JPS6270521A - 高磁束密度一方向性電磁鋼板の製造方法 - Google Patents

高磁束密度一方向性電磁鋼板の製造方法

Info

Publication number
JPS6270521A
JPS6270521A JP20775685A JP20775685A JPS6270521A JP S6270521 A JPS6270521 A JP S6270521A JP 20775685 A JP20775685 A JP 20775685A JP 20775685 A JP20775685 A JP 20775685A JP S6270521 A JPS6270521 A JP S6270521A
Authority
JP
Japan
Prior art keywords
annealing
nitrogen
temperature
heating
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20775685A
Other languages
English (en)
Other versions
JPS633008B2 (ja
Inventor
Toyohiko Konno
今野 豊彦
Yozo Suga
菅 洋三
Masashi Tanida
谷田 雅志
Motoharu Nakamura
中村 元治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20775685A priority Critical patent/JPS6270521A/ja
Publication of JPS6270521A publication Critical patent/JPS6270521A/ja
Publication of JPS633008B2 publication Critical patent/JPS633008B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は特に磁束密度の高い一方向性電磁鋼板に関する
ものである。
〔従来の技術〕
一方向性電磁鋼板は主にトランス鉄心に用いられる軟磁
性材料である。この種の鋼板は透磁率を磁束の流れる方
向にのみ著しく高める目的で磁化容易軸が圧延方向に対
し数度の範囲内にそろった結晶粒((110) (00
1)方位粒)により構成され、また成分的にはSiを含
有することにより固有抵抗を高め、ジュール熱に起因す
る鉄損を低減している。その表面には鋼板製造過程の脱
炭焼鈍時に選択酸化された5i02とその上に塗布され
たMgOとが仕上焼鈍時に固相反応することにより生じ
たフォルステライトMg1SiOa 、が数μmの厚さ
で付着しており、絶縁皮膜の役目を果たすとともに、磁
区の細分化を行ない、磁気特性的にも重要な役割りを任
っている。通常はさらに張力付加の目的でコロイダルシ
リカを主体とした2次皮膜が施された後、トランス鉄心
として利用されている。この−ような観点からすれば一
方向性電磁鋼板は圧延方向に(110) (001)方
位を持つ結晶粒によりおおわれ、表層部にフォルステラ
イトを主体とするセラミックス皮膜及び2次皮膜を有す
る複合材料であると言える。
さて、このような一方向外電ill板における(110
) (001)方位の高い集積度の達成と、酸化物系セ
ラミックスであるところのフォルステライト皮膜の生成
は通常、最終仕上焼鈍と呼ばれるBox焼鈍中、はぼ時
期を同じくして起こる。前者は2次再結晶と呼ばれる(
110) (001)方位粒の異常粒成長、後者は鋼板
表面におけるSiO□−MgO系固相反応により達成さ
れ、この2つの反応は本質的にまったく異った現象であ
るにもかかわらず、間接的に干渉しあいながら現実の反
応は進行している。
周知のように2次再結晶を起こすためには仕上焼鈍前の
鋼板に微細なMnS、A/N等の析出物(通常インヒビ
ターと呼ばれる)を存在させることにより一次再結晶粒
の正常粒成長を抑制する必要がある。そして二次再結晶
を適切に制御することにより(110) (001)方
位粒の集積度が高まり高磁束密度を得ることができる。
このような高磁束密度一方向性電磁鋼板の製造技術とし
て代表的なものに田口悟等による特公昭40−1564
4号公報及び今中拓−等による特公昭51−13469
号公報記載の方法がある。前者においてはMnS及びA
INを後者ではMnS 、 MnSe、 Sb等を主な
インヒビターとして用いている。従って現在の技術にお
いてはこれらインヒビターとして機能する析出物の大き
さ、形態及び分散状態を適正制御することが不可欠であ
る。MnSに関して言えば、現在の工程では熱延前のス
ラブ加熱時にMnSをいったん完全固溶させた後、熱延
時に析出する方法がとられている。二次再結晶(=、必
要な量のMnSを完全固溶するためには1400℃程度
の温度が必要である。これは普通鋼のスラブ加熱温度に
比べて200℃以上も高く、この高温スラブ加熱処理に
は以下に述べるような不利な点がある。
1)方向性電磁鋼専用の高温スラブ加熱炉が必要。
2)加熱炉のエネルギー原単位が高い。
3)溶融スケール量が増大し、いわゆるノロかき出し等
にみられるように操業上の悪影響が大きい。
このような問題点を回避するためにはスラブ加熱温度を
昔通洞並みに下げればよいわけであるが、このことは同
時にインヒビターとして有効なMnSの量を少なくする
かあるいはまったく用いないことを意味し、必然的に二
次再結晶の不安定化をもたらす。このため低温スラブ加
熱化を実現するためには何らかの形でMnS以外の析出
物などによりインヒビターを強化し、仕上焼鈍時の正常
粒成長の抑制を充分にする必要がある。このようなイン
ヒビターとしては硫化物の他、窒化物、酸化物及び粒界
析出元素等が考えられ、公知の技術として例えば次のよ
うなものがあげられる。
特公昭54−24685号公報ではAs s Bi %
 Pb 。
sb等の粒界偏析元素を鋼中に含有することによりスラ
ブ加熱温度を1050〜1350℃の範囲にする方法が
開示された。特開昭52−24116号公報では八βの
他、Zr X’ri 、8% Nb 、Ta % V、
CrsMo等の窒化物生成元素を含有することによりス
ラブ加熱温度を1100〜1260℃の範囲にする方法
が開示された。また、特開昭57−158332号公報
ではMn含有量を下げ、Mn/Sの比率を2.5以下に
することにより低温スラブ加熱化を行ない、さらにCu
の添加により二次再結晶を安定化する技術が開示された
。一方、これらインヒビターの補強と組み合わせて金属
組織の側から改良を加えた技術も開示された。すなわち
特開昭57−89433号公報ではMnに加え5SSe
 % Sb 1Bt −Pb % Sn −B等の元素
を加え、これにスラブの柱状晶率と2次冷延圧下率を組
み合わせることにより1100〜1250℃の低温スラ
ブ加熱化を実現している。さらに特開昭59−1903
24号公報ではSあるいはSeに加え、/l及びBと窒
素を主体としてインヒビターを構成し、これに冷延後の
一次再結晶焼鈍時にパルス焼鈍を施すことにより二次再
結晶を安定化する技術が公開された。このように方向性
電磁鋼板製造における低温スラブ加熱化実現のためには
、これまでに多大な努力が続けられてきている。
さて本発明者等は先に特開昭59−56522号公報に
おいてMnを0.08〜0.45、Sを0.007以下
にすることにより低温スラブ加熱化を可能にする技術を
開示した。これは本質的にはSを下げることにより(M
n)(S)積を1200℃で与えられる溶解度積以下に
し、二次再結晶の安定をPの添加、仕上焼鈍中の昇温速
度を15°C/hr以下にする等の技術で補なったもの
である。この方法はその後特開昭59−190325号
公報においてCrを添加することにより2次再結晶の安
定化と磁性の向上をはかる方向に進歩してきた。
〔本発明の解決しようとする問題点〕
これまで述べてきたように方向性電磁鋼板製造における
低温スラブ加熱化の実現に向けて多くの研究者が多大な
努力をしてきたにもかかわらず、前述の技術は研究室規
模の製造手段にとどまり、現実の製造工程を大巾に変更
するまでには到っていない。この原因として主要なもの
として、MnSに代替するインヒビターの機能不足によ
る二次再結晶の不安定化があげられる。
先に述べた本発明者等による特開昭59−56522号
公報及び特開昭59−190325号にみられる成分系
においても単重の大きな10)ンないし20)ンコイル
で最終仕上焼鈍を行なう場合、コイル巾方向・長手方向
に磁気特性のバラつきがみられることが新たな問題点と
して現出した。
〔問題点を解決するための手段〕
本発明の目的は低温スラブ加熱を可能にした特開昭59
−56522号公報、同59−190325号公報にお
ける前述のような問題点を除去改善し、仕上焼鈍中にお
こる二次再結晶を安定化し、成品の磁束密度を高める仕
上焼鈍方法を提供することにある。
すなわち本発明は重量でC: 0.025〜0.075
%、−3i:3.O〜4.5%、酸可溶性Al :0.
010〜0.060%、N : 0.0030〜0.0
130%、S +0.405 Se:0.010%以下
、Mn: {0.05+7(S +0.4055e)}
%以上0.8%以下を含有するスラブを1200℃未満
の温度で加熱後、通常の方法で一方向性電磁鋼板を作成
する方法において、仕上焼鈍開始から800〜900℃
の温度域に至るまでの雰囲気の窒素分圧と酸素分圧を特
定の範囲に限定し、かつ600〜700℃の温度域から
800〜900℃の温度域までの昇温速度を限定するこ
とにより二次再結晶を安定化し、成品の磁気特性を向上
させる方法を提供するものである。またさらに酸素分圧
の上昇を押えるため、静電塗装法を採用すること、そし
てマグネシアを主体とする焼鈍分離材中にフェロ窒化マ
ンガンを加えることにより単重の大きなコイルにおいて
も成品の磁気特性を安定して確保することが可能となっ
たのでこれらを本発明の構成要因とした。
以下、本発明の詳細な説明する。
第2図にC: 0.06%、S t:3.3%、Mn:
0.2%、S : 0.004%、P:0.03%、l
! : 0.027%、N : 0.003%、Cr:
0.10%を含有する冷延板を湿水素雰囲気中で脱炭焼
鈍した後、Ti12を5重量部含んだマグネシアを主成
分とする焼鈍分離材を塗布し、NZ =25%、Hlニ
ア5%の雰囲気下で高温仕上焼鈍した時の鋼板中の窒素
増加曲線を示す。
第3図には対応する材料の2次再結晶温度(約1000
℃)付近における金相写真から、JIS横断法によって
求めた平均結晶粒径の変化を示した。この実験から、仕
上焼鈍中の窒素吸収は700〜850℃の範囲に起こり
、この間に窒素吸収が充分であった材料は1000℃付
近で発生する2次再結晶も良好で、磁気特性的にも優れ
た材料であることが判明した。鋼中に吸収された窒素が
どのような形で存在しているかを引き続き調査した。ま
ず抽出レプリカ法により昇温中のそれぞれの温度におけ
る介在物を抽出、透過電子顕微鏡を用いてこれら介在物
の分散状態の変化等を調べるとともに介在物の同定を行
なった。その結果、吸収された窒素はAll N 、 
(Si、Mn)−nitrides、 (Si、A I
J )−nitridesとして特に粒界に多く析出し
ていることが判明した。そして金相写真との比較からこ
のように粒界に析出した析出物の量が多い場合正常粒成
長の抑制も充分であり、2次再結晶も安定であることが
わかった。すなわち、このような粒界析出型インヒビタ
ーを有効に用いることにより、本発明のようにMnSを
インヒビクーとして用いない場合でも2次再結晶は安定
するとの知見に本発明者らは到達した。そしてこの目的
のためにはある程度の窒素吸収を行なわせることが必要
であり、最終仕上焼鈍の際、この窒素吸収の可能な60
0〜700℃の温度域から800〜900℃の温度域ま
でを15°C/hr以下のゆっくりとしだ昇温速度で加
熱することが必要であるとの結論に達した。
本発明者らはこの窒素吸収が起こる際の界面変化を解析
し、窃素吸収が順調に行な、われるのに必要な条件を吟
味しノこ。結論を述べる。
1)脱炭焼鈍時に形成された酸化皮膜のうち最表面に存
在する数100〜数1000 Aの厚さの(Fe、Mn
)zsiOa (fayalite)層が還゛元されな
いと窒素の吸収は順調に進まない。この (Fe、 Mn) zsi04.IJの還元は600〜
700℃の温度域で起こる。
2)窒素吸収は酸化皮膜中のSiO□の濃化とともに停
止する。SiO□の1化は800〜900°Cの温度域
で起こる。
この結論を支持するデータとして第4図及び第5図に仕
上焼鈍中の酸化皮膜の性状の変化を反射赤外線スペクト
ル及びG D S (Glow Dischahge−
Optical Emission 5pectros
copy)で解析した結果を示す。これらの結果より 
(Fe、 Mn) 、Sin、の還元とSiO□の濃化
がそれぞれの温度域で起こっていることがわかる。これ
らの界面解析の結果と鋼中の窒素増量曲線(例えば第2
図)とから上記した結論(11、(21を導いた。
さて以上の結果から低温スラブ加熱材の仕上焼鈍中の窒
素吸収を促進させ、二次再結晶を安定させる際、仕上焼
鈍前半の雰囲気の酸素分圧と窒素分圧を適切な値に制御
することが必要であることが必然的に導かれる。酸素分
圧は酸化皮膜中の(Fe、 Mn) zsi04層が還
元されるだけの低レベルであることが最低限必要で、さ
らに皮膜中のSiO□の濃化に対するドライビングフォ
ースを与えないという観点からできるだけ低い方が望ま
しい。以上の点を考慮して仕上焼鈍開始から850℃ま
での昇温速度と雰囲気の酸素分圧が成品の磁気特性に及
ぼす効果を調べた。結果を第1図に示す。このように昇
温速度が15°C/hr以下でも雰囲気の酸素分圧が高
い場合、磁気特性レベルが劣化することが実験的にも確
認された。これらの解析的及び現象的実験事実より、本
発明者らは、仕上焼鈍開始から800〜900℃の温度
域に至るまで、雰囲気の酸素分圧をP )izo/ P
 lh≦0.015にすることが必要であるとの知見に
到達した。また、窒素分圧は0.05気圧程度の低い値
であっても、酸素分圧が上記した程度低く、かつ600
〜700℃の温度域から800〜900℃の温度域にか
けての昇温速度が15’C/hr以下であれば、鋼板へ
の窒素吸収は順調に起こり、二次再結晶も安定であるこ
とが判明した。
従って雰囲気ガスの組成が通常の一方向性電磁鋼板製造
時の仕上焼鈍時に導入される窒素を5%以上含む窒素/
水素混合組成の範囲内にあれば特に窒素分圧を限定する
必要はないとの結論に達した。
以上の技術的成果により該当成分の低温スラブ加熱材の
2次再結晶は安定し、磁性も良好な材料が得られたので
あるが、この技術を工業的に実現する際、本発明者等は
新たな問題点に直面した。
通常、最終仕上焼鈍は鋼板を10〜20トンのコイル状
にした状態で行なわれる。脱炭焼鈍板をコイル状に巻き
とる際、1)鋼板表面にフォルステライ) (Mg2S
i04)皮膜を生成する。2)鋼板相互の焼き付きを防
止する。以上の2点からマグネシアを主体とする焼鈍分
離材の塗布が行なわれる。
この焼鈍分離材の塗布には、通常マグネシアと各種添加
物を純水にといたスラリー状態だく液を鋼板にローラー
で塗布、その後乾燥するという手順がとられる。マグネ
シアをスラリー状にする攪拌作業の際に水和反応が進み
、Mg (OH) zが一部形成される。この水和成分
が仕上焼鈍中400〜500℃の温度範囲で放出され、
コイル板間の酸素分圧を極度に上昇させる。本発明者ら
直面した問題点というのは、このコイル板間の酸素分圧
の上昇が先に述べた鋼板への窒素吸収を阻害し、最終的
に2次再結晶を不安定にするということである。これを
解決するためには板間に不必要に持ち込まれる水和成分
をできるだけ減らすことが必要である。
本発明者等による特開昭58−67871号公報におい
て開示されたマグネシアを主成分とする懸たく液の塗布
後に非水和性死焼マグネシア粉体を静電的に付着する方
法(以下静電■重性という)はコイル内に持ち込む水和
成分量を制御するという本目的にかなうものである。第
7図に通常のマグネジアコ、−ティング法及び静電塗装
法を採用した場合に得′た成品の機中方向の磁気特性を
比較して示した。
このように静電塗装法を採用することにより特にコイル
中央部付近の二次再結晶が安定し、磁気特性も全体とし
て向上することが明らかになった。
以上の仕上焼鈍中600〜700℃の温度域から800
〜900℃の温度域までを窒素を含む弱還元性雰囲気中
で15℃/hr以下の昇温速度で加熱し、窒素吸収を促
進する技術は、この温度間で窒素を解離するMn1−x
 Fex Nyを焼鈍分離材中に添加することを提案し
た本発明者らによる特願昭59−215827号と組み
合わすことによりさらに有効なものとなる。特に10ト
ン、20トンとコイル単重が大きく、多部雰囲気からの
窒化が困難な場合にその効果は著しい。第8図にMn1
−>I Fex Nyを焼鈍分離材中に添加して得た成
品のコイル板中方向の磁性を比較例とともに示す。l’
1n1−X Fe、 Nyの添加による磁気特性の向上
及び機中方向の均一性の向上効果は明らかである。
以上述べた技術的な進歩によりMnS量の少ない低温ス
ラブ加熱材の二次再結晶は安定し、コイル巾方向・長手
方向にわたって磁束密度(BSで表わす)を1.92 
(T)以上確保することが可能となった。
次に本発明の構成要件の限定理由を述べる。
Cは0.025重世%(以下単に%と略述)未満になる
と二次再結晶が不安定になり、かつ二次再結晶した場合
でも磁束密度がB8で1.80 (T) Lか得られな
いので、0.025%以上とした。一方、Cが多くなり
過ぎると脱炭焼鈍時間が長くなり経済的でないので0.
075%以下とした。Siは4.5%を超えると冷延時
の割れが著しくなるので4.5%以下とした。又、3.
0%未満では製品厚0.30mmで一87八。が1.0
5W/Kg以下の最高等級の鉄損が得られないので3.
0%以上とした。望ましくは3.2%以上である。An
及びNは二次再結晶の安定化に必要なAINを確保する
ため酸可溶性Alとして0.010%以上、Nとして0
.0030%以上が必要である。酸可溶性Aβが0.0
45%を超えると熱延板のANNが不適切となり二次再
結晶が不安定になるので0.045%以下とした。Nに
ついては0.0130%を超えるとブリスターと呼ばれ
る“鋼板表面のふくれ”が発生するので0.0130%
以下とした。
低温スラブ加熱を実現するため、本発明では二次再結晶
を安定化するのに従来必須とされていたMnSの使用を
断念した。それどころかSを増やすことは高Si1手材
の二次再結晶を逆に不安定にするのである。一方、フォ
ルステライト皮膜の安定生成という観点からもSを増や
すことは有害である。すなわち本発明者らが特願昭59
−53819号に詳述したようにフォルステライト生成
反応であるところのM2O−5iO2固相反応に際して
鋼中のMnが酸化してできたMnOが触媒的役割を果た
し、成品のフォルステライト皮膜の特性を向上させるの
であるが、このために必要なf reeMn量を確保す
るためにはSは0.010%以下であることが望ましい
Mnをトラップするという意味からはSe も同様の効
果を持つのでSeを増やすことも好ましくない。以上の
点からSとSeに対する上限値をS 十0.405Se
を0.010%とした。これ以上Sを増やすと材質的に
は線状細粒と呼ばれる二次再結晶、不良部が発生し、表
面皮膜の特性も劣化する。
Mnの下限値は良好なフォルステライト皮膜を得るため
に必要なMn活量を得るという観点からS及びSelに
対しく0.05 + 7(S +0.405Se) l
 %とした。Mnがこの値以下であると皮膜が劣化し、
また二次再結晶も不安定となるので好ましくない。
Mnの上限値は0.8%と定めた。これ以上Mn量が増
えると成品の磁束密度が劣化するので好ましくない。
スラブ加熱温度は、本発明の本来の目的が一方向性電磁
鋼板のスラブ加熱温度を普通網皿みにするということで
あるから、1200℃未満と限定した。
望ましくは1150℃以下である。
仕上焼鈍時の昇温速度は窒素吸収の起こる600〜70
0°Cの温度域から窒素吸収の終了する800〜900
℃の温度域に至るまでを15℃/hr以下と限定する。
これよりも速いと第1図に示したように成品磁性が劣化
する。また、昇温速度15℃/hrの開始域と終了域を
それぞれ600〜700℃及び800〜900℃とした
のは1)素材成分や脱炭焼鈍の条件、あるいは焼鈍分離
材として用いるマグネシアの種類や添加物の種類によっ
てこれらの窒素吸収開始及び終了の温度が少しずつ異な
ること、2)10)ンあるいは20トンコイル内の温度
の分布は大きく、コイル内部での温度差は通常100℃
以上あり、コイルすべての部位にわたって一意に均等な
昇温速度等を確保するのは不可能であるbの2つの理由
による。
仕上焼鈍開始から800〜900℃までの温度域までの
雰囲気は窒素を5%以上含む窒素/水素混合ガスでかつ
pH□0/ P H2≦0.015でなければならない
。窒素が5%以下であると必要な窒素量が鋼中に確保さ
れず二次再結晶が不安定となる。またP HzO/ P
 Hz〉0.015であると1)酸化皮膜のfayal
ite、Fe25iO,、の還元が遅れ従って窒素吸収
開始時期が遅れる、2)酸化皮膜中のSiO□の濃化が
促進され、従って窒素吸収停止時期が早まる。以上の2
点から窒素吸収量が少なくなり二次再結晶が不安定とな
る。以上の理由で仕上焼鈍雰囲気に関する前述の条件を
定めた。
静電塗装法を採用する場合、下塗りとする通常の方法で
スラリー状に塗布乾燥する焼鈍分離材の塗布量は、これ
を片面4g/d以下とする。これ以上であるとコイル板
間内に持ち込む水和成分量を不必要に多くし仕上焼鈍時
の雰囲気の酸素分圧を制御するという本来の目的が達成
されない。また焼き付けを防止する意味で静電塗布する
マグネシアの塗布量は3〜6g/m2(片面あたり)と
する。
4g/rrr未満であるとコイルの焼き付けが発生する
場合が生じ、また10g/ tdを超える量を塗布して
も焼き付は防止の効果は同じで経済的でない。
窒化フェロマンガン、Mnt−x Fex NVに関す
る限定理由を次に述べる。Feの含有量がX >0.8
となると窒素の解離温度が下がり過ぎ、仕上焼鈍中の窒
素分圧の確保をはかるという本来の目的の達成が困難と
なるのでX≦0.8でなければならない。
またx=oすなわち純粋な窒化マンガンとしても二次再
結晶に対しては充分効果を持つ。このことからFe量は
0≦X<0.8の範囲とする。窒素量、yの範囲は次の
理由で定めた。y<0.01であると第6図の状態図に
基づく考察から明らかなように窒化物としてはほとんど
(Mn、Fe) −N−次回溶体のみとなってしまい、
必要な窒素分圧を確保できないばかりか、分解温度も低
く添加物として実用にならない。またy>0.6の窒化
物は作成が困難なばかりか、大気圧下でそのような窒化
物の存在が確認されていない。一方、特願昭59−21
5827号において詳述した本研究者等によるMn−F
e−N系の相平衡論的な実験結果と考察から、この系に
は室温においてζ−MnzJ型、ζ−Fe、N型、δ−
Fe、N型の結晶構造を持つ3つの相が少なくとも存在
し、それぞれy=0.43.0.50.0.25である
ことがわかっている。(実際には各相においてはある程
度の非化学量論性を持って広がっている。)従って(M
n、x Fex ) Ng{0.01≦y <0.6 
)で表される化合物は、最も一般的に表現すれば(Mn
tFe)N−次回溶体及び上述の3つ以上の相のいずれ
かにより構成される混合物であるといえる。
以上の点を考慮して本発明のMn+−X Fex Ny
の組成範囲は第6図のABCDで示す領域(A{0.0
,01) 、B {0.0,6)、C{0.8,0,6
)、D {0.8,0,01)で囲まれる領域)に限定
される。
〔実施例〕
実施例1 :  C:0.055%、Si:3.25%
、Mn:0.18%、P : 0.025%、S : 
0.006%、酸化溶性/l:o、027%、N : 
0.0080%を含有する溶鋼を連続鋳造法により鋼塊
とした。このスラブを1150℃の温度に加熱した後、
熱延して2.0鰭の熱延板を作った。この熱延板を11
20℃X2m1n焼鈍した後0.23mmの最終板厚ま
で冷延し、830℃の温度で湿水素中の脱炭焼鈍を行な
った。この板にTi0zを5%含むMgOを12g/ 
rd塗布し、窒素25%水素75%の混合ガス中の85
0℃までの露点を30℃、5℃、−20℃(それぞれP
 HzO/ P lh = 0.058.0.012.
0.005 )とし、また600℃から850℃までの
昇温速度を6.12.18、’C/hrと変え仕上焼鈍
を行なった(850℃から1200”cまでの昇温速度
は20℃/hrとした)。得られた鋼板の磁気特性を表
1に示す。
7肴…肴・−――】 ()内はP H20/ P Hz値、1 1内は本発明
表−1 実施例2 :  C:0.060%、S i:3.3%
、Mn:0.24%、 P  : 0.0:XPA、S
  : 0.004  %、酸可溶性/l:0.029
%、N : 0.0085%、Cr :0.10%を含
有する溶鋼を連続鋳造法により鋼塊とした。このスラブ
を1150℃の温度に加熱した後、熱延して1.81厚
の熱延板とした。この熱延機番1080℃X2m1n、
焼鈍した後0.2鰭の最終板厚まで冷延し、850℃の
温度で湿水素中の脱炭焼鈍を行なった。この仮に通常の
方法(スラリー状溶液をローラーで塗布・乾燥)でTi
O□を3%含むMgOを6g/%(片面)塗布したもの
、及び通常の方法での塗布量を3g/%(片面)にしく
下塗り)、その後6g/mのMgOを静電塗装する静電
塗装法により塗布したものをコイル状にし窒素25%、
水素75%の雰囲気で仕上焼鈍した。また、この漁、静
電塗装法による場合の下塗りにはMno、 asFec
+、 + sNo、 zsを5%含む方法も採用した。
得られた鋼板の磁気特性の平均値を表2に示す。静電塗
装法の効果、窒化フェロマンガン添加の効果が明らかで
ある。
i  i内は本発明 表−1 実施例3 C: 0.052%、Si  :3.25%、Mn  
:0.12%、P : 0.020%、S : 0.0
07%、酸可溶性Al:0.026%、N : 0.0
070%を含有する溶鋼を連続鋳造法により鋼塊とした
。このスラブを1180℃の温度に加熱した後熱延して
2.0mm厚の熱延板とした。
この熱延板を1100℃X2.5 min焼鈍した後0
.23mmの最終板厚まで冷延し850℃の温度で湿水
素中の脱炭焼鈍を行なった。この板に通常の方法(塗布
を塗°布した。また、この際、通常の方法及び静電塗装
法による下塗りにはベースとなるMgOとTiO□に窒
化フェロマンガンMno、 7sFeo、 25NO,
zsを5%含む方法も採用した。このようにして5トン
コイルを斗岑イ乍成し、窒素25%、水素75%、露点
−10℃(P HzO/ P H2= 0.004)の
雰囲気中で650℃〜850℃の昇温速度8℃/hrで
仕上焼鈍した。得られた鋼板の磁気特性の平均値と標準
偏差を表3に示す。静電塗装法及び窒化フェロマンガン
添加の効果特にこれらの方法が成品の磁気特性のバラつ
きの軽減化に及ぼす効果が明らかである。
Be : Bsの平均値 δ:88の標準偏差 表−主 〔発明の効果〕 以上詳述した如く、本発明は、熱延に先立って行なうス
ラブ加熱における、方向性電磁鋼板製造に特有の高温加
熱を普通銅皿みの温度で行なうことが工業的に可能にな
り、 方向性電磁鋼板専用のスラブ加熱炉が不要となった他、
使用エネルギーの減少、ノロ発生の減少などにより製造
コストが大巾に減少し、磁気特性の向上と相伴なって産
業上稗益するところが極めて大である。
【図面の簡単な説明】
第1図は仕上焼鈍中の昇温速度と成品の磁束密度との関
係を仕上焼鈍雰囲気をパラメータにとって示した図であ
る。 第2図は仕上焼鈍中の鋼中の窒素の増加量を示す図、第
3図は第2図において用いたのと同一の試料の1000
℃付近における平均結晶粒径の変化を表わす図である。 第4図はやはり同一の試料について赤外線反射スペクト
ルを用いて第5図はGDSを用いてそれぞれ仕上焼鈍中
各温度の試料について界面分析を行なった結果を示す。 第6図は室温におけるMn−1”e−N三元系の暫定的
な状態図。 第7図、第8図はコイル巾方向の磁束密度の分布を示す
図である。第7図は静電塗装法の効果を、第8図は焼鈍
分離材中のMn+−XFex Nyの効果をそれぞれ示
すものである。 第1図 仕上焼鈍中の温度 (’C) 第2図 第3図 (C醒1) 第4図

Claims (1)

  1. 【特許請求の範囲】 1、重量でC:0.025〜0.075%、Si:3.
    0〜4.5%、酸可溶性Al:0.010〜0.060
    %、N:0.0030〜0.0130%、S+0.40
    5Se:0.010%以下、Mn:{0.05+7(S
    +0.405Se)}%以上0.8%以下を含有し、残
    部がFe及び不可避不純物からなるスラブを1200℃
    未満の温度で加熱した後、熱延、冷延、湿水素雰囲気中
    での脱炭焼鈍、マグネシアを主体とする焼鈍分離材の塗
    布、仕上焼鈍による通常の方法で一方向性電磁鋼板を作
    成する方法において、仕上焼鈍開始から800〜900
    ℃の温度域までを窒素を5%以上含む窒素・水素混合ガ
    スで酸素分圧(PH_2O/PH_2で表わす)が0.
    015以下の雰囲気に保ち、かつ600〜700℃の温
    度域から800〜900℃の温度域までを15℃/hr
    以下の昇温速度で昇温し、仕上焼鈍することを特徴とす
    る高磁束密度一方向性電磁鋼板の製造方法。 2、マグネシアを主体とした焼鈍分離材をいったんスラ
    リー状にした後、塗布・乾燥することによる塗布量(下
    塗り塗布量)を片面当り4g/m^2以下にし、その上
    に片面当り3〜6g/m^2のマグネシアを静電塗布す
    ることを特徴とする特許請求の範囲第1項記載の方法。 3、マグネシアを主体とした焼鈍分離材中に第6図で示
    す点A、B、C、Dで囲まれた領域に相当する組成の窒
    化フェロコンガン(Mn_1_−_xFe_xN■)を
    単独あるいは混合して0.2〜20重量部加えることを
    特徴とする特許請求の範囲第1項もしくは第2項に記載
    の方法。
JP20775685A 1985-09-21 1985-09-21 高磁束密度一方向性電磁鋼板の製造方法 Granted JPS6270521A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20775685A JPS6270521A (ja) 1985-09-21 1985-09-21 高磁束密度一方向性電磁鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20775685A JPS6270521A (ja) 1985-09-21 1985-09-21 高磁束密度一方向性電磁鋼板の製造方法

Publications (2)

Publication Number Publication Date
JPS6270521A true JPS6270521A (ja) 1987-04-01
JPS633008B2 JPS633008B2 (ja) 1988-01-21

Family

ID=16545023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20775685A Granted JPS6270521A (ja) 1985-09-21 1985-09-21 高磁束密度一方向性電磁鋼板の製造方法

Country Status (1)

Country Link
JP (1) JPS6270521A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259019A (ja) * 1989-03-31 1990-10-19 Nippon Steel Corp 磁束密度の高い一方向性電磁鋼板の製造方法
EP0823488A2 (en) * 1996-08-08 1998-02-11 Kawasaki Steel Corporation Method for producing grain-oriented silicon steel sheet
WO2023176855A1 (ja) * 2022-03-14 2023-09-21 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020025003A2 (pt) 2018-06-13 2021-03-23 Dybly Ag preparação de derivados de triazepina condensados e uso dos mesmos como inibidores de bet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045719A (ja) * 1973-08-28 1975-04-24
JPS5099915A (ja) * 1974-01-09 1975-08-08
JPS5419850A (en) * 1977-07-13 1979-02-14 Sharp Kk Electronic type sewing machine
JPS54120215A (en) * 1978-03-10 1979-09-18 Nippon Steel Corp High temperature annealing method of electrical sheets
JPS5893878A (ja) * 1981-12-01 1983-06-03 Kawasaki Steel Corp 磁気特性のすぐれた一方向性けい素鋼板の製造方法
JPS59190325A (ja) * 1983-04-09 1984-10-29 Nippon Steel Corp 連続鋳造法を適用した鉄損の優れた一方向性珪素鋼板の製造法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045719A (ja) * 1973-08-28 1975-04-24
JPS5099915A (ja) * 1974-01-09 1975-08-08
JPS5419850A (en) * 1977-07-13 1979-02-14 Sharp Kk Electronic type sewing machine
JPS54120215A (en) * 1978-03-10 1979-09-18 Nippon Steel Corp High temperature annealing method of electrical sheets
JPS5893878A (ja) * 1981-12-01 1983-06-03 Kawasaki Steel Corp 磁気特性のすぐれた一方向性けい素鋼板の製造方法
JPS59190325A (ja) * 1983-04-09 1984-10-29 Nippon Steel Corp 連続鋳造法を適用した鉄損の優れた一方向性珪素鋼板の製造法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259019A (ja) * 1989-03-31 1990-10-19 Nippon Steel Corp 磁束密度の高い一方向性電磁鋼板の製造方法
EP0823488A2 (en) * 1996-08-08 1998-02-11 Kawasaki Steel Corporation Method for producing grain-oriented silicon steel sheet
EP0823488A3 (en) * 1996-08-08 1998-07-15 Kawasaki Steel Corporation Method for producing grain-oriented silicon steel sheet
US5855694A (en) * 1996-08-08 1999-01-05 Kawasaki Steel Corporation Method for producing grain-oriented silicon steel sheet
WO2023176855A1 (ja) * 2022-03-14 2023-09-21 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法

Also Published As

Publication number Publication date
JPS633008B2 (ja) 1988-01-21

Similar Documents

Publication Publication Date Title
US5512110A (en) Process for production of grain oriented electrical steel sheet having excellent magnetic properties
JPH0774388B2 (ja) 磁束密度の高い一方向性珪素鋼板の製造方法
JP2679944B2 (ja) 鉄損の低い鏡面方向性電磁鋼板の製造方法
JP3359449B2 (ja) 超高磁束密度一方向性電磁鋼板の製造方法
JPH10130726A (ja) 磁束密度が高い低鉄損鏡面一方向性電磁鋼板の製造方法
JPH10130727A (ja) 磁束密度が高い低鉄損鏡面一方向性電磁鋼板の製造方法
JPS60197883A (ja) 一方向性珪素鋼板のフオルステライト絶縁皮膜の形成方法
JPS6270521A (ja) 高磁束密度一方向性電磁鋼板の製造方法
JPH08269552A (ja) 超高磁束密度一方向性電磁鋼板の製造方法
JP2599069B2 (ja) グラス被膜特性が優れ、磁気特性の良好な高磁束密度方向性電磁鋼板の製造方法
JPH02258927A (ja) 一方向性高磁束密度電磁鋼板の製造方法
JPH0762440A (ja) 高張力且つ均一なグラス被膜を有し磁気特性の優れる方向性電磁鋼板の製造方法
JP2674917B2 (ja) フォルステライト被膜のない高磁束密度方向性珪素鋼板の製造方法
JP2663229B2 (ja) 均一なグラス皮膜を有し、磁気特性の著しく優れた方向性電磁鋼板の製造方法
JPH1136018A (ja) グラス皮膜と磁気特性の極めて優れる方向性電磁鋼板の製造方法
JP3011609B2 (ja) 磁気特性の優れたグラス被膜の少ない一方向性電磁鋼板の製造方法
JPH08134660A (ja) 極めて低い鉄損を有する一方向性電磁鋼板
JPH0832928B2 (ja) 磁気特性およびグラス皮膜特性に優れた一方向性電磁鋼板の製造方法
JP7486436B2 (ja) 一方向性電磁鋼板の製造方法
JPS62270724A (ja) 高磁束密度一方向性電磁鋼板の製造方法
JP3456860B2 (ja) 鉄損特性の極めて優れた一方向性電磁鋼板の製造方法
JPH07278669A (ja) 鉄損の低い鏡面方向性電磁鋼板の製造方法
JPH02259017A (ja) 磁気特性、皮膜特性とも優れた一方向性電磁鋼板の製造方法
JPH06192736A (ja) 磁気特性の優れた方向性けい素鋼板の製造方法
JPH11269543A (ja) 方向性電磁鋼板の製造方法