JPS61151087A - Thin film structure for zone melting - Google Patents

Thin film structure for zone melting

Info

Publication number
JPS61151087A
JPS61151087A JP27087484A JP27087484A JPS61151087A JP S61151087 A JPS61151087 A JP S61151087A JP 27087484 A JP27087484 A JP 27087484A JP 27087484 A JP27087484 A JP 27087484A JP S61151087 A JPS61151087 A JP S61151087A
Authority
JP
Japan
Prior art keywords
thin film
oxide thin
single crystal
oxide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27087484A
Other languages
Japanese (ja)
Inventor
Takanobu Takayama
孝信 高山
Kazumasa Takagi
高木 一正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27087484A priority Critical patent/JPS61151087A/en
Publication of JPS61151087A publication Critical patent/JPS61151087A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the formation of spheres of the molten liquid of an oxide thin film in the growth of single crystal, by applying the oxide thin film to effect the growth of single crystal, a specific metallic thin film and the second oxide thin film in the order to a substrate. CONSTITUTION:A substrate is coated with the first oxide thin film for the growth of single crystal and composed of a material different from the material of the substrate, a metallic thin film formed on the first oxide thin film and having higher melting point than the first oxide thin film, and the second oxide thin film formed on the metallic thin film and resistant to decomposition at the melting point of the first oxide thin film. The metallic thin film is selected to prevent the reaction of the oxide thin film for the single crystal growth with the oxide thin film for the improvement of the heating efficiency. The metallic material is a material having high melting point, e.g. Ir, Pt, Mo, etc., when the oxide thin film to effect the growth of single crystal is garnet, etc., and the oxide thin film to improve the heating efficiency is e.g. Al2O3, SiO2, ZrO2, etc.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はゾーンメルティング法のため薄膜構造に係り、
特に材質が異なる基板上へ酸化物単結晶薄膜を形成する
のに好適なゾーンメルティング法のための薄膜構造に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a thin film structure for a zone melting method;
In particular, the present invention relates to a thin film structure for zone melting, which is suitable for forming oxide single crystal thin films on substrates made of different materials.

〔発明の背景〕[Background of the invention]

非晶質Sin、上へのSi単結晶薄膜の作製等のS O
I (Silicon on In5ulator)技
術に代表される、材質が異なる基板上への単結晶薄膜の
形成技術は、新しいエレクトロニクス素子開発の根幹技
術の1つである。SOI技術の一つに、レーザ光等によ
る薄膜のゾーンメルティング法〔に、 Tamura 
S O such as amorphous Sin, preparation of Si single crystal thin film on top, etc.
BACKGROUND ART A technology for forming single crystal thin films on substrates made of different materials, typified by Silicon on In5ulator (I) technology, is one of the fundamental technologies for the development of new electronic devices. One of the SOI technologies is zone melting of thin films using laser light, etc.
.

H,Ta+mura  and  T、Tokuyau
+a、Jpn、J、Appl、Phys、19゜L23
(1980)]がある、このゾーンメルティング法は種
結晶を必要とせずに広い面積の単結晶薄膜が得られると
いう特長がある。また、種結晶を必要としない、基板材
料を種結晶に利用することができない場合、例えば光ア
イソレータとして用いられる機能性酸化物材料の単結晶
薄膜を異種基板上に形成する場合等においてゾーンメル
ティング法が適している。しかし、厚さ数μm以下の薄
膜を溶融するため、融液が球状になり、溶融帯が途切れ
易いという問題がある。特に、酸化物融液の場合、表面
張力は大きく、濡れが悪い基板上では融液が球状になり
易いm S i薄膜のゾーンメルティングでは、Si薄
膜の上に厚さ0.3〜3μmのSiC2またはSi、N
、薄膜(キャップと呼ぶ)を形成し、溶融Siが球状に
なることを防いでいる(Z、A、Weinberg、V
、R,Delins、T、0.Sedgwick、S、
A。
H, Ta+mura and T, Tokuyau
+a, Jpn, J, Appl, Phys, 19°L23
(1980)], this zone melting method has the advantage that a single crystal thin film with a wide area can be obtained without requiring a seed crystal. Zone melting is also used when a seed crystal is not required or when the substrate material cannot be used as a seed crystal, such as when forming a single crystal thin film of a functional oxide material used as an optical isolator on a dissimilar substrate. law is appropriate. However, since a thin film with a thickness of several micrometers or less is melted, the melt becomes spherical, and there is a problem that the melt zone is easily interrupted. In particular, in the case of oxide melt, the surface tension is large, and the melt tends to become spherical on a substrate with poor wetting. SiC2 or Si,N
, a thin film (called a cap) is formed to prevent the molten Si from becoming spherical (Z, A, Weinberg, V
,R,Delins,T,0. Sedgwick, S.
A.

Cohen、C,F、A11otta、and G、J
、C1ark:Appl、Phys。
Cohen, C.F., A11otta, and G.J.
, C1ark: Appl, Phys.

Lett、43.1105(1983)) 。Lett, 43.1105 (1983)).

すなわち、レーザ光等を用いてSi薄膜をゾーンメルテ
ィング法で単結晶化する場合、融液の球状化を防ぐため
に用いられるキャップはレーザ光を透過し、Siの融点
(1412℃)で安定で、かつSiと反応しない材料で
あることが必要条件である。Siの場合、通常アルゴン
レーザ(波長0.6943μm)が加熱に用いられるこ
とから、S i O,がキャップ材料に適している。
In other words, when a Si thin film is single crystallized by the zone melting method using laser light, etc., the cap used to prevent the melt from becoming spheroidal transmits the laser light and is stable at the melting point of Si (1412°C). , and the material must not react with Si. In the case of Si, since an argon laser (wavelength: 0.6943 μm) is usually used for heating, SiO is suitable as the cap material.

しかし、酸化物薄膜のゾーンメルティングでは、Sin
、をキャップ材料として用いることはできない。すなわ
ち、多くの酸化物は融点が高いため、加熱溶融手段はレ
ーザ光が適し、また可視光に対して透明な材料を加熱す
るにはCO□ レーザが用いられる。CO,レーザ(波
長10.6 μm)で酸化物薄膜材料を加熱する場合、
S i O,はレーザ光を吸収する他、酸化物間で反応
するため、ゾーンメルティング法におけるキャップ材料
に用いることはできなかった。
However, in zone melting of oxide thin films, Sin
, cannot be used as a cap material. That is, since many oxides have high melting points, laser light is suitable as a heating and melting means, and a CO□ laser is used to heat materials that are transparent to visible light. When heating oxide thin film material with CO, laser (wavelength 10.6 μm),
S i O, in addition to absorbing laser light, reacts with oxides, so it could not be used as a cap material in the zone melting method.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、異種材料上に形成した酸化物薄膜をゾ
ーンメルテング法によって単結晶化する際に、酸化物薄
膜の融液が球状化することを安定して防止することが可
能な薄膜構造を提供することにある。
An object of the present invention is to provide a thin film that can stably prevent a melt of an oxide thin film from becoming spheroidal when an oxide thin film formed on a different material is single-crystallized by a zone melting method. It's about providing structure.

〔発明の概要〕[Summary of the invention]

溶融した酸化物と反応しない材料としては、金属がもつ
とも良いことが、加熱実験および相図からの検討で明ら
かになった。しかしながら、金属はレーザ光を反射し、
加熱効率が低くなる問題があった。そこで、本・発明で
は単結晶成長させる酸化物簿膜上に、その材料の融点で
も溶融せず、か   ゛つ酸化しない金属を蒸着した。
Heating experiments and phase diagram studies have revealed that metals are the best materials that do not react with molten oxides. However, metals reflect laser light,
There was a problem of low heating efficiency. Therefore, in the present invention, a metal that does not melt even at the melting point of the material and does not oxidize is deposited on the oxide film to be grown as a single crystal.

そして、加熱効率を高めるため、レーザ光を効率よく吸
収し、単結晶成長させる酸化物薄膜材料を溶融するまで
安定な酸化物薄膜を前記金属上に形成した。金属の薄膜
は、単結晶成長させる酸化物薄膜し、加熱効率を高める
ための酸化物薄膜とが反応しないように選定する。金属
の材料としては、単結晶成長させる酸化物薄膜がガーネ
ット等の場合には、イリジウム、白金、レオニウム、モ
リブデン等の高融点材料が選ばれる。また、加熱効率を
高める酸化物薄膜としては、A C20,、S i o
、、 Z r O,。
In order to increase heating efficiency, an oxide thin film was formed on the metal that efficiently absorbed laser light and remained stable until the oxide thin film material for single crystal growth was melted. The metal thin film is an oxide thin film grown as a single crystal, and is selected so as not to react with the oxide thin film used to increase heating efficiency. As the metal material, when the oxide thin film to be grown as a single crystal is garnet or the like, a high melting point material such as iridium, platinum, rheonium, or molybdenum is selected. In addition, as an oxide thin film that increases heating efficiency, A C20, Si o
,, Z r O,.

MgAQ204等がある。There are MgAQ204 etc.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例でもって説明する。 The present invention will be explained below with reference to Examples.

実施例1 第1図に示すように、(1102)の面方位をもつサフ
ァイア(Anaoi)単結晶基板1上にイリジウム(I
r)2を真空蒸着法により200n+++蒸着し、この
上に単結晶成長させる酸化物薄膜である薄膜10μmの
ネオジウム・ガリウム・ガーネット(Nd、Ga、01
□)3をスパッタ蒸着した。スパッタ条件は、rfパワ
ー:200W、基板温度:水冷、スパッタガス:Ar(
圧力5Pa)とした。
Example 1 As shown in FIG. 1, iridium (I
r) 200n+++ is deposited by vacuum evaporation method, and a 10 μm thin film of neodymium gallium garnet (Nd, Ga, 01
□) 3 was sputter deposited. The sputtering conditions were: RF power: 200W, substrate temperature: water cooling, sputtering gas: Ar(
The pressure was 5 Pa).

尚、イリジウム2は基板1と酸化物薄膜3とが反応しな
いようにするためのものである。しかし、酸化物薄膜3
の上面のみを溶融して単結晶成長させる場合には不要で
ある。さらにイリジウム4を真空蒸着法により200n
m蒸着し、その上に加熱効率を高める酸化物薄膜である
膜厚50μmのAΩ20,5をスパッタ蒸着した。スパ
ッタ条件は酸化物薄膜3の蒸着と同じ条件で行った。こ
のような構造を有する薄膜にC0ル−ザ光6を照射し、
加熱した。膜表面におけるレーザ光6の断面形状7は第
1図に示したように長径100μmで2つの円を合せた
形であった。レーザ光6の出力は32Wで、その時のA
Q、O35の表面温度は1800℃であった。薄膜を2
0閣/hの速度で移動させた。
Note that the iridium 2 is used to prevent the substrate 1 and the oxide thin film 3 from reacting. However, oxide thin film 3
It is not necessary when growing a single crystal by melting only the upper surface of the crystal. Furthermore, 200n of iridium 4 was added by vacuum evaporation method.
A 50 μm thick AΩ20.5 film, which is an oxide thin film for increasing heating efficiency, was sputter-deposited thereon. The sputtering conditions were the same as those for the deposition of the oxide thin film 3. A thin film having such a structure is irradiated with C0 laser light 6,
Heated. The cross-sectional shape 7 of the laser beam 6 on the film surface was in the shape of two circles with a major axis of 100 μm, as shown in FIG. The output of the laser beam 6 is 32W, and at that time A
The surface temperature of Q, O35 was 1800°C. 2 thin films
It was moved at a speed of 0 km/h.

加熱後、AQ、0.5およびイリジウム4を王水によっ
てエツチングすることにより除去し、ネオジウム・ガリ
ウム・ガーネット3の表面をリン酸。
After heating, AQ, 0.5 and iridium 4 were removed by etching with aqua regia, and the surface of neodymium gallium garnet 3 was etched with phosphoric acid.

硫酸1対1混合液でライトエッチし、膜の評価を行った
。その結果、ネオジウム・ガリウム・ガーネット3は多
結晶であったが、レーザ光6が走査した帯状部分の幅2
0μmの中心部は大きな結晶粒からできており、結晶粒
の長さは2.3mであった。面方位は(110) から
(211)へ7゜傾いた方位であった。しかし、他の実
験例と合せると特定方位に配向する傾向はなかった0幅
20μm、長さ1mの長方形状の単結晶部を残して、他
の部分はイオンミリング技術除去した6次にその上にB
iを含むY3 F e s O12を基板を高温(約6
00℃)にした状態でスパッタ蒸着しくrfパワー:2
00W、Arガス:5Pa)、エピタキシャル成長させ
た。そして、導波路型光アイソレータを作製した。
Light etching was performed using a 1:1 mixture of sulfuric acid, and the film was evaluated. As a result, the neodymium gallium garnet 3 was polycrystalline, but the width of the strip scanned by the laser beam 6 was 2.
The center portion of 0 μm was made up of large crystal grains, and the length of the crystal grains was 2.3 m. The surface orientation was tilted 7 degrees from (110) to (211). However, when combined with other experimental examples, the rectangular single crystal part with a width of 20 μm and a length of 1 m was left in place, and the other parts were removed using ion milling technology. niB
Y3 Fe s O12 containing i was heated to a high temperature (approximately 6
Perform sputter deposition at 00°C) with RF power: 2
00W, Ar gas: 5Pa), and epitaxial growth was performed. Then, a waveguide type optical isolator was fabricated.

実施例2 実施例と同様に(1102)の面方位をもつサファイア
基板8上にイリジウム9を真空蒸着法により200nm
蒸着し、この上に膜厚20μmのネオジウム・ガリウム
・ガーネットをスパッタ蒸着した(スパッタ条件は実施
例1と同様)、その幅20μmの格子状のホトマスクを
利用し、ホトリソグラフィ技術とイオンミリング技術に
よって第2図に示すように幅20μmの格子状のネオジ
ウム・ガリウム・ガーネット膜10を80μm間隔で形
成した。この上に実施例1と同じく、イリジウム膜11
とAQ、O,膜12を形成した。
Example 2 Iridium 9 was deposited to a thickness of 200 nm on a sapphire substrate 8 having a plane orientation of (1102) by vacuum evaporation as in Example 2.
On top of this, neodymium gallium garnet with a thickness of 20 μm was sputter-deposited (the sputtering conditions were the same as in Example 1), and using a grid-like photomask with a width of 20 μm, photolithography technology and ion milling technology were used. As shown in FIG. 2, a lattice-shaped neodymium-gallium-garnet film 10 with a width of 20 μm was formed at intervals of 80 μm. On top of this, as in Example 1, an iridium film 11
and AQ, O, film 12 was formed.

CO2レーザ光の焦点を格子状のネオジウム・ガリウム
・ガーネット上に合せ、実施例1と同じ条件で走査した
。その結果1幅20μm長さ3.2閣の部分を単結晶化
することができた。
The CO2 laser beam was focused on the neodymium gallium garnet grid and scanned under the same conditions as in Example 1. As a result, it was possible to form a single crystal of a portion with a width of 20 μm and a length of 3.2 mm.

実施例3 本実施例の薄膜構造を第3図に示す。Example 3 The thin film structure of this example is shown in FIG.

石英基板18上に白金13を0.5 μm蒸着し、その
上に単結晶成長させる酸化物薄膜であるBii、SiO
□。14を20μmスパッタ蒸着した(スパッタ条件は
実施例1と同様)。この上に白金15を0.2 μm蒸
着し、さらに加熱効率を高める酸化物薄膜である5in
216を2μmスパッタ蒸着した。このような薄膜構造
の一部を短冊状に反応性イオンエツチング法でエッチし
、Biユ、Sin、。14が露出するような開口部を作
製した。この部分に膜厚50μmで面方位が(100)
のB i iz S i Ox。の種結晶17を置いた
。直径0.5 mのタングステン線のストリップヒータ
19を種結晶17の上に置き、通電加熱し種結晶17が
溶融するのを確認した後、石英基板18を6m/hの速
度でストリップヒータ19に対して移動させた。移動中
はSi0□ 16の表面温度が1020℃になるように
ストリップヒータ19の電流を調整した。その結晶、種
結晶と同じ面方位の単結晶薄膜が1010X20”の面
積で得られた。
Platinum 13 is deposited to a thickness of 0.5 μm on a quartz substrate 18, and a thin oxide film of Bii, SiO is grown on top of the platinum 13 as a single crystal.
□. No. 14 was sputter-deposited to a thickness of 20 μm (sputtering conditions were the same as in Example 1). On top of this, platinum 15 was deposited to a thickness of 0.2 μm, and a 5-inch oxide thin film was deposited to further increase heating efficiency.
216 was sputter-deposited to a thickness of 2 μm. A part of such a thin film structure is etched into a strip shape using a reactive ion etching method to form Biyu, Sin, and the like. An opening was made so that 14 was exposed. This part has a film thickness of 50 μm and a plane orientation of (100).
B i iz S i Ox. Seed crystal 17 was placed. A strip heater 19 made of a tungsten wire with a diameter of 0.5 m was placed on the seed crystal 17, heated with electricity, and after confirming that the seed crystal 17 was melted, the quartz substrate 18 was placed on the strip heater 19 at a speed of 6 m/h. I moved it against. During the movement, the current of the strip heater 19 was adjusted so that the surface temperature of the Si0□ 16 was 1020°C. A single crystal thin film having the same plane orientation as the crystal and the seed crystal was obtained with an area of 1010 x 20''.

尚、Ga、Gd、01□等の他の酸化物薄膜においても
同様に単結晶部させることができた。
It should be noted that single-crystal portions could be similarly formed in other oxide thin films such as Ga, Gd, and 01□.

〔発明の効果〕〔Effect of the invention〕

以上、実施例でも述べたように本発明の薄膜構造によれ
ば、溶融帯を途切れさせることなく酸化物薄膜をレーザ
加熱ゾーンメルト法で単結晶化することができた。また
、加熱源がレーザ光でない場合にも、単結晶化の効果的
である。
As described above in the Examples, according to the thin film structure of the present invention, the oxide thin film could be made into a single crystal by the laser heating zone melting method without interrupting the melting zone. Single crystallization is also effective even when the heating source is not a laser beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は薄膜断面構造とレーザ光の照射を示す図、第2
図は薄膜構造を示す外観および断面図。 第3図は薄膜の構造と加熱の状態を示す外観図である。 1・・・サファイア単結晶基板、2・・・イリジウム、
3・・・ネオジウム・ガリウム・ガーネット、4・・・
イリジウム、5・・・AQ、O,,6・・・レーザ光、
7・・・レーザ光6の断面形状、8・・・サファイア基
板、9・・・イリジウム、10・・・ネオジウム・ガリ
ウム・ガーネット膜、11・・・イリジウム膜、12・
・・AQ□O8膜。 13・・・白金、1・4・・・B112Sin2゜、1
5・・・白金、16・・・SiO,,17・・・種結晶
、118・・・石英基f3111D ! 2 口 冨 3 ロ 手  続  補  正  書  (方式)昭和 64 
)2へ
Figure 1 is a diagram showing the thin film cross-sectional structure and laser light irradiation, Figure 2
The figure shows the external appearance and cross-sectional view of the thin film structure. FIG. 3 is an external view showing the structure of the thin film and the state of heating. 1... Sapphire single crystal substrate, 2... Iridium,
3...Neodymium gallium garnet, 4...
Iridium, 5...AQ, O,,6...laser light,
7... Cross-sectional shape of laser beam 6, 8... Sapphire substrate, 9... Iridium, 10... Neodymium gallium garnet film, 11... Iridium film, 12...
・・AQ□O8 film. 13...Platinum, 1.4...B112Sin2°, 1
5...Platinum, 16...SiO,, 17...Seed crystal, 118...Quartz base f3111D! 2 Kutomi 3 B Procedural Amendment (Method) Showa 64
) to 2

Claims (1)

【特許請求の範囲】[Claims] 1、所定の基板と、該基板上に形成された基板材料とは
材質の異なる薄膜であって、単結晶成長させる第一の酸
化物薄膜と、該第一の酸化物薄膜上に形成された、第一
の酸化物薄膜の融点よりも高い融点を有する金属薄膜と
、該金属薄膜上に形成された、第一の酸化物薄膜の融点
において分解しない第二の酸化物薄膜とを少なくとも有
することを特徴とするゾーンメルティング法のための薄
膜構造。
1. A predetermined substrate and a substrate material formed on the substrate are thin films of different materials, and a first oxide thin film to be grown as a single crystal and a first oxide thin film formed on the first oxide thin film. , having at least a metal thin film having a melting point higher than the melting point of the first oxide thin film, and a second oxide thin film formed on the metal thin film that does not decompose at the melting point of the first oxide thin film. Thin film structure for zone melting method characterized by:
JP27087484A 1984-12-24 1984-12-24 Thin film structure for zone melting Pending JPS61151087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27087484A JPS61151087A (en) 1984-12-24 1984-12-24 Thin film structure for zone melting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27087484A JPS61151087A (en) 1984-12-24 1984-12-24 Thin film structure for zone melting

Publications (1)

Publication Number Publication Date
JPS61151087A true JPS61151087A (en) 1986-07-09

Family

ID=17492166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27087484A Pending JPS61151087A (en) 1984-12-24 1984-12-24 Thin film structure for zone melting

Country Status (1)

Country Link
JP (1) JPS61151087A (en)

Similar Documents

Publication Publication Date Title
JPH04204525A (en) Lithium niobate single crystal thin film
US20020092823A1 (en) Thin film lithium niobate structure and method of making the same
Ballman et al. The growth of single crystalline waveguiding thin films of piezoelectric sillenites
JPS61151087A (en) Thin film structure for zone melting
US4128681A (en) Method for producing an InSb thin film element
JPS6046539B2 (en) Method for manufacturing silicon crystal film
US5275843A (en) Manufacture of β-BaB2 O4 film by a sol-gel method
JP2840081B2 (en) Semiconductor thin film manufacturing method
JP2898360B2 (en) Method for manufacturing semiconductor film
US6794274B2 (en) Method for fabricating a polycrystalline silicon film
JPS6083005A (en) Optical waveguide and its manufacture
JPH0388323A (en) Manufacture of single crystal semiconductor thin film
EP0431685A1 (en) Method of forming thin defect-free strips of monocrystalline silicon on insulators
JPS6175513A (en) Manufacture of silicon crystal film
JPH10256164A (en) Manufacture of crystalline film
JPH0437697A (en) Thin film of lithium niobate single crystal
JPS62174707A (en) Thin film structure suitable for zone melting
JPH03138925A (en) Semiconductor-film crystallizing method
JPS59163817A (en) Substrate for semiconductor device
JPH03284829A (en) Forming method for semiconductor crystallized film
JPH07315997A (en) Production of magnetic garnet single crystal
JPH01199435A (en) Manufacture of semiconductor device
JPH05313219A (en) Lithium tantalate single crystal substrate formed with polarization inversion grating and optical element
JPH04260689A (en) Method of forming thin film of single crystal on substrate
JPS5974526A (en) Optical isolator and its production