JPS6083005A - Optical waveguide and its manufacture - Google Patents

Optical waveguide and its manufacture

Info

Publication number
JPS6083005A
JPS6083005A JP19073983A JP19073983A JPS6083005A JP S6083005 A JPS6083005 A JP S6083005A JP 19073983 A JP19073983 A JP 19073983A JP 19073983 A JP19073983 A JP 19073983A JP S6083005 A JPS6083005 A JP S6083005A
Authority
JP
Japan
Prior art keywords
single crystal
optical waveguide
film
iron
garnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19073983A
Other languages
Japanese (ja)
Inventor
Toshio Kobayashi
俊雄 小林
Kazumasa Takagi
高木 一正
Tokumi Fukazawa
深沢 徳海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19073983A priority Critical patent/JPS6083005A/en
Priority to US06/660,144 priority patent/US4691983A/en
Publication of JPS6083005A publication Critical patent/JPS6083005A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical waveguide having a structure enabling monolithic coupling to laser of a III-V compound semiconductor or an optical waveguide of a III-V compound semiconductor by converting an islandlike thin film of garnet contg. no iron into a single crystal by a zone melting method and by growing a thin iron-garnet film in a solid phase using the single crystal as a substrate. CONSTITUTION:An amorphous film 10 of SiO2, Si3N4 or the like is formed on a GaAs substrate 9, and part of the surface of the film 10 is filled with slender islandlike Gd3Ga5O12. Laser beams 13 are irradiated along the Gd3Ga5O12 island to form a slender single crystal region 11 by zone melting. An islandlike Y3Fe5O12 film 18 is formed on the formed islandlike Gd3Ga5O12 single crystal region 16 (11), and it is heated to grow Y3Fe5O12 in a solid phase. The Y3Fe5O12 18 can be grown into an islandlike single crystal using the Gd3Ga5O12 as a single crystal substrate. An upper layer having a slightly lower refractive index is then formed on the grown single crystal by vapor-depositing a Gd3Ga5O12 film. Thus, an embedded optical waveguide is manufactured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光通信に使用される光導波路およびその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical waveguide used in optical communication and a method for manufacturing the same.

〔発明の背力t〕[Backing force of invention t]

近年、光通信の実用化が急速に進展しておシ、光部品の
小型化、高信頼化に対する研究開発が盛んに押し進めら
れている。光通信システムの構成要素にはレーザー光源
の安定化を図るため磁気光学材料からなる光アイソレー
タが使用される。
In recent years, the practical application of optical communications has progressed rapidly, and research and development into making optical components smaller and more reliable has been actively promoted. Optical isolators made of magneto-optic materials are used as components of optical communication systems to stabilize laser light sources.

従来の光アイソレータとしては第1図に示すような基本
構成からなるものが知られている。[例えば滝、宮崎、
赤尾、信学技報MW 8O−95(1981)]ずなわ
ち、GGG単結晶基板1上にRFスパッタリング法で作
成したBi:YIG薄膜2およびZnO上層部3から構
成され、さらに、Atクラッド層のモード選択回路4、
磁化膜からなる非相反回路5、および相反回路6、ルチ
ルプリズム7を付加した構造である。この光アイソレー
タにおいてはルチルプリズム7より入射したレーザー光
はファラデー効果およびコツトン・ムートン効果の影響
を受けて偏波面が回転し、他端のルチルプリズム8よす
出射するが、他端のルチルプリズム8よシ入射した光は
ファラデー効果およびコツトン・ムートン効果の影響に
よって、さらに偏波面が回転するため手前のルチルプリ
ズム7を通過することはできない。
As a conventional optical isolator, one having a basic configuration as shown in FIG. 1 is known. [For example, Taki, Miyazaki,
Akao, IEICE Technical Report MW 8O-95 (1981)] consists of a Bi:YIG thin film 2 and a ZnO upper layer 3 formed by RF sputtering on a GGG single crystal substrate 1, and further includes an At cladding layer. mode selection circuit 4,
It has a structure in which a non-reciprocal circuit 5 made of a magnetized film, a reciprocal circuit 6, and a rutile prism 7 are added. In this optical isolator, the plane of polarization of the laser beam incident from the rutile prism 7 is rotated under the influence of the Faraday effect and the Kotton-Mouton effect, and the laser beam is emitted toward the rutile prism 8 at the other end. The incident light cannot pass through the front rutile prism 7 because the plane of polarization is further rotated due to the Faraday effect and the Kotton-Mouton effect.

以上が従来の光アイソレータの代表的な例である。しか
し、このような構成の光アイソレータは一般に酸化物か
らなる単体部品を集めて構成されており、光集積回路に
適用する際、光源として一般に使用される■−■化合物
半導体レーザーあるいは■−V化合化合物半導体光路波
路ノリシックに結合することは不可能であった。
The above are typical examples of conventional optical isolators. However, optical isolators with this type of structure are generally constructed by collecting single parts made of oxides, and when applied to optical integrated circuits, a ■-■ compound semiconductor laser or ■-V compound semiconductor laser, which is generally used as a light source, is used. It has been impossible to couple compound semiconductor optical paths and wave paths nonlithically.

〔発明の目的〕[Purpose of the invention]

したがって、本発明は上述の問題点を解決するためにな
されたものであシ、本発明の目的は■−■化合物半導体
レーザーあるいは■−■化合物半導体光導波路とモノリ
シックに結合できる構造を有する光導波路を提供するこ
と、本発明の他の目的は小型の平面型光導波路を提供す
ること、本発明の更に他の目的は埋込み型光導波路を提
供すること、本発明の更に他の目的は鉄ガーネットから
なる光導波路と提供すること、本発明の更に他の目的は
本発明の光導波路からなる光アイソレータを提供するこ
と、本発す」の更に他の目的は本発明の光導波路を用い
た光集積回路を提供すること、本発明の更に他の目的は
本発明の光4波路の製造方法を提供することである。
Therefore, the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an optical waveguide having a structure that can be monolithically coupled with a ■-■ compound semiconductor laser or a ■-■ compound semiconductor optical waveguide. Another object of the invention is to provide a compact planar optical waveguide.A further object of the invention is to provide an embedded optical waveguide.A still further object of the invention is to provide a small-sized planar optical waveguide. Still another object of the present invention is to provide an optical isolator comprising the optical waveguide of the present invention.A still further object of the present invention is to provide an optical isolator comprising the optical waveguide of the present invention. In addition to providing a circuit, another object of the present invention is to provide a method for manufacturing the four-wavelength optical waveguide of the present invention.

〔発明の概要〕[Summary of the invention]

本発明は材質の異なる基板上に形成した鉄を含ま;デい
ガーネットの島状薄膜をゾーンメルト法で単結晶化し、
この単結晶部を梅結晶として鉄ガーネツト薄膜を固相成
長させることによって鉄ガーネツト光導波路を形成する
ものである。
The present invention includes an island-like thin film of iron formed on a substrate of different materials;
An iron garnet optical waveguide is formed by solid-phase growth of an iron garnet thin film using this single crystal portion as a plum crystal.

非晶質材料上に単結晶薄膜を形成する技術としては、た
とえばJ−F、 Gibbongらの発表による非晶質
513N4上に島状に形成した多結晶SIをレーザーア
ニール法によって単結晶化する方法が挙げられる[J、
 F、 Gibbons et at、、 Appl 
pHys。
As a technique for forming a single-crystalline thin film on an amorphous material, for example, there is a method published by J-F, Gibbong et al. in which polycrystalline SI formed in an island shape on amorphous 513N4 is made into a single crystal by laser annealing. [J,
F. Gibbons et at, Appl.
pHys.

Lett、、 34 、 (12)、 831 (19
79)l。本発明は鉄を含まないガーネット膜のレーザ
ーアニールによるゾーンメルト実験、さらに鉄を含まな
いガーネット単結晶上への鉄ガーネツト単結晶膜の固相
エピタキシー成長実験奮行なった結果、所定の単結晶膜
が得られる技術を確定したことに基づくものである。さ
らに、本発明はこの方法によって形成した島状単結晶膜
が光導波路、とくに埋込み型光導波路として機能するこ
とを見出したことによってなされたものである。
Lett, 34, (12), 831 (19
79) l. The present invention was developed as a result of a zone melt experiment using laser annealing of a garnet film that does not contain iron, and a solid phase epitaxy growth experiment of an iron garnet single crystal film on a garnet single crystal that does not contain iron. This is based on the determination of the technology that can be obtained. Furthermore, the present invention was made based on the discovery that the island-shaped single crystal film formed by this method functions as an optical waveguide, particularly as a buried optical waveguide.

なお、本発明において、鉄を冨まないガーネット膜上に
鉄カーネット膜を形成する理由は次のとおシである。す
なわち、種類の異なる基板上に光導波路のような細長い
単結晶領域を形成するためには固相成長よシ液相成艮の
方が有利であシ、ゾーンメルトが好ましい。しかしなが
ら、鉄ガーネットは分解溶融型化合物であるため溶融さ
せることはできない。このため、一旦鉄を含まないガー
ネット単結晶膜をゾーンメルト法で形成した後、その上
に鉄ガーネツト膜を固相成長させる必要がある。さらに
、鉄ガーネツト光導波路に対してその周囲を屈折率の少
し小さい鉄を含まないガーネットで覆うことによって、
よシ効率の高い光導波特性を得ることができる。
In the present invention, the reason why an iron carnet film is formed on a garnet film not enriched with iron is as follows. That is, in order to form elongated single crystal regions such as optical waveguides on different types of substrates, liquid phase growth is more advantageous than solid phase growth, and zone melting is preferred. However, iron garnet cannot be melted because it is a decomposition-melting compound. For this reason, it is necessary to once form a garnet single crystal film that does not contain iron by the zone melting method, and then to grow an iron garnet film thereon in a solid phase. Furthermore, by covering the periphery of the iron garnet optical waveguide with iron-free garnet, which has a slightly lower refractive index,
Optical waveguide characteristics with high efficiency can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例によυ本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 第2図には本発明における光導波路の形成プロセスの一
例を示す。GaAS基板9上にS j 02あるいはS
i3N4等の非晶質膜10を形成し、その表面の一部を
細長い島状のGd3Ga5012で満たした。
Example 1 FIG. 2 shows an example of the process for forming an optical waveguide according to the present invention. S j 02 or S on the GaAS substrate 9
An amorphous film 10 made of i3N4 or the like was formed, and part of its surface was filled with elongated island-shaped Gd3Ga5012.

G d s (i a s 012の形成はスパッタ蒸
着法が好ましい。
G d s (ia s 012) is preferably formed by sputter deposition.

ツイテ、Gd3Ga5O12の島に沿ってレーザービー
ム13を走査し、Qd3Ga5012のゾーンメルトを
行なった。このとき、溶融したG(13Ga5012は
熱伝導度の低い5i02あるいは5isNa等の非晶質
材料10に囲まれているため、温度の低い表面から結晶
化が生じ、第2図に示したような細長い単結晶領域11
全形成した。なお、本実施例では非晶質材料10に接す
る部分12では多結晶の発生が観察さ扛た。
The laser beam 13 was scanned along the Gd3Ga5O12 islands to perform zone melting of Qd3Ga5012. At this time, since the molten G (13Ga5012) is surrounded by amorphous materials 10 such as 5i02 or 5isNa, which have low thermal conductivity, crystallization occurs from the low temperature surface, resulting in a long and narrow shape as shown in Figure 2. Single crystal region 11
Fully formed. In this example, polycrystalline formation was observed in the portion 12 in contact with the amorphous material 10.

このようにして形成した島状Gd3 Gas 012単
結晶領域の上には第3図に示すようにY3Fe5O12
膜18をGd 3 G as 012単結晶領域16ニ
沿ツテ島状に形成した後、600〜800cに加熱して
Ys F e 5012の固相成長を行なった。この結
果、YaFes01218はGd3Ga5O12を単結
晶基板として島状単結晶に成長させることができた。さ
らにこの上にGd3 Ga 5Q 、2膜を蒸着するこ
とによって屈折率の少し小さい上層部を形成し、本発明
の埋込み型光導波路を作成した。
On the thus formed island-like Gd3 Gas 012 single crystal region, Y3Fe5O12
After the film 18 was formed in the shape of an island along the Gd 3 Gas 012 single crystal region 16, solid phase growth of Ys Fe 5012 was performed by heating to 600 to 800 c. As a result, YaFes01218 could be grown into an island-like single crystal using Gd3Ga5O12 as a single crystal substrate. Furthermore, an upper layer having a slightly lower refractive index was formed by depositing two films of Gd3Ga5Q on top of this, thereby creating a buried optical waveguide of the present invention.

実施例2 第4図に示すように、lnp単結晶丞板2o上に形成し
たInGaAsP半へ11体レーザー210光軸延長上
に実施例1で示した方法にょっでGd3Ga5012単
結晶領域23を形成し、さらにS I 3N 4薄膜2
4を図のようにプラズマC’VD法で蒸着し/ζ。
Example 2 As shown in FIG. 4, a Gd3Ga5012 single crystal region 23 was formed by the method shown in Example 1 on the optical axis extension of the 11-body laser 210 on the InGaAsP half formed on the lnp single crystal plate 2o. In addition, S I 3N 4 thin film 2
4 was deposited by plasma C'VD method as shown in the figure.

ついで、Y3Fe6012薄膜25をGds Gas 
012単結晶領域23および5jsN4膜24上に形成
した後、同相エピタキシー成長法で単結晶化を図った。
Next, the Y3Fe6012 thin film 25 is coated with Gds Gas.
After forming on the 012 single crystal region 23 and the 5jsN4 film 24, single crystallization was attempted by in-phase epitaxy growth.

この結果、Y 3Fes 012薄膜25 ハS is
 N4 i上まで成長を続け、レーザ一部21との界面
まで単結晶化することができた。さらに、Gd3 Ga
3012薄膜26で覆うことによシ、レーザ一部の光軸
延長上にY’3 Fe5012からなる光導波路を形成
することができた。
As a result, Y3Fes012 thin film 25 is
The growth continued until it reached the N4 i layer, and it was possible to form a single crystal up to the interface with the laser part 21. Furthermore, Gd3Ga
By covering with the Y'3 Fe5012 thin film 26, an optical waveguide made of Y'3 Fe5012 could be formed on the extension of the optical axis of a part of the laser.

実施例3 実1ilx例2 K>イテ、Y3Frs−Ot2(1)
代ゎシに、(YBi>3Fe5012単結晶薄膜からな
る光導波路を形成した。ついで、第5図に示すように、
Gd5Gas 0121換32上にA7薄膜からなるモ
ード選択回路34および35を形成し、さらに磁化膜か
らなる相反および非相反回路36を形成した。
Example 3 Actual 1ilx Example 2 K>Ite, Y3Frs-Ot2(1)
Instead, an optical waveguide made of (YBi>3Fe5012 single crystal thin film) was formed. Then, as shown in FIG.
Mode selection circuits 34 and 35 made of A7 thin films were formed on the Gd5Gas 0121 film 32, and reciprocal and non-reciprocal circuits 36 made of magnetized films were further formed.

このようにして作製しグヒ光導波路は半導体レーザー3
3から出射したレーザー光全減衰することなく他端から
出射するが、他端から入射した光はレーザ一部33に遅
するまでに渡設さゼるために光アイソレータとして機能
することが明らかになった。さらに、本発明の光アイソ
レータはレーザー光源部と同一基板を用いて一体になっ
ていることが特徴であり、小型化、高信頼化を達成する
とと第1表で示す鉄を含まないガーネット膜を形成し、
これをレーザー照射によってゾーンメルトすることによ
シ単結晶化した。さらにこの単結晶領域上に第1表で示
す鉄ガーネツト膜を島状に形成し、同相エピタキシー成
長によって鉄カーネット単結晶膜を形成した。
The Guhi optical waveguide produced in this way is a semiconductor laser 3
It is clear that the laser light emitted from 33 is emitted from the other end without being completely attenuated, but the light incident from the other end passes through the laser part 33 before being delayed, so it functions as an optical isolator. became. Furthermore, the optical isolator of the present invention is characterized in that it is integrated with the laser light source using the same substrate, and the iron-free garnet film shown in Table 1 is used to achieve miniaturization and high reliability. form,
This was zone-melted by laser irradiation to form a single crystal. Furthermore, an island-shaped iron garnet film shown in Table 1 was formed on this single crystal region, and an iron garnet single crystal film was formed by in-phase epitaxy growth.

第1表 この結果得られた細長い鉄ガーネット単結晶は光導波路
として機能することが確認された。また、この鉄ガーネ
ツト単結晶上に再び鉄を含″!!、ないガーネット膜を
蒸着することによって、より光とじ込め効率の良い光導
波路を形成することができた。
Table 1 It was confirmed that the elongated iron garnet single crystal obtained as a result functions as an optical waveguide. In addition, by depositing a garnet film that does not contain iron again on this iron garnet single crystal, we were able to form an optical waveguide with even higher light trapping efficiency.

〔発明の効果」 以上の実施例で示したように、本発明の光導波路は■−
■化付化学物半導体レーザーいは■−■−■物半導体光
導波路とモノリシックに結合できる構造を有しているの
で、小型、高信頼の光アイソレータ、光来椋回路を形成
することができる。
[Effects of the Invention] As shown in the above embodiments, the optical waveguide of the present invention has ■-
Since it has a structure that can be monolithically coupled with a compound semiconductor laser or a chemical semiconductor optical waveguide, it is possible to form a compact and highly reliable optical isolator or optical circuit.

また、本発明の方法によれば平面型光導波路、埋込与型
光導波路を容易に形成することが可能になる。
Further, according to the method of the present invention, it becomes possible to easily form a planar optical waveguide and a buried optical waveguide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光アイソレータの構成図、第2図は本発
明の一実施例としてのレーザー照射によって島状Gd3
Ga5O12膜を単結晶化するプロセスを示す図、第3
図は本発明の光導波路を示す図、第4図は本発明の他の
実施例としてのレーザー光源部とモノリシックに結合し
た光導波路を示す断面図、第5図は本発明の更に他の実
施例としてのレーザー光源部とモノリフツクに結合した
光アイソレータを示す図である。 1・・・GGG単結晶基板、2・・・Bi:YIG薄膜
、3・・・ZnO上層部、4・・・モード選択回路、5
・・・非相反回路、6・・・相反回路、7,8・・・ル
チルプリズム、9・・・GaA3単結晶基板、10・・
・5i02あるいは5i3N4等の非晶質膜、11−=
Gd3Ga5012単結晶領域、12・・・Gd5(J
a5012多結晶領域、13・・・レーザービーム、1
4・・・GaAs単結晶基板、15・・・S i 02
6るいはSi3N4等の非晶質膜、16− Gd 3 
Qa 5012単結晶領域、17−Gci3Gas01
2多結晶領域、1 B −Ya Fe5O12単結晶膜
、19・−・ocl、oa、 01m薄膜、20 ・I
 n P単結晶基板、21−InGaAsP半導体V−
ザー、22−8iO2膜、23・・−Gd3Qa5Q1
2単結晶領域、24−8r3N4膜、25−YsFe5
0sz単結晶膜、26 ”4ds Ga5O12薄膜、
27・・・InP単結晶基板、28・・・5in2膜、
29 ・・・oa、oa 5012単結晶領域、30−
GdsGasOt2多m晶領域、31 ・= (YB 
i)s F”esO12単結晶薄膜、32、’、、Qd
3Qa5012薄膜、33−InGaAsP半導体レー
ザー、34.35・・・モート°選択回路、36第 l
 l 第 2 図 第 3 図 3 第 4 口
FIG. 1 is a block diagram of a conventional optical isolator, and FIG. 2 is an example of the present invention in which island-shaped Gd3 is formed by laser irradiation.
Figure 3 showing the process of single crystallizing Ga5O12 film.
4 is a cross-sectional view showing an optical waveguide monolithically coupled to a laser light source section as another embodiment of the present invention, and FIG. 5 is a diagram showing an optical waveguide according to another embodiment of the present invention. FIG. 3 illustrates an example laser light source assembly and optical isolator coupled to a monolift. DESCRIPTION OF SYMBOLS 1... GGG single crystal substrate, 2... Bi:YIG thin film, 3... ZnO upper layer part, 4... Mode selection circuit, 5
... Non-reciprocal circuit, 6... Reciprocal circuit, 7, 8... Rutile prism, 9... GaA3 single crystal substrate, 10...
・Amorphous film such as 5i02 or 5i3N4, 11-=
Gd3Ga5012 single crystal region, 12...Gd5(J
a5012 polycrystalline region, 13... laser beam, 1
4...GaAs single crystal substrate, 15...S i 02
6 or amorphous film such as Si3N4, 16-Gd3
Qa 5012 single crystal region, 17-Gci3Gas01
2 polycrystalline region, 1 B -Ya Fe5O12 single crystal film, 19... ocl, oa, 01m thin film, 20 ・I
nP single crystal substrate, 21-InGaAsP semiconductor V-
Zer, 22-8iO2 film, 23...-Gd3Qa5Q1
2 single crystal region, 24-8r3N4 film, 25-YsFe5
0sz single crystal film, 26”4ds Ga5O12 thin film,
27...InP single crystal substrate, 28...5in2 film,
29...oa, oa 5012 single crystal region, 30-
GdsGasOt2 polycrystalline region, 31 ・= (YB
i) sF”esO12 single crystal thin film, 32,',,Qd
3Qa5012 thin film, 33-InGaAsP semiconductor laser, 34.35...Mote selection circuit, 36th l
l Figure 2 Figure 3 Figure 3 4th port

Claims (1)

【特許請求の範囲】 1、鉄を含まないガーネット単結晶領域を該ガーネット
よシ熱伝導度の低い材料と鉄カーネット単結晶層の間に
存在せしめることを特徴とする光導波路。 2、特許請求の範囲第1項において、上記光導波路をl
[I−V化合物基板上に形成することを特徴とする光導
波路。 3、上記光導波路を鉄を含まないガーネット薄膜で覆う
ことを特徴とする特許請求の範囲第1項記載の光導波路
。 4、鉄を含まないガーネット薄膜をゾーンメルト法で単
結晶化する工程、および単結晶化した鉄を含まないガー
ネットを種結晶として上記鉄ガニネット薄膜を固相エピ
タキシー法で単結晶化する工程を含むことを特徴とした
先導波路製造方法。
[Claims] 1. An optical waveguide characterized in that an iron-free garnet single crystal region is present between a material having a lower thermal conductivity than the garnet and an iron carnet single crystal layer. 2. In claim 1, the optical waveguide is
[An optical waveguide characterized by being formed on an IV compound substrate. 3. The optical waveguide according to claim 1, wherein the optical waveguide is covered with a garnet thin film that does not contain iron. 4. A step of single-crystallizing an iron-free garnet thin film by a zone melt method, and a step of single-crystallizing the above-mentioned iron ganinet thin film by a solid-phase epitaxy method using the single-crystallized iron-free garnet as a seed crystal. A method for manufacturing a leading waveguide characterized by the following.
JP19073983A 1983-10-14 1983-10-14 Optical waveguide and its manufacture Pending JPS6083005A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19073983A JPS6083005A (en) 1983-10-14 1983-10-14 Optical waveguide and its manufacture
US06/660,144 US4691983A (en) 1983-10-14 1984-10-12 Optical waveguide and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19073983A JPS6083005A (en) 1983-10-14 1983-10-14 Optical waveguide and its manufacture

Publications (1)

Publication Number Publication Date
JPS6083005A true JPS6083005A (en) 1985-05-11

Family

ID=16262960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19073983A Pending JPS6083005A (en) 1983-10-14 1983-10-14 Optical waveguide and its manufacture

Country Status (1)

Country Link
JP (1) JPS6083005A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139502A (en) * 1988-11-21 1990-05-29 Matsushita Electric Ind Co Ltd Optical isolator, magneto-optical element and optical integrated circuit, production of magneto-optical element and production of optical integrated circuit
JP2005536874A (en) * 2002-08-19 2005-12-02 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク Laser crystallization process and system for processing film regions on a substrate so that they are substantially uniform within and at the end regions, and the structure of such film regions
JP2008139517A (en) * 2006-11-30 2008-06-19 Hoya Corp Optical waveguide circuit board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139502A (en) * 1988-11-21 1990-05-29 Matsushita Electric Ind Co Ltd Optical isolator, magneto-optical element and optical integrated circuit, production of magneto-optical element and production of optical integrated circuit
JP2005536874A (en) * 2002-08-19 2005-12-02 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク Laser crystallization process and system for processing film regions on a substrate so that they are substantially uniform within and at the end regions, and the structure of such film regions
JP2008139517A (en) * 2006-11-30 2008-06-19 Hoya Corp Optical waveguide circuit board

Similar Documents

Publication Publication Date Title
US4691983A (en) Optical waveguide and method for making the same
US5785874A (en) Optical waveguide device bonded through direct bonding and a method for fabricating the same
US5321786A (en) Process for the hybridization and positioning of an optoelectronic component relative to an integrated optical guide
US4695122A (en) Optical thin film waveguide
US4679892A (en) Component for an integrated optical system
JPS6083005A (en) Optical waveguide and its manufacture
US4849080A (en) Method of manufacturing an optical stripline waveguide for non-reciprocal optical components
JPH06289346A (en) Dielectric substance optical waveguide element and its production
JPS61123814A (en) Magnetic semiconductor material and optical isolator
Glass Growth of thick single-crystal layers of yttrium iron garnet by liquid phase epitaxy
JP2006284962A (en) Optical element
JPH06289347A (en) Optical waveguide element and its manufacture
JPS6083904A (en) Optical waveguide and its manufacture
JPS62174707A (en) Thin film structure suitable for zone melting
JPH02232606A (en) Production of thin film waveguide type optical isolator
JPS5974526A (en) Optical isolator and its production
JP2982836B2 (en) Manufacturing method of waveguide type isolator
JPS5937504A (en) Optical waveguide
JPS5957990A (en) Method for growing liquid phase epitaxial thick film of garnet
JPS58169106A (en) Optical isolator
JPH0415199B2 (en)
JP2574602B2 (en) Optical waveguide device
JPS59178415A (en) Thin film optical isolator and its production
JPH01314208A (en) Thin film waveguide type optical isolator and its production
JPH0632698A (en) Magneto-optical material and its production