JPS5974526A - Optical isolator and its production - Google Patents

Optical isolator and its production

Info

Publication number
JPS5974526A
JPS5974526A JP18454582A JP18454582A JPS5974526A JP S5974526 A JPS5974526 A JP S5974526A JP 18454582 A JP18454582 A JP 18454582A JP 18454582 A JP18454582 A JP 18454582A JP S5974526 A JPS5974526 A JP S5974526A
Authority
JP
Japan
Prior art keywords
optical
magneto
optical waveguide
optical isolator
optic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18454582A
Other languages
Japanese (ja)
Inventor
Toshio Kobayashi
俊雄 小林
Hidetoshi Moriwaki
森脇 英稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18454582A priority Critical patent/JPS5974526A/en
Publication of JPS5974526A publication Critical patent/JPS5974526A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • G02F1/0955Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure used as non-reciprocal devices, e.g. optical isolators, circulators

Abstract

PURPOSE:To attain an optical isolator which can be coupled with a semiconductor optical waveguide monolithically and is small-sized and has less waveguide loss and has a high coefficient of coupling with a light source or the like, by forming insular magnetooptic materials on an amorphous material and crystallizing them by a laser annealing method to form an optical waveguide. CONSTITUTION:An amorphous material (having a thickness of 0.1-1mum) 9 consisting of an SiO2 is stuck to a substrate 10, and magnetooptic materials (having a thickness of 0.5-2mum) such as YIG, TAG, or the like are formed insularly with a width of 2-10mum, and magnetooptic crystals 6 and 7 are formed by the laser annealing method to form the optical waveguide. An optical waveguide consisting of a GaAs or the like is formed by the moleculer epitaxis method or the like, and a metallic thin film is vapor-deposited to the surface of this optical waveguide to form light absorbers 5 and 8. Thus, the optical isolator which is small-sized and has less optical waveguide loss and has a high coefficient of coupling with the light source or the like.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は光通信に使用される光アイソレータおよびそ
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical isolator used in optical communications and a method for manufacturing the same.

〔従来技術〕[Prior art]

近年、光通信の実用化が急速に進展しており、光部品の
小形化、高信頼化に対する研究開発が押し進められてい
て、光集積回路の構成要素である光アイソレータとして
は磁気光学効果を利用したものが知られている。
In recent years, the practical application of optical communications has progressed rapidly, and research and development has been pushed forward to make optical components smaller and more reliable. Magneto-optical effects are now being used as optical isolators, which are components of optical integrated circuits. What has been done is known.

第1図は従来の光アイソレータを示す図である。FIG. 1 is a diagram showing a conventional optical isolator.

図において1は偏光板、2は磁気光学効果を有する磁気
光学材料、3は光の偏波面を回転する旋光物質、4は偏
光板である。
In the figure, 1 is a polarizing plate, 2 is a magneto-optical material having a magneto-optic effect, 3 is an optically active substance that rotates the plane of polarization of light, and 4 is a polarizing plate.

この光アイソレータにおいては、左からの入力光が偏光
板1で横方向の偏光となり、磁気光学材料2で偏波面が
45°時計まわりに回転し、旋光物質3で反時計まわり
に45°回転して元の横方向偏光に戻り、偏光板4を進
って出力として取出される。一方、右からの入力光は偏
光板4によシ横方向の偏光となり、旋光物質3で時計ま
わりに45゜偏波面が回転し、磁気光学材料2でさらに
45°同方向に回転するため、偏光板1に入る光は縦方
向の偏光となり、偏光板1を通り抜けられない。すなわ
ち、左からの光は右に出力するが、右からの光は左に出
力しない。
In this optical isolator, the input light from the left becomes horizontally polarized light by the polarizing plate 1, the plane of polarization is rotated by 45° clockwise by the magneto-optic material 2, and rotated by 45° counterclockwise by the optically active material 3. The light returns to the original horizontally polarized light, passes through the polarizing plate 4, and is taken out as an output. On the other hand, the input light from the right becomes horizontally polarized light by the polarizing plate 4, and the plane of polarization is rotated by 45° clockwise by the optically active material 3, and further rotated by 45° in the same direction by the magneto-optic material 2. The light entering the polarizing plate 1 becomes vertically polarized light and cannot pass through the polarizing plate 1. That is, light from the left is output to the right, but light from the right is not output to the left.

しかし1.この光アイソレータは酸化物からなる単体部
品を集めて構成されているから、光集積回路に適用する
際、光源として一般に使用される■−V化合物半導体レ
ーザあるいは■−■化合物半導体光導波路とモノリシッ
クに結合することが不可能であり、また大型になるとと
もに、光導波損失が犬きく、さらに光源、光スィッチ等
との結合係数が低い。
But 1. Since this optical isolator is composed of a collection of single components made of oxide, when applied to optical integrated circuits, it can be monolithically combined with a ■-V compound semiconductor laser or ■-■ compound semiconductor optical waveguide that is generally used as a light source. It is impossible to couple them, and they are large in size, have high optical waveguide loss, and have a low coupling coefficient with light sources, optical switches, etc.

〔発明の目的〕[Purpose of the invention]

この発明は上述の問題点を解決するためになさしft 
モ(7)で、半導体レーザあるいは半導体光導波路とモ
ノリシックに結合することができ、また小型で光導波損
失が小さく、さらに光源、光スィッチ等との結合係数が
高い光アイソレータを提供することおよびその光アイソ
レータの製造方法を提供することを目的とする。
This invention was made to solve the above problems.
(7) To provide an optical isolator that can be monolithically coupled with a semiconductor laser or a semiconductor optical waveguide, is small, has low optical waveguide loss, and has a high coupling coefficient with a light source, optical switch, etc. The present invention aims to provide a method for manufacturing an optical isolator.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、この発明においては非晶質物
質上に島状の磁気光学結晶を形成し、その磁気光学結晶
を光導波路とする。また、非晶質物質上に島状の磁気光
学材料を形成し、その磁気光学結晶をレーザアニール法
により単結晶化して磁気光学結晶を形成する。
In order to achieve this object, in the present invention, an island-shaped magneto-optic crystal is formed on an amorphous material, and the magneto-optic crystal is used as an optical waveguide. Furthermore, an island-like magneto-optic material is formed on an amorphous material, and the magneto-optic crystal is single-crystalized by a laser annealing method to form a magneto-optic crystal.

すなわち、この発明は光アイソレータの構成部品である
磁気光学材料あるいは旋光材料を半導体基板上に結晶成
長するため、非晶質物質を介して半導体基板とは異なる
物質を結晶成長させる技術を開発したことによって達成
されたものである。
In other words, the present invention has developed a technique for crystal-growing a material different from a semiconductor substrate through an amorphous material in order to crystal-grow a magneto-optical material or an optically active material, which is a component of an optical isolator, on a semiconductor substrate. This was achieved by

非晶質物質上に単結晶薄膜を形成する技術としては、た
とえばJ、 F、 Gibbonsらの発表による非晶
質5iaN4上に島状に形成した多結晶Siをレーザア
ニール法によって単結晶化する方法が挙げられる( J
、 p、 Qibl)ons etaI、 Appl 
、 PhYs 、Lett、。
As a technique for forming a single crystal thin film on an amorphous material, for example, there is a method published by J. F. Gibbons et al. in which polycrystalline Si formed in an island shape on amorphous 5iaN4 is made into a single crystal by laser annealing. (J
, p, Qibl) ons etaI, Appl
, PhYs, Lett.

34、(12)、831 (1979))。この発明は
これらの方法にヒントを得て、磁夕(光学材料の酸化物
単結晶膜の成長を非晶質物質を介して、■−■化合物半
導体基板上に行なう方法を検討した結果、所定の単結晶
膜が得られる技術を確足したことに基づくものである。
34, (12), 831 (1979)). This invention was inspired by these methods, and as a result of studying a method for growing an oxide single crystal film of an optical material on a ■-■ compound semiconductor substrate via an amorphous material. This is based on the establishment of a technology that enables the production of single-crystal films.

さらに、この発明はこの方法によって形成した島状の単
結晶膜が光導波路として機能することを見出したことに
よってなされたものである。
Furthermore, this invention was made based on the discovery that the island-shaped single crystal film formed by this method functions as an optical waveguide.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例によシこの発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail by way of examples.

実施例1 第2図はこの発明に係る光アイソレータを示す断面図、
第3図はその光アイソレータの一部を示す斜視図でちる
。図において10は■−■化合物半導体基板、5は基板
lO上に設けられた光吸収体で、光吸収体5は光導波路
およびその表面に密着して設けられた金属薄膜によりI
N成されておシ、偏光板と同様な機能を有する。9は基
板10上に設けられた非晶質物質、6は非晶質物質9上
に形成された島状の磁気光学結晶で、磁気光学結晶6は
ファラデイ回転角が45°になるように長さが決定され
た酸化物単結晶膜からなる。7は非晶質物*9上に形成
された島状のコツトン・モートン効果をもつ磁気光学結
晶で、磁気光学結晶7はファラデイ回転によって回転し
た偏波面を再び45°回転させて出力する。8は基板1
0上に設けられた光吸収体で、光吸収体8は光吸収体5
と同様の構成、機能を有する。
Example 1 FIG. 2 is a sectional view showing an optical isolator according to the present invention,
FIG. 3 is a perspective view showing a part of the optical isolator. In the figure, 10 is a ■-■ compound semiconductor substrate, 5 is a light absorber provided on the substrate 1O, and the light absorber 5 is an optical waveguide and an optical thin film provided in close contact with its surface.
It has the same function as a polarizing plate. 9 is an amorphous material provided on the substrate 10, 6 is an island-shaped magneto-optic crystal formed on the amorphous material 9, and the magneto-optic crystal 6 is long so that the Faraday rotation angle is 45°. It consists of an oxide single crystal film with a determined grain size. Reference numeral 7 denotes a magneto-optic crystal having an island-like Kotton-Morton effect formed on an amorphous material *9. The magneto-optic crystal 7 rotates the plane of polarization rotated by Faraday rotation again by 45 degrees and outputs the same. 8 is board 1
0, the light absorber 8 is a light absorber provided on the light absorber 5.
It has the same configuration and functions as .

この光アイソレータを製造するには、まず基板10上に
高周波スパッタリングあるいはプラズマCVD法で0.
1〜1μmの厚さの酸化ケイ素からなる非晶質物質9を
設ける。つぎに、非晶質物質9上にYIG (イツトリ
ウム鉄ガーネット)、TAG (テルビウム・アルミニ
ウムガーネット)、TIG(テルビウム鉄ガーネット)
、GPIG(ガドリウム・グラッセオジウム鉄ガーネッ
ト)等の比較的ファラデイ回転角の大きな磁気光学材料
を高周波スパッタリングあるいはプラズマCVD法等の
方法で0.5〜2μmの厚さでかつ2〜10μmの幅の
島状に形成する。ついで、同様にして非晶質物質9上に
コツトン・モートン効果をもつ磁気光学材料を島状に形
成する。つぎに、これらの磁気光学材料は非晶質である
ので、C02,Ar等のレーザを用いて加熱することに
より、すなわちレーザアニール法によシ磁気光学材料を
結晶化して磁気光学結晶6,7を形成する。このとき、
広い面積にわたって単結晶膜を形成することはほとんど
不可能に近いが、島状の磁気光学材料を単結晶化するこ
とは極めて容易である。すなわち、光導波路のような細
長い島状の薄膜を単結晶化するには、5〜20Wの連続
発振のレーザビームを光導波路に沿って移動することに
より行なうことができる。ついで、基板10上にGaA
S。
In order to manufacture this optical isolator, first, the substrate 10 is coated with a 0.000.degree.
An amorphous material 9 made of silicon oxide with a thickness of 1 to 1 μm is provided. Next, YIG (yttrium iron garnet), TAG (terbium aluminum garnet), TIG (terbium iron garnet) are placed on the amorphous material 9.
A magneto-optical material with a relatively large Faraday rotation angle, such as GPIG (gadolium grasseodium iron garnet), is formed into a material with a thickness of 0.5 to 2 μm and a width of 2 to 10 μm using methods such as high frequency sputtering or plasma CVD. Form into islands. Next, a magneto-optical material having the Kotton-Morton effect is formed in the form of an island on the amorphous material 9 in the same manner. Next, since these magneto-optic materials are amorphous, the magneto-optic materials are crystallized by heating with a laser such as CO2 or Ar, that is, by laser annealing, to form magneto-optic crystals 6 and 7. form. At this time,
Although it is almost impossible to form a single crystal film over a wide area, it is extremely easy to form a single crystal of an island-shaped magneto-optic material. That is, monocrystallization of an elongated island-shaped thin film such as an optical waveguide can be carried out by moving a continuous wave laser beam of 5 to 20 W along the optical waveguide. Next, GaA is deposited on the substrate 10.
S.

Ga1  xkLxAs、I nP等のIII −V化
合物半導体先導波路をたとえば分子線エピタキシー、メ
タルオーガニックCVD等によって形成し、さらにその
表面に金属薄膜を蒸着することによって、光吸収体5,
8を設ける。
By forming a III-V compound semiconductor guided waveguide such as Ga1xkLxAs or InP by, for example, molecular beam epitaxy, metal organic CVD, etc., and further depositing a metal thin film on its surface, the light absorber 5,
8 will be provided.

実施例2 第4図はこの発明に係る他の光アイソレータを示す断面
図である。実施例1では平面型光導波路あるいは光変調
器と効率よく結合するために、コツトン・モートン効果
を有する磁気光学結晶7を形成したが、本実施例では光
ファイバと結合することを目的として、磁気光学結晶7
を形成しなかった。したがって、偏波面が45°回転し
たまま出力する。なお、この光アイソレータの材料およ
び製造方法は実施例1と同様である。
Embodiment 2 FIG. 4 is a sectional view showing another optical isolator according to the present invention. In Example 1, a magneto-optic crystal 7 having a Kotton-Morton effect was formed in order to efficiently couple with a planar optical waveguide or an optical modulator. optical crystal 7
did not form. Therefore, the polarization plane is output with its plane rotated by 45 degrees. Note that the material and manufacturing method of this optical isolator are the same as in Example 1.

実施例3 第5図はこの発明に係る光アイソレータに■−■化合物
半導体レーザおよび光回路をモノリシックに結合した光
集積回路を示す図である。図において11は基板10上
に設けられた■−■化合物半導体レーザたとえばInG
aAsP/I nPヘテロレーザで、半導体レーザ11
は分子線エピタキシーあるいはメタルオーガニックCV
D法によって形成する。このとき、基板10としてII
I−V化合物半導体を用いれば、極めて高品質の■−v
化合物半導体単結晶膜を成長させることができるから、
効率のよい半導体レーザ11を得ることができる。
Embodiment 3 FIG. 5 is a diagram showing an optical integrated circuit in which an optical isolator according to the present invention is monolithically coupled with a compound semiconductor laser and an optical circuit. In the figure, reference numeral 11 indicates a ■-■ compound semiconductor laser provided on the substrate 10, such as InG.
aAsP/I nP heterolaser, semiconductor laser 11
is molecular beam epitaxy or metal organic CV
Formed by method D. At this time, as the substrate 10,
If IV compound semiconductors are used, extremely high quality ■-v
Because compound semiconductor single crystal films can be grown,
An efficient semiconductor laser 11 can be obtained.

12は基板10上に設けられた■−■化合物半導体光回
路であり、光変訓機能を有する。なお、半導体レーザ1
1は光吸収体5,8と同時に形成することができる。
12 is a compound semiconductor optical circuit provided on the substrate 10 and has an optical modification function. Note that the semiconductor laser 1
1 can be formed simultaneously with the light absorbers 5 and 8.

実施例4 第6図はこの発明に係る他の光アイソレータの一部を示
す図である。この光アイソレータにおいては、磁気光学
結晶6が非晶質物質9によって覆われた構造になってい
る。このため、非晶質物質9として磁気光学結晶6よシ
屈折率の小さいものたとえは酸化ケイ素を用いれは、磁
気光学結晶6におけるとじ込め効率を向上することがで
きる。
Embodiment 4 FIG. 6 is a diagram showing a part of another optical isolator according to the present invention. This optical isolator has a structure in which a magneto-optic crystal 6 is covered with an amorphous material 9. Therefore, if a material having a smaller refractive index than the magneto-optic crystal 6, such as silicon oxide, is used as the amorphous material 9, the confinement efficiency in the magneto-optic crystal 6 can be improved.

また、レーザアニールの際の磁気光学材料の蒸発および
形状の変化を非晶質物質9によって防止することができ
るほか、非晶質物質9によって磁気光学材料を保温する
ことができるので磁気光学材料を容易に単結晶化するこ
とが可能である。
In addition, the amorphous material 9 can prevent the magneto-optic material from evaporating and changing its shape during laser annealing, and the amorphous material 9 can also keep the magneto-optic material warm. It can be easily made into a single crystal.

なお、実施例1,3において基板10上にコツトン・モ
ートン効果をもつ磁気光学結晶7を形成したが、磁気光
学材料の代わシにNaClOs。
In Examples 1 and 3, the magneto-optic crystal 7 having the Kotton-Morton effect was formed on the substrate 10, but NaClOs was used instead of the magneto-optic material.

HIO3,に28i06.NaBrO3等の旋光材料を
用いることができ、この旋光材料も磁気光学材料と同様
にレーザアニール法によυ単結晶化することが可能であ
る。また、上述実施例においては、非晶質物質9として
酸化ケイ素を用いたが、非晶質物質9としてはレーザア
ニールの際に非晶質状態を保つ物質であればいかなる材
料でも使用することができる。
HIO3, 28i06. An optically active material such as NaBrO3 can be used, and similarly to the magneto-optical material, this optically active material can also be made into a υ single crystal by laser annealing. Furthermore, in the above embodiment, silicon oxide was used as the amorphous material 9, but any material can be used as the amorphous material 9 as long as it maintains an amorphous state during laser annealing. can.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明に係る光アイソレータに
おいては、半導体レーザあるいは半導体光導波路とモノ
リシックに結合することができ、また小型で光導波損失
が小さく、さらに光源、光スィッチ等との結合係数が高
い。また、この発明に係る光アイソレータの製造方法に
おいては、磁気光学材料をレーザアニール法により単結
晶化して磁気光学結晶を形成するから、極めて容易に光
アイソレータを製造することができる。このように、こ
の発明の効果は顕著である。
As explained above, the optical isolator according to the present invention can be monolithically coupled to a semiconductor laser or a semiconductor optical waveguide, is small in size, has low optical waveguide loss, and has a low coupling coefficient with a light source, optical switch, etc. expensive. Further, in the method for manufacturing an optical isolator according to the present invention, since the magneto-optic material is single-crystallized by laser annealing to form a magneto-optic crystal, the optical isolator can be manufactured extremely easily. As described above, the effects of this invention are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の元アイソレークを示す図、第2図はこの
発明に係る光アイソレータを示す断面図、第3図は第2
図に示した光アイソレータの一部を示す斜視図、第4図
はこの発明に係る他の光アイソレータを示す図、第5図
はこの発明に係る光アイソレータに半導体レーザおよび
光回路をモノリシックに結合した光集積回路を示す図、
第6図はこの発明に係る他の光アイソレータの一部を示
す斜視図である。 訃・・光吸収体、6,7・・・磁気光学結晶、8・・・
光吸収体、9・・・非晶質物質、10・・・基板、11
・・・半導体レーザ、12・・・半導体光回路。 代理人 弁理士 薄田利拳 第 1  図 第3図 〆 篤  5  図
FIG. 1 is a diagram showing a conventional original isolake, FIG. 2 is a sectional view showing an optical isolator according to the present invention, and FIG.
FIG. 4 is a perspective view showing a part of the optical isolator shown in the figure, FIG. 4 is a diagram showing another optical isolator according to the present invention, and FIG. 5 is a monolithic combination of a semiconductor laser and an optical circuit to the optical isolator according to the present invention. A diagram showing a photonic integrated circuit,
FIG. 6 is a perspective view showing a part of another optical isolator according to the present invention. Death...Light absorber, 6,7...Magneto-optical crystal, 8...
Light absorber, 9... Amorphous material, 10... Substrate, 11
... Semiconductor laser, 12... Semiconductor optical circuit. Agent Patent Attorney Toshiken Usuda Figure 1 Figure 3 Atsushi Atsushi Figure 5

Claims (1)

【特許請求の範囲】 1、非晶質物質上に島状の磁気光学結晶を形成し、その
磁気光学結晶を光導波路としたことを特徴とする光アイ
ソレータ。 2、非晶質物質上に島状の磁気光学材料を形成し、その
磁気光学材料をレーザアニール法により単結晶化して磁
気光学結晶を形成することを特徴とする光アイソレータ
の製造方法。
[Claims] 1. An optical isolator characterized in that an island-shaped magneto-optic crystal is formed on an amorphous material, and the magneto-optic crystal is used as an optical waveguide. 2. A method for producing an optical isolator, which comprises forming an island-shaped magneto-optic material on an amorphous substance, and single-crystallizing the magneto-optic material by laser annealing to form a magneto-optic crystal.
JP18454582A 1982-10-22 1982-10-22 Optical isolator and its production Pending JPS5974526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18454582A JPS5974526A (en) 1982-10-22 1982-10-22 Optical isolator and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18454582A JPS5974526A (en) 1982-10-22 1982-10-22 Optical isolator and its production

Publications (1)

Publication Number Publication Date
JPS5974526A true JPS5974526A (en) 1984-04-27

Family

ID=16155071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18454582A Pending JPS5974526A (en) 1982-10-22 1982-10-22 Optical isolator and its production

Country Status (1)

Country Link
JP (1) JPS5974526A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671605A (en) * 1985-02-06 1987-06-09 The United States Of America As Represented By The Secretary Of The Air Force Length dependent, optical time delay/filter device for electrical signals
JPS62287211A (en) * 1986-05-21 1987-12-14 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Manufacture of optical strip line waveguide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671605A (en) * 1985-02-06 1987-06-09 The United States Of America As Represented By The Secretary Of The Air Force Length dependent, optical time delay/filter device for electrical signals
JPS62287211A (en) * 1986-05-21 1987-12-14 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Manufacture of optical strip line waveguide

Similar Documents

Publication Publication Date Title
US4691983A (en) Optical waveguide and method for making the same
US5323023A (en) Epitaxial magnesium oxide as a buffer layer on (111) tetrahedral semiconductors
US6545795B2 (en) Magneto-optical member and optical isolator using the same
JPH08507160A (en) Thin film magneto-optical polarization rotator
US9829728B2 (en) Method for forming magneto-optical films for integrated photonic devices
JPH10106878A (en) Method for precipitating ferromagnetic film on surface of waveguide, and magneto-optical device including ferromagnetic film precipitated by the method
JPS60162207A (en) Optical waveguide and its manufacture
US8254745B2 (en) Optical device, optical integrated device, and method of manufacturing the same
JPH02292887A (en) Integrated optical isolator
JPS5974526A (en) Optical isolator and its production
Uno et al. Growth of magneto-optic Ce: YIG thin films on amorphous silica substrates
JPH0576611B2 (en)
JPS5944004A (en) Substrate for thin-film optical circuit
JPS58169106A (en) Optical isolator
JP2898360B2 (en) Method for manufacturing semiconductor film
JPS6083005A (en) Optical waveguide and its manufacture
JPS62174707A (en) Thin film structure suitable for zone melting
JPH0415199B2 (en)
JPS5937504A (en) Optical waveguide
JPS59128292A (en) Method for crystallizing thin film
JPS60246298A (en) Composite thin film structure
JP4452797B2 (en) Method for manufacturing waveguide polarization rotator
JPS58173703A (en) Production of optical isolator
JPS6083904A (en) Optical waveguide and its manufacture
JPH02232606A (en) Production of thin film waveguide type optical isolator