JPS6237922A - Semiconductor substrate - Google Patents

Semiconductor substrate

Info

Publication number
JPS6237922A
JPS6237922A JP17710985A JP17710985A JPS6237922A JP S6237922 A JPS6237922 A JP S6237922A JP 17710985 A JP17710985 A JP 17710985A JP 17710985 A JP17710985 A JP 17710985A JP S6237922 A JPS6237922 A JP S6237922A
Authority
JP
Japan
Prior art keywords
film
thin film
metal thin
semiconductor
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17710985A
Other languages
Japanese (ja)
Inventor
Takao Chikamura
隆夫 近村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17710985A priority Critical patent/JPS6237922A/en
Publication of JPS6237922A publication Critical patent/JPS6237922A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control a temperature distribution with high accuracy, by forming a metal thin film on an insulative substrate, forming an insulating film thereon, forming a semiconductor film which is melted and solidified thereon, while extending the selective band of a heating source. CONSTITUTION:A metal thin film 11 is formed on an insulative substrate 10, and an insulating film 12 is formed on the metal thin film 11. Moreover, a semiconductor film 13 which is melted and solidified is formed on an insulative film 2. Then the thermal rays are absorbed not only by the semiconductor film 13 but also by the metal thin film 11, so that the selection range of laser ray wavelength is extended. Thereby, a temperature distribution is controlled with high accuracy and good reproducibility.

Description

【発明の詳細な説明】 産業上の利用分野 2  =−i 本発明は、絶縁基板上に形成した高性能な薄膜トランジ
スタを提供する半導体基板に関するもので、本発明を用
いることにより高速イメージスキャナおよびディスプレ
イ用能動素子に適用が可能である。
Detailed Description of the Invention Industrial Application Field 2 =-i The present invention relates to a semiconductor substrate that provides a high-performance thin film transistor formed on an insulating substrate. It can be applied to active devices for other purposes.

従来の技術 石英基板上に成長させた多結晶Siiたは非晶質Siを
レーザ光、電子線あるいはヒータを用いた熱線によりア
ニールを行ない単結晶化する技術は、絶縁基板に形成す
るため寄生容量が減少し、高速なトランジスタを得るこ
とが可能であるという特徴を有している。また透明基板
であるためディスプレイ素子のマトリックス能動素子と
しても有力視されている。一方、アニールにより単結晶
化するためには、温度分布の制御が重要となっている。
Conventional technology The technology of annealing polycrystalline Si or amorphous Si grown on a quartz substrate with a laser beam, an electron beam, or a hot wire using a heater to form a single crystal reduces parasitic capacitance because it is formed on an insulating substrate. It has the characteristics that it is possible to obtain a high-speed transistor. Furthermore, since it is a transparent substrate, it is considered to be a promising matrix active element for display elements. On the other hand, in order to form a single crystal by annealing, control of temperature distribution is important.

特にダレインの少ない大面積の単結晶薄膜を得るには、
溶融固化する時の結晶核を少なくするため薄膜面内の温
度分布を周辺で高くする必要がある。第4図にその1例
を示す。1oは絶縁基板で、13は半導体膜、14は半
導体膜の溶融固3 ・、−7 化時に変形した飛散したりするのを防ぐ保護膜である。
In particular, in order to obtain a large-area single crystal thin film with little dalein,
In order to reduce the number of crystal nuclei during melting and solidification, it is necessary to increase the temperature distribution within the thin film surface at the periphery. An example is shown in FIG. 1o is an insulating substrate, 13 is a semiconductor film, and 14 is a protective film that prevents the semiconductor film from being deformed and scattered when it is melted and solidified.

20.21はレーザ光で周辺部に照射することで、溶融
固化時の温度分布を制御することができる。しかし、こ
の方法では、レーザ光源が2台必要で高価となること及
びグレインの少ない単結晶薄膜を得るにはその位置制御
等を精密に行なう必要があり再現性の点で欠点があった
。第6図は他の従来例で、23は一様なレーザ光、24
゜26はレーザ光に対する反射防止膜である。このよう
な構成により、半導体膜13の温度分布は周辺部でレー
ザ光の吸収が多くなって温度が高くなり、かつ反射防止
膜24.25は精度よく形成できるため再現性がよい等
の長所を有している。しかし、このような構成では、レ
ーザ光源230波長は半導体膜13に充分な吸収係数を
持っている必要があるため、レーザの選択が限定される
ことおよび単結晶化のため最適な温度分布を得るために
は反射防止膜24.25の膜厚を光学設割する必要があ
る等の繁雑さを伴う。
20.21 can control the temperature distribution during melting and solidification by irradiating the peripheral area with laser light. However, this method requires two laser light sources and is expensive, and in order to obtain a single crystal thin film with few grains, it is necessary to precisely control the position of the single crystal thin film, which has disadvantages in terms of reproducibility. Figure 6 shows another conventional example, where 23 is a uniform laser beam, 24
26 is an anti-reflection film against laser light. With this configuration, the temperature distribution of the semiconductor film 13 has the advantages that the temperature becomes high because more laser light is absorbed in the periphery, and the antireflection films 24 and 25 can be formed with high precision, resulting in good reproducibility. have. However, in such a configuration, the wavelength of the laser light source 230 needs to have a sufficient absorption coefficient in the semiconductor film 13, which limits the selection of lasers and makes it difficult to obtain an optimal temperature distribution for single crystallization. This involves complications such as the need to optically determine the thickness of the antireflection films 24 and 25.

発明が解決しようとする問題点 このように従来の半導体基板では、半導体膜の結晶性の
向上を得るのに装置が高価となる点や、再現性が乏しか
ったり、レーザ光の選択に制限がある等の欠点を有して
いた。
Problems to be Solved by the Invention As described above, with conventional semiconductor substrates, in order to improve the crystallinity of the semiconductor film, the equipment is expensive, the reproducibility is poor, and the selection of laser light is limited. It had the following drawbacks.

本発明はかかる点に鑑みてなされたもので、簡単な構成
で温度分布制御を行ない、加熱源の汎用性を付与するこ
とにより安価で多量に供給し得る半導体基板を提供する
ことを目的としている。
The present invention has been made in view of these points, and aims to provide a semiconductor substrate that can be supplied in large quantities at low cost by controlling temperature distribution with a simple configuration and providing versatility in heating sources. .

問題点を解決するための手段 本発明は上記問題点を解決するため、絶縁基板、上に金
属薄膜を形成し、その上に絶縁膜を形成し、さらにその
上に溶融固化する半導体膜を形成する構成よりなる。
Means for Solving the Problems In order to solve the above problems, the present invention forms a metal thin film on an insulating substrate, forms an insulating film on it, and further forms a semiconductor film that is melted and solidified on top of it. It consists of a configuration.

作用 本発明は上記構成により、加熱源の選択幅が拡がるため
高精度で再現性よく温度分布制御が出来る、半導体膜の
下面に金属導体があるため半導体膜にトランジスタ等全
形成した場合に基板バイアス効果により易動度の向上を
はかることが出来る、等種々の好作用が期待される。
Effects The present invention has the above-mentioned configuration, which expands the selection range of heating sources, so temperature distribution can be controlled with high precision and good reproducibility.Since there is a metal conductor on the bottom surface of the semiconductor film, it is possible to reduce substrate bias when transistors etc. are completely formed on the semiconductor film. Various positive effects are expected, such as the ability to improve mobility.

5 ページ 実施例 第1図は本発明の基本的構成である半導体基板を示した
ものである。1oは絶縁基板で5in2゜Al2O3,
AeN、BNSICおよびこれらの混合物よりなるもの
で半導体膜13が熱線16により加熱された時に形状変
化を生じたり、剥離やクラック等が生じない材料であれ
ばよい。11は金属薄膜で高融点材料であるMo、Ta
、Wおよびそれらシリサイド化合物が最も適するが、半
導体膜13より高融点を有する材料であれば本発明の要
件を満すもノテある。12は第1の絶縁膜テ5in2.
 Si3N4゜Al2O3等よりなり、半導体膜13と
金属薄膜における高温時の相互拡散を防ぐ働きを有する
。半導体膜13としてはSi、Go GaAs、GaP
、lCdTa。
5 Page Embodiment FIG. 1 shows a semiconductor substrate which is the basic structure of the present invention. 1o is an insulating substrate, 5in2゜Al2O3,
Any material may be used as long as it is made of AeN, BNSIC, or a mixture thereof, and does not change shape, peel, or crack when the semiconductor film 13 is heated by the hot wire 16. 11 is a metal thin film made of high melting point materials such as Mo and Ta.
, W, and their silicide compounds are most suitable; however, any material having a higher melting point than the semiconductor film 13 may satisfy the requirements of the present invention. 12 is a first insulating film TE5in2.
It is made of Si3N4°Al2O3, etc., and has the function of preventing mutual diffusion between the semiconductor film 13 and the metal thin film at high temperatures. The semiconductor film 13 is Si, Go GaAs, GaP.
, lCdTa.

Cd5aあるいはそれらの混晶材料があるが、sl。There are Cd5a and their mixed crystal materials, but sl.

Ge及びそれらの混晶材料は加熱時の蒸気圧も低く、単
結晶化も容易であり特に適する。14は保護膜で半導体
膜13が加熱された時に形状変化が生じたり飛散したり
するのを防ぐ働きを有し、5102やム1203が適す
る。16.16は共にレー6 ・・−ノ ザ光あるいは熱線である。本発明においてこれらの熱光
線の吸収は半導体膜13のみで行なわれるものではなく
、金属薄膜11においても吸収されるため、レーザ光の
波長の選択度が広がる。例えば、大出力が得やすいCO
2レーザ等は、従来においては発振波長が10.2μm
であり、Si、Ge等の半導体膜では吸収されず加熱光
線としては用いることが出来なかったが、本発明におい
ては金属薄膜11で吸収されるため使用可能となる。ま
た、第1図の16に示したように金属薄膜11を加熱し
、第1の絶縁膜12を介して半導体膜13の結晶性改善
をはかることも可能である。
Ge and mixed crystal materials thereof are particularly suitable because they have a low vapor pressure when heated and can be easily formed into single crystals. 14 is a protective film which has the function of preventing the semiconductor film 13 from changing its shape or scattering when heated, and 5102 and 1203 are suitable. 16.16 are both ray 6...-noza light or heat ray. In the present invention, these thermal rays are absorbed not only by the semiconductor film 13 but also by the metal thin film 11, so that the selectivity of the wavelength of the laser beam is expanded. For example, CO
Conventionally, the oscillation wavelength of 2 lasers, etc. is 10.2 μm.
However, in the present invention, it can be used because it is absorbed by the metal thin film 11, as it is not absorbed by a semiconductor film such as Si or Ge. It is also possible to improve the crystallinity of the semiconductor film 13 via the first insulating film 12 by heating the metal thin film 11 as shown at 16 in FIG.

第1図に示した本発明の作製法について述べる。The manufacturing method of the present invention shown in FIG. 1 will be described.

例えば絶縁基板1oとしてSiO2よりなる溶融石英を
用いる。金属薄膜11は、高融点材料であるので、Mo
、Ta、Wあるいはそれらのシリサイド化合物をターゲ
ットとしてスパンタリング法により0、o6〜1.0μ
mの膜厚に形成する。金属薄膜11の膜厚が0.05μ
m以下ではレーザ光あるいは熱線の吸収係数が劣下する
。また、膜厚が1.0μm7 ・−1 より厚く々ると、熱膨張係数の違いから半導体膜13の
溶融固化時にクラックや剥れが生じやすくなる。第1の
絶縁膜12としては化学気相成長法あるい−、スパッタ
リンダ法により5i02.5iNz。
For example, fused quartz made of SiO2 is used as the insulating substrate 1o. Since the metal thin film 11 is a high melting point material, Mo
, Ta, W or their silicide compounds by the sputtering method.
Formed to a film thickness of m. The thickness of the metal thin film 11 is 0.05μ
Below m, the absorption coefficient of laser light or heat rays deteriorates. Moreover, if the film thickness is thicker than 1.0 μm7·-1, cracks or peeling will easily occur when the semiconductor film 13 is melted and solidified due to the difference in thermal expansion coefficient. The first insulating film 12 is made of 5i02.5iNz by a chemical vapor deposition method or a sputter-linda method.

あるいけAl2O2等を形成する。半導体膜13は例え
ばS1薄膜の形成時には化学気相法あるいはプラズマ化
学気相法で5IH4の分解で形成する。
Al2O2 etc. are formed. For example, when forming the S1 thin film, the semiconductor film 13 is formed by decomposing 5IH4 using a chemical vapor phase method or a plasma chemical vapor phase method.

他の方法としては、Siを蒸発源とした電子ビーム蒸着
法、”1にターゲットとしたスノくツタリング法かある
。半導体膜13の膜厚としては、トランジスタ等の能動
素子を形成するのに必要な膜厚と溶融固化時にクラック
等が生じない膜厚の範囲であれはよ(0,01〜1.0
μmが適している。
Other methods include the electron beam evaporation method using Si as an evaporation source, and the snot-driving method using Si as a target. As long as the film thickness is within the range where cracks do not occur during melting and solidification (0.01 to 1.0
μm is suitable.

保護膜14としては化学気相成長法により5102ヲ0
.2〜1.0/im形成すればよい。このようにして形
成した半導体基板にレーザ光あるいはヒータによる熱線
16捷たは16を照射すると、少なくとも金属薄膜11
が加熱され、ある熱量以上において半導体膜13が溶融
される。レーザ光あるいは熱線15 、16i除くこと
により、半導体膜13は再結晶化を行ない、形成時以上
の結晶性の改善がみられる。さらに温度分布を最適に行
なうなら単結晶薄膜さえ得ることが出来る。この結晶性
の改善された半導体膜13は易動度が100〜450に
i/v @ S e cと大きく高性能トランジスタの
基板として用いることが出来る。′T!たこの構成では
熱吸収材が金属簿膜11であるため、レーザ光源として
、C02レーザのような安価々レーザ光源を用いること
が出来るため産業上の意義も犬である。さらに金属薄膜
11は半導体膜13にトランジスタを形成した時に電界
を付与することも可能で、易動度の向上が期待できる。
The protective film 14 is made of 5102 wo by chemical vapor deposition.
.. What is necessary is just to form 2-1.0/im. When the semiconductor substrate thus formed is irradiated with a laser beam or a hot ray 16 from a heater, at least the metal thin film 11
is heated, and the semiconductor film 13 is melted at a certain amount of heat or more. By removing the laser beam or the heat rays 15, 16i, the semiconductor film 13 is recrystallized, and its crystallinity is improved compared to when it was formed. Furthermore, if the temperature distribution is optimized, even a single crystal thin film can be obtained. This semiconductor film 13 with improved crystallinity has a high mobility of 100 to 450 i/v@Sec, and can be used as a substrate of a high-performance transistor. 'T! In this structure, since the heat absorbing material is the metal film 11, an inexpensive laser light source such as a C02 laser can be used as the laser light source, so it has great industrial significance. Furthermore, it is possible to apply an electric field to the metal thin film 11 when a transistor is formed on the semiconductor film 13, and an improvement in mobility can be expected.

第2図は本発明の他の実施例で、絶縁基板10としてコ
ストの安価なガラス基板を用いた例である。ガラス基板
の軟化点は材料によっても異なるが一般に450〜80
0″Cと半導体膜13の融点より低いため温度を緩和す
る第2の絶縁膜17が必要となる。第2の絶縁膜として
は5in2.A/!206等が適している。また、第2
の絶縁膜17の膜厚は第1の絶縁膜12より膜厚が犬と
なるよう形成9′9−) するのが温度分布制御捷しい。
FIG. 2 shows another embodiment of the present invention, in which an inexpensive glass substrate is used as the insulating substrate 10. The softening point of glass substrates varies depending on the material, but is generally between 450 and 80.
0''C is lower than the melting point of the semiconductor film 13, so a second insulating film 17 is required to moderate the temperature.A film such as 5in2.A/!206 is suitable for the second insulating film.
The temperature distribution control is facilitated by forming the insulating film 17 so as to be thicker than the first insulating film 12.

第3図は本発明の他の実施例で金属薄膜11をパターン
化して半導体膜13に溶融固化時に温度分布を与える構
成をとったものである。熱吸収源は金属薄膜11である
ため半導体膜13の周辺部の温度が」二昇し、溶融固化
は中心部から生じる。
FIG. 3 shows another embodiment of the present invention in which the metal thin film 11 is patterned to give the semiconductor film 13 a temperature distribution during melting and solidification. Since the heat absorption source is the metal thin film 11, the temperature at the periphery of the semiconductor film 13 rises, and melting and solidification occurs from the center.

従って、この構成は従来例で示したように単結晶膜が得
やすい。
Therefore, with this configuration, it is easy to obtain a single crystal film as shown in the conventional example.

発明の効果 以上のべてきたように本発明によれば、簡単々構成によ
り高精度で再現性よく温度分布制御ができるため高性能
なトランジスタを作ることが可能な半導体基板を供給で
きる。かつ加熱源の選択幅が拡がる、基板バイアス効果
ができる半導体基板を供給できる等の効果を有し、高速
イメージスキャナやディスプレイ用能動素子の半導体基
板としてきわめて有効である。
Effects of the Invention As described above, according to the present invention, it is possible to provide a semiconductor substrate on which high-performance transistors can be manufactured because the temperature distribution can be controlled with high precision and good reproducibility with a simple structure. In addition, it has effects such as expanding the selection range of heating sources and providing a semiconductor substrate that can produce a substrate bias effect, and is extremely effective as a semiconductor substrate for high-speed image scanners and active elements for displays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体基板の断面図、
第2図は絶縁基板にガラスを用いた時の10ペーノ 本発明の他の実施例の断面図、第3図は金属薄膜にパタ
ーンを形成し温度分布の制御を行なうようにした本発明
の他の実施例の断面図、第4図は2つのレーザ光を用い
て温度分布を制御する従来例の断面図、第6図は反射防
止膜を用いて温度分布を制御する従来例の断面図である
。 1o・・・・・・絶縁基板、11・・・・・・金属薄膜
、12・・・・・・第1の絶縁膜、13・・・・・・半
導体膜、14・・・・・・保護膜、15.16・・・・
・・レーザ光あるいは熱線、17・・・・・・第2の絶
縁膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名12
−一一ヤI’T、 摩1幻り1 f、)−一一半等+hg 14−−1f1月更 15.1針−し−プ)シ21るし目2力外郭にや一一一
位厘□ 第5図
FIG. 1 is a cross-sectional view of a semiconductor substrate according to an embodiment of the present invention;
Fig. 2 is a sectional view of another embodiment of the present invention using glass as the insulating substrate, and Fig. 3 is a cross-sectional view of another embodiment of the present invention in which a pattern is formed on a metal thin film to control temperature distribution. Figure 4 is a cross-sectional view of a conventional example in which temperature distribution is controlled using two laser beams, and Figure 6 is a cross-sectional view of a conventional example in which temperature distribution is controlled using an anti-reflection film. be. 1o...Insulating substrate, 11...Metal thin film, 12...First insulating film, 13...Semiconductor film, 14... Protective film, 15.16...
. . . Laser light or heat ray, 17 . . . Second insulating film. Name of agent: Patent attorney Toshio Nakao and 1 other person12
-11 ya I'T, ma 1 phantom 1 f,) - 11 and a half +hg 14--1f January change 15.1 stitches - Shi-pu) Irin□ Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁基板上に形成した金属薄膜と、上記金属薄膜
を蔽うように形成した第1の絶縁膜と、上記絶縁膜上に
溶融固化して結晶性の良化をはかった半導体膜とよりな
ることを特徴とする半導体基板。
(1) A metal thin film formed on an insulating substrate, a first insulating film formed to cover the metal thin film, and a semiconductor film melted and solidified on the insulating film to improve crystallinity. A semiconductor substrate characterized by:
(2)金属薄膜として、Mo、Ta、Wおよびそれらの
シリサイド化合物よりなることを特徴とする特許請求の
範囲第1項記載の半導体基板。
(2) The semiconductor substrate according to claim 1, wherein the metal thin film is made of Mo, Ta, W, and silicide compounds thereof.
(3)絶縁基板と金属薄膜間に別の絶縁膜を形成してな
ることを特徴とする特許請求の範囲第1項記載の半導体
基板。
(3) The semiconductor substrate according to claim 1, wherein another insulating film is formed between the insulating substrate and the metal thin film.
(4)半導体膜として、SiあるいはGeあるいはそれ
らの混晶よりなることを特徴とする特許請求の範囲第1
項記載の半導体基板。
(4) Claim 1, characterized in that the semiconductor film is made of Si, Ge, or a mixed crystal thereof.
Semiconductor substrate described in Section 1.
JP17710985A 1985-08-12 1985-08-12 Semiconductor substrate Pending JPS6237922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17710985A JPS6237922A (en) 1985-08-12 1985-08-12 Semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17710985A JPS6237922A (en) 1985-08-12 1985-08-12 Semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS6237922A true JPS6237922A (en) 1987-02-18

Family

ID=16025309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17710985A Pending JPS6237922A (en) 1985-08-12 1985-08-12 Semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS6237922A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181419A (en) * 1986-02-05 1987-08-08 Nec Corp Recrystallization method of polycrystalline silicon
US6432493B1 (en) 1997-04-02 2002-08-13 Nec Corporation Method of carrying out plasma-enhanced chemical vapor deposition
JP2005333115A (en) * 2004-04-23 2005-12-02 Semiconductor Energy Lab Co Ltd Thin film integrated circuit, its manufacturing method, cpu, memory, electronic card, and electronic device
US11793432B2 (en) 2015-08-06 2023-10-24 Becton, Dickinson And Company Biological fluid collection device and biological fluid collection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181419A (en) * 1986-02-05 1987-08-08 Nec Corp Recrystallization method of polycrystalline silicon
US6432493B1 (en) 1997-04-02 2002-08-13 Nec Corporation Method of carrying out plasma-enhanced chemical vapor deposition
JP2005333115A (en) * 2004-04-23 2005-12-02 Semiconductor Energy Lab Co Ltd Thin film integrated circuit, its manufacturing method, cpu, memory, electronic card, and electronic device
US11793432B2 (en) 2015-08-06 2023-10-24 Becton, Dickinson And Company Biological fluid collection device and biological fluid collection system

Similar Documents

Publication Publication Date Title
TWI294648B (en) Method for manufacturing polysilicon film
JP3213338B2 (en) Manufacturing method of thin film semiconductor device
JPH04307727A (en) Formation method of silicon semiconductor layer
JPS6237922A (en) Semiconductor substrate
JPH027415A (en) Formation of soi thin film
JPH06140321A (en) Method of crystallizing of semiconductor film
JPS59148322A (en) Manufacture of semiconductor device
JPS6292427A (en) Semiconductor-manufacturing device
JPS6239068A (en) Manufacture of semiconductor device
JP3142893B2 (en) Thin film semiconductor device
JPH03284831A (en) Forming method for semiconductor thin-film
JP2892321B2 (en) Semiconductor device and manufacturing method thereof
JPS60229330A (en) Manufacture of semiconductor device
JP3210410B2 (en) Semiconductor device and method of manufacturing the same
JPH06140324A (en) Method of crystallizing semiconductor film
JPH0354819A (en) Manufacture of soi substrate
JPS6216509A (en) Manufacture of substrate for semiconductor device
JP2003309068A (en) Semiconductor film and forming method therefor, and semiconductor device and manufacturing method therefor
JPH027414A (en) Formation of soi thin film
JPS6126598A (en) Preparation of germanium thin film crystal
JPH03138925A (en) Semiconductor-film crystallizing method
JPH0388323A (en) Manufacture of single crystal semiconductor thin film
JPS62272520A (en) Manufacture of semiconductor substrate
JPS61151087A (en) Thin film structure for zone melting
JPH10270696A (en) Manufacture of semiconductor device