse distance is set to the burner interval. The traverse turning position is shifted by 25 mm, and when the traverse is shifted by the burner interval, the turning position is changed in the opposite direction. (Part) was 170 mm.

【0018】両端のバーナーの傾斜角度を10°から5
°刻みで変えてガラス微粒子堆積体を製造し、傾斜角度
と両端に形成されるテーパ部の長さとの関係を調べた。
結果は図4に示すとおりであり、合成速度向上、テーパ
長の短縮化を達成するには、両端バーナーの中間バーナ
ー側への傾斜角度(θ)を30°〜75°の範囲の条件
が適していることがわかる。なお、この例において外径
定常部の長さはいずれも略同じであった。
The angle of inclination of the burners at both ends is 10 ° to 5 °.
Glass fine particle deposits were manufactured at different degrees, and the relationship between the inclination angle and the length of the tapered portions formed at both ends was examined.
The results are as shown in FIG. 4. In order to achieve an increase in the synthesis speed and a reduction in the taper length, a condition in which the angle of inclination (θ) of both end burners to the intermediate burner is in the range of 30 ° to 75 ° is suitable. You can see that it is. Note that, in this example, the length of the constant outer diameter portion was substantially the same.

【0019】[0019]

【発明の効果】本発明によれば、回転するガラスロッド
に対向させて複数本のガラス微粒子合成用バーナーを配
置し、前記ガラスロッドとガラス微粒子合成用バーナー
とを平行に相対的に往復運動させ、トラバースの折り返
し位置をバーナー間隔の略整数分の一ずつ一定方向に移
動させ、折り返し位置がバーナーの間隔分移動したとこ
ろで逆方向に移動させるようにし、順次この操作を繰り
返してバーナーで合成されるガラス微粒子をガラスロッ
ドの表面に順次堆積させてガラス微粒子堆積体を製造す
る方法において生じる、ガラス微粒子堆積体の両端のテ
ーパ部分が多くなるという問題を解決し、両端のテーパ
部分の短いガラス微粒子堆積体を製造する方法、及びそ
のための装置が提供される。
According to the present invention, a plurality of burners for synthesizing glass fine particles are arranged to face a rotating glass rod, and the glass rod and the burner for synthesizing glass fine particles are relatively reciprocated in parallel. The turning position of the traverse is moved in a fixed direction by a fraction of an integer of the burner interval, and the turning position is moved in the reverse direction when the turning position has moved by the burner interval. Solves the problem of increasing the number of tapered portions at both ends of a glass fine particle deposit, which occurs in a method of manufacturing a glass fine particle deposit by sequentially depositing glass fine particles on the surface of a glass rod, and depositing glass fine particles having a short tapered portion at both ends. A method of manufacturing a body and an apparatus therefor are provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】端部バーナー及びそれ以外の中間バーナーによ
るガラス微粒子の堆積の状況を模式的に示す図。
FIG. 1 is a diagram schematically showing a state of deposition of glass particles by an end burner and other intermediate burners.

【図2】端部バーナーと隣接する中間バーナーとの間隔
とテーパ部近傍のガラス微粒子堆積体の形状との関係を
説明する図。
FIG. 2 is a view for explaining a relationship between an interval between an end burner and an adjacent intermediate burner and a shape of a glass fine particle deposit near a tapered portion.

【図3】多層ガラス微粒子の堆積法によるガラス微粒子
堆積体製造の概要を示す説明図。
FIG. 3 is an explanatory view showing an outline of production of a glass particle deposit by a method of depositing multilayer glass particles.

【図4】実施例1における端部バーナーの傾斜角度と両
端に形成されるテーパ部の長さとの関係を示す図。
FIG. 4 is a diagram showing a relationship between an inclination angle of an end burner and lengths of tapered portions formed at both ends in the first embodiment.

【符号の説明】[Explanation of symbols]

1 ガラスロッド 2 テーパ部 4 容器 5
排気口 6 ガラス微粒子堆積体(スス体) 7 バーナー 8 端部バーナー 9 中間バーナー
DESCRIPTION OF SYMBOLS 1 Glass rod 2 Tapered part 4 Container 5
Exhaust port 6 Glass particle deposit (soot body) 7 Burner 8 End burner 9 Intermediate burner

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 回転するガラスロッドに対向させて複数
本のガラス微粒子合成用バーナーを配置し、前記ガラス
ロッドとガラス微粒子合成用バーナーとを平行に相対的
に往復運動させ、トラバースの折り返し位置をバーナー
間隔の略整数分の一ずつ一定方向に移動させ、折り返し
位置がバーナーの間隔分移動したところで逆方向に移動
させるようにし、順次この操作を繰り返してバーナーで
合成されるガラス微粒子をガラスロッドの表面に順次堆
積させてガラス微粒子堆積体を製造する方法において、
両端のバーナーをそれらに隣接するバーナー側に傾斜さ
せた状態でガラス微粒子の堆積を行うことを特徴とする
ガラス微粒子堆積体の製造方法。
1. A plurality of burners for synthesizing glass fine particles are arranged to face a rotating glass rod, and the glass rod and the burner for synthesizing glass fine particles are relatively reciprocated in parallel with each other, so that the traverse folding position is determined. The burner interval is moved in a fixed direction by a substantially integral number, and when the turning position is moved by the distance of the burner, it is moved in the opposite direction. In a method of manufacturing a glass fine particle deposit by sequentially depositing on the surface,
A method for producing a glass fine particle deposit, wherein glass fine particles are deposited in a state in which burners at both ends are inclined toward a burner adjacent to them.
【請求項2】 前記両端のバーナーの中心線とガラスロ
ッドの中心線とのなす角度が30°〜75°となるよう
に設定することを特徴とする請求項1に記載のガラス微
粒子堆積体の製造方法。
2. The glass fine particle deposit according to claim 1, wherein an angle between a center line of the burners at both ends and a center line of the glass rod is set to 30 ° to 75 °. Production method.
【請求項3】 前記両端のバーナーとそれらに隣接する
バーナーとの間隔を、両端のバーナー以外の中間バーナ
ーどうしの間隔よりも大きくなるように設定することを
特徴とする請求項1又は2に記載のガラス微粒子堆積体
の製造方法。
3. The method according to claim 1, wherein an interval between the burners at both ends and a burner adjacent thereto is set to be larger than an interval between intermediate burners other than the burners at both ends. Method for producing a glass fine particle deposit.
【請求項4】 前記両端のバーナーの中心線がガラス微
粒子堆積面と交わる点と、両端のバーナーに隣接するバ
ーナーの中心線がガラス微粒子堆積面と交わる点との距
離が、両端のバーナー以外の中間バーナーの中心線がガ
ラス微粒子堆積面と交わる点どうしの距離と等しくなる
ように設定することを特徴とする請求項3に記載のガラ
ス微粒子堆積体の製造方法。
4. The distance between the point at which the center line of the burners at both ends intersects the glass particle deposition surface and the point at which the center line of the burners adjacent to the burners at both ends intersects the glass particle deposition surface is different from that at both ends. The method according to claim 3, wherein the intermediate burner is set so as to have a distance between points where the center line of the intermediate burner intersects the glass particle deposition surface.
【請求項5】 回転するガラスロッドに対向させて複数
本のガラス微粒子合成用バーナーを配置し、前記ガラス
ロッドとガラス微粒子合成用バーナーとを平行に相対的
に往復運動させ、前記バーナーで合成されるガラス微粒
子をガラスロッドの表面に順次堆積させてガラス微粒子
堆積体を製造する装置であって、両端のバーナーがそれ
らに隣接するバーナー側に傾斜した状態で配置されてな
ることを特徴とするガラス微粒子堆積体の製造装置。
5. A plurality of burners for synthesizing glass fine particles are arranged in opposition to a rotating glass rod, and the glass rod and the burner for synthesizing glass fine particles are relatively reciprocated in parallel to be synthesized by the burner. For depositing glass fine particles sequentially on the surface of a glass rod to produce a glass fine particle deposit body, wherein the burners at both ends are arranged in a state inclined to the burner side adjacent thereto. Production equipment for fine particle deposits.
【請求項6】 前記両端のバーナーがガラスロッドに対
する角度を任意に調節可能に取付けられていることを特
徴とする請求項5に記載のガラス微粒子堆積体の製造装
置。
6. The apparatus according to claim 5, wherein the burners at both ends are attached so that the angle with respect to the glass rod can be arbitrarily adjusted.
【請求項7】 前記両端に位置するバーナーがそれらに
隣接するバーナーとの間隔を任意に調節可能に取付けら
れていることを特徴とする請求項5又は6に記載のガラ
ス微粒子堆積体の製造装置。
7. The apparatus for producing a glass particle deposit according to claim 5, wherein the burners located at both ends are attached so that the distance between the burners and the burners adjacent to the burners can be arbitrarily adjusted. .
JP2001140955A 2001-05-11 2001-05-11 Method and apparatus for manufacturing glass particulate deposit Withdrawn JP2002338256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001140955A JP2002338256A (en) 2001-05-11 2001-05-11 Method and apparatus for manufacturing glass particulate deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001140955A JP2002338256A (en) 2001-05-11 2001-05-11 Method and apparatus for manufacturing glass particulate deposit

Publications (1)

Publication Number Publication Date
JP2002338256A true JP2002338256A (en) 2002-11-27

Family

ID=18987474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001140955A Withdrawn JP2002338256A (en) 2001-05-11 2001-05-11 Method and apparatus for manufacturing glass particulate deposit

Country Status (1)

Country Link
JP (1) JP2002338256A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030070223A (en) * 2002-02-21 2003-08-29 주식회사 세미텔 Apparatus for fabricating an optical fiber preform
KR100630117B1 (en) 2005-02-23 2006-09-27 삼성전자주식회사 Optical vapor deposition apparatus for optical preform
JP2017068219A (en) * 2015-10-02 2017-04-06 株式会社コベルコ科研 Electrode structure
CN110395899A (en) * 2019-08-02 2019-11-01 杭州永特信息技术有限公司 A kind of preparation method and its prefabricated rods surrounding layer of high deposition rate preform surrounding layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030070223A (en) * 2002-02-21 2003-08-29 주식회사 세미텔 Apparatus for fabricating an optical fiber preform
KR100630117B1 (en) 2005-02-23 2006-09-27 삼성전자주식회사 Optical vapor deposition apparatus for optical preform
JP2017068219A (en) * 2015-10-02 2017-04-06 株式会社コベルコ科研 Electrode structure
CN110395899A (en) * 2019-08-02 2019-11-01 杭州永特信息技术有限公司 A kind of preparation method and its prefabricated rods surrounding layer of high deposition rate preform surrounding layer
CN110395899B (en) * 2019-08-02 2021-08-13 杭州永特信息技术有限公司 Preparation method of high-deposition-rate optical fiber preform outer cladding and preform outer cladding thereof

Similar Documents

Publication Publication Date Title
EP2583952A1 (en) Method and burner for producing a porous glass preform
JP3512027B2 (en) Method for producing porous base material
JP2002338256A (en) Method and apparatus for manufacturing glass particulate deposit
JP2002338258A (en) Method and apparatus for manufacturing glass particulate deposit
WO2005077849A1 (en) Method for manufacturing article comprising deposited fine glass particles
JP4614782B2 (en) Method for producing quartz glass preform for optical fiber
WO2002042231A1 (en) Method and device for manufacturing glass particulate sedimented body
EP1211227B1 (en) Method of producing a preform for optical fibres by outside vapour deposition
US20040244426A1 (en) Outside vapor deposition apparatus for making optical fiber preform and method for making optical preform using the same
WO2003086995A1 (en) Method of manufacturing glass particulate stacked body
JP3521897B2 (en) Method and apparatus for producing porous glass base material
JP4097982B2 (en) Method for producing porous preform for optical fiber
JP3510425B2 (en) Manufacturing method of optical fiber preform
JP3917022B2 (en) Method for producing porous preform for optical fiber
JP2021143115A (en) Apparatus and method for manufacturing optical fiber preform
WO2003037809A1 (en) Method for producing optical fiber base material
JP2003081645A (en) Method of manufacturing glass particulate deposit and glass particle deposit obtained by this manufacturing method
JP3521898B2 (en) Method for producing porous glass base material
JP2001031431A (en) Method and apparatus for producing porous glass preform
JP2000272929A (en) Production of optical fiber preform
JPH08325029A (en) Production of porous glass preform for optical fiber
JP4398114B2 (en) Manufacturing method of glass base material for optical fiber with less unevenness
JPH107429A (en) Production of preform for optical fiber
JP4140839B2 (en) Optical fiber preform manufacturing method
JPH0393642A (en) Production of porous glass preform for optical fiber

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070319

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805