JPH0576611B2 - - Google Patents

Info

Publication number
JPH0576611B2
JPH0576611B2 JP59244443A JP24444384A JPH0576611B2 JP H0576611 B2 JPH0576611 B2 JP H0576611B2 JP 59244443 A JP59244443 A JP 59244443A JP 24444384 A JP24444384 A JP 24444384A JP H0576611 B2 JPH0576611 B2 JP H0576611B2
Authority
JP
Japan
Prior art keywords
optical isolator
mnte
hgte
cdte
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59244443A
Other languages
Japanese (ja)
Other versions
JPS61123814A (en
Inventor
Kazumasa Takagi
Takanobu Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24444384A priority Critical patent/JPS61123814A/en
Publication of JPS61123814A publication Critical patent/JPS61123814A/en
Publication of JPH0576611B2 publication Critical patent/JPH0576611B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光通信に用いられる光アイソレータお
よび、光アイソレータ、半導体レーザ、半導波路
を複合化した薄膜素子の構造とその構造に有用な
磁性半導体材料に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to the structure of an optical isolator used in optical communication, a thin film element that combines an optical isolator, a semiconductor laser, and a semi-waveguide, and a magnetic semiconductor useful for the structure. Regarding materials.

〔発明の背景〕[Background of the invention]

近年、情報量の増大に伴い、光通信の実用化が
進んでおり、光部品の小型化、高信頼化に対する
要求が増している。光通信システムの中で光アイ
ソレータはレーザ光源の安定化を図る上で重要な
役割を担つている。
In recent years, as the amount of information has increased, optical communications have been put into practical use, and there is an increasing demand for smaller and more reliable optical components. Optical isolators play an important role in stabilizing laser light sources in optical communication systems.

光アイソレータは、第1図の基本構成図に示し
たように、フアラデー回転効果を有する光磁気材
料が使用される。偏光子2により、直線偏光にな
つたレーザ光3は、直流磁界下に置かれた光アイ
ソレータ1を通過する間に45°偏光面が回転する。
検光子4の偏光面を45°にすれば、レーザ5から
出た光は検光子4を通過することができる。しか
し、光フアイバなどの端面で反射した、逆方向の
レーザ光6は、光アイソレータ1により、90°に
偏光面が回転し、偏光子2を通過することはでき
ず、レーザ5には戻らない。そのため、レーザ5
の安定が保たれる。これまで、光アイソレータに
はバルクのイツトリウム・鉄、ガーネツト(Y3
Fe5O12:YIG)単結晶が使われてきたが、装置
の小型化、高信頼化のために薄膜型光アイソレー
タの開発[たとえば、滝、宮崎、赤尾、信学技報
MW80−95(1981)]が行われている。さらに、
−族化合物半導体との一体化も考えられてい
る。
As shown in the basic configuration diagram of FIG. 1, the optical isolator uses a magneto-optical material having a Faraday rotation effect. The laser beam 3, which has become linearly polarized by the polarizer 2, has its plane of polarization rotated by 45° while passing through the optical isolator 1 placed under a DC magnetic field.
If the polarization plane of the analyzer 4 is set to 45°, the light emitted from the laser 5 can pass through the analyzer 4. However, the laser beam 6 in the opposite direction reflected from the end face of the optical fiber etc. has its plane of polarization rotated by 90° by the optical isolator 1, and cannot pass through the polarizer 2 and does not return to the laser 5. . Therefore, the laser 5
stability is maintained. Until now, optical isolators have been made using bulk yttrium/iron or garnet ( Y3
Fe 5 O 12 :YIG) single crystals have been used, but thin film optical isolators have been developed to make devices smaller and more reliable [e.g., Taki, Miyazaki, Akao, IEICE Technical Report].
MW80-95 (1981)] was conducted. moreover,
Integration with - group compound semiconductors is also being considered.

しかしながら、ガーネツトと−族化合物は
結晶構造、熱膨張係数が違つており、ガーネツト
と−族化合物の一体化は薄膜中にひずみを発
生させる原因になり易い。光アイソレータ中にひ
ずみがあると光は楕円偏光し、アイソレーシヨン
が困難になる場合がある。他方、−族化合物
と同じZnS型結晶構造をもつCdTeのCdの一部を
Mnに置換したCd1-xMnxTeは大きなベルデ定数
を持つ材料で、可視光波長〜0.6μmに対する光ア
イソレータとして有望な材料である(A.E.
Turner et.al.Applied Optics 22(1983)3152)。
However, garnet and - group compounds have different crystal structures and thermal expansion coefficients, and the integration of garnet and - group compounds tends to cause distortion in the thin film. If there is any strain in the optical isolator, the light may become elliptically polarized, making isolation difficult. On the other hand, some of the Cd in CdTe, which has the same ZnS type crystal structure as the - group compounds,
Cd 1-x Mn x Te, which is substituted with Mn, has a large Verdet constant and is a promising material as an optical isolator for visible light wavelengths up to 0.6 μm (AE
Turner et.al.Applied Optics 22 (1983) 3152).

現在、光フアイバを通しての光通信は石英系光
フイアバの透過率が高い、波長範囲が0.8〜1.5μ
mの光によつて行われている。長波長の光を
Cd1-xMnxTeに適した場合、ベルデ定数は10-3
°/cm・G以下に小さくなり、光アイソレータと
して有用でなくなる。そのため、ZnS型結晶構造
を有し、波長0.8〜1.5μmの光に対して高いベル
デ定数を有する光アイソレータ用材料が必要でつ
た。
Currently, optical communication through optical fibers uses silica-based optical fibers, which have high transmittance and a wavelength range of 0.8 to 1.5μ.
This is done using light from m. long wavelength light
For Cd 1-x Mn x Te, the Verdet constant is 10 -3
It becomes smaller than °/cm·G and is no longer useful as an optical isolator. Therefore, there was a need for an optical isolator material that has a ZnS type crystal structure and a high Verdet constant for light with a wavelength of 0.8 to 1.5 μm.

〔発明の目的〕[Purpose of the invention]

本発明の目的は波長0.8〜1.5μmの光に対する
光アイソレータとして用いるに特に有用なフアラ
デー効果を有する磁性半導体材料を提供するもの
である。本発明になる磁性半導体材料を用いるこ
とによつて、バルクの単結晶を用いた光アイソレ
ータに加えて、半導体レーザ等の光部品との一体
化を目的とする複合薄膜構造をも実視することが
出来る。
An object of the present invention is to provide a magnetic semiconductor material having a Faraday effect that is particularly useful for use as an optical isolator for light having a wavelength of 0.8 to 1.5 μm. By using the magnetic semiconductor material of the present invention, in addition to optical isolators using bulk single crystals, it is also possible to create composite thin film structures intended for integration with optical components such as semiconductor lasers. I can do it.

〔発明の概要〕[Summary of the invention]

ベルデ定数は光の吸収端近傍で大きくなるた
め、波長0.8〜1.5μmの光に適合する光アイソレ
ータ材料を提供するには、材料のバンドギヤツプ
エネルギは0.9〜0.6eVであることが望ましい。本
発明ではCd1-xMnxTeにHgTeを合金化させるこ
とにより、バンドキヤツプエネルギの調整を図る
とともに、ベルデ定数が大きくなる組成を見い出
した実験結果に基づいている。
Since the Verdet constant becomes large near the absorption edge of light, in order to provide an optical isolator material suitable for light with a wavelength of 0.8 to 1.5 μm, it is desirable that the bandgap energy of the material is 0.9 to 0.6 eV. The present invention is based on experimental results in which the band cap energy is adjusted by alloying Cd 1-x Mn x Te with HgTe, and a composition in which the Verdet constant becomes large is found.

また、他の光部品との一体化のために、−
族化合物半導体単結晶基板上へのエピタキシヤル
成長を行い、薄膜型光アイソレータを作製した。
−族化合物半導体結晶としては、InP,
GaAs等が代用的なものである。
In addition, for integration with other optical components, −
A thin-film optical isolator was fabricated by epitaxial growth on a group compound semiconductor single crystal substrate.
- group compound semiconductor crystals include InP,
GaAs etc. are substitutes.

まず、組成の選択について述べる。 First, the selection of composition will be described.

第2図の3元系の相図中の丸印で示した組成の
結晶をブリツジマン法で作製した。CdTe,
MnTe,HgTeをそれぞれの組成比で石英アンプ
ル中に配合し、真空封入した。加熱時に蒸気圧が
高くなるため、石英アンプルは3重にした。この
石英アンプルをたて型電気炉中に入れ、加熱溶融
後、約3時間保持したのち、石英アンプルを徐々
に降下させ、石英アンプルの低温部の一端から結
晶化させた。作製した結晶(直径10mm、長さ30
mm)は多くの場合、多結晶であつたが、結晶粒径
は数mmで光学測定に使用することができた。結晶
の長さ方向の中央部から厚さ1mmの試料を切り出
し、光の透過率を測定した。
Crystals having the compositions indicated by circles in the ternary phase diagram of FIG. 2 were produced by the Bridgeman method. CdTe,
MnTe and HgTe were mixed in a quartz ampoule at their respective composition ratios and sealed in vacuum. Since the vapor pressure increases during heating, the quartz ampoule was made in three layers. This quartz ampoule was placed in a vertical electric furnace, and after being heated and melted, it was held for about 3 hours, and then the quartz ampoule was gradually lowered to allow crystallization from one end of the low temperature part of the quartz ampoule. The prepared crystal (diameter 10 mm, length 30
mm) were often polycrystalline, but the crystal grain size was several mm and could be used for optical measurements. A sample with a thickness of 1 mm was cut from the center in the longitudinal direction of the crystal, and the light transmittance was measured.

第2図の記号7の組成はMnTeが析出し、2相
になつが、他の組成の結晶はHgxCd1-xTeと同じ
ZnS型結晶構造の単一相であつた。記号7の組成
を除く組成の試料について測定したバンドギヤツ
プエネルギの値を第3図に示す。次に各試料のベ
ルデ定数を波長0.8,1.3,1.5μmの光で測定した。
波長0.8μm、1.3μmの光に対する室温でのベルデ
定数の値をそれぞれ、第4図および第5図に示
す。単位は°/cm・Gである。ベルデ定数の値は
Mnの量にはあまり依存せず、バンドギヤツプエ
ネルギの大きさに強く依存した。ベルデ定数が
0.1°/cm・Gより小さい場合、光アイソレータを
作るために必要な厚さは1kGの磁界の下で4.5mm
になる。これは光吸収損失を大きくする原因とな
り実用的ではない。そのため、実用に供する波長
1.3μmの光アイソレータ材料は第4および5図の
白丸で示したものである。一方、光が透過しない
試料は黒丸で示してある。
In the composition of symbol 7 in Figure 2, MnTe precipitates and becomes two phases, but crystals with other compositions are the same as Hg x Cd 1-x Te.
It was a single phase with a ZnS type crystal structure. FIG. 3 shows the bandgap energy values measured for samples with compositions other than composition 7. Next, the Verdet constant of each sample was measured using light with wavelengths of 0.8, 1.3, and 1.5 μm.
The values of the Verdet constant at room temperature for light with wavelengths of 0.8 μm and 1.3 μm are shown in FIGS. 4 and 5, respectively. The unit is °/cm・G. The value of Verdet constant is
It did not depend much on the amount of Mn, but strongly depended on the size of the bandgap energy. The Verdet constant is
If it is smaller than 0.1°/cm・G, the required thickness to make an optical isolator is 4.5mm under a magnetic field of 1kG.
become. This causes increased light absorption loss and is not practical. Therefore, the wavelength for practical use is
The 1.3 μm optical isolator material is shown as a white circle in FIGS. 4 and 5. On the other hand, samples through which no light passes are indicated by black circles.

次に波長1.5μmの光に対するベルデ定数の値を
第6図に示す。0.1°/cm・G以上の値を有する組
成を白丸で示した。
Next, FIG. 6 shows the value of the Verdet constant for light with a wavelength of 1.5 μm. Compositions having values of 0.1°/cm·G or more are indicated by white circles.

第4図〜第6図に示した結果から、0.8〜1.5μ
mの光に用いられる光アイソレータを作製するに
は第7図に示される斜線の領域(境界線を含む)
の組成をもつ単結晶が適していることが分る。
From the results shown in Figures 4 to 6, 0.8 to 1.5μ
To fabricate an optical isolator used for light of m
It can be seen that a single crystal with a composition of is suitable.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を示す。 Examples of the present invention will be shown below.

実施例 1 Hg0.4Cd0.4Mn0.2Teの組成をもつ単結晶をブリ
ツジマン法によつて育成した。育成法は発明の概
要に述べた通りである。育成した単結晶(直径/
0mm、長さ30mm)より(110)面が端面になるよ
うに直径5mm、厚さ2.4mmの円板状の試料を作製
した。第1図に示した構造の光アイソレータを作
製し、磁場を700G印加したところ、波長1.3μm
のレーザ光に対して、45°のフアラデー回転が得
られ、アイソレーシヨン20dBが達成された。光
の吸収による挿入損失は1dBで光アイソレータと
して十分に使えることが明らかになつた。
Example 1 A single crystal having a composition of Hg 0.4 Cd 0.4 Mn 0.2 Te was grown by the Bridgeman method. The breeding method is as described in the summary of the invention. Grown single crystal (diameter/
A disk-shaped sample with a diameter of 5 mm and a thickness of 2.4 mm was prepared so that the (110) plane was the end surface. When we fabricated an optical isolator with the structure shown in Figure 1 and applied a magnetic field of 700 G, the wavelength was 1.3 μm.
A Faraday rotation of 45° was obtained for the laser beam, and an isolation of 20 dB was achieved. It has been revealed that the insertion loss due to light absorption is 1 dB, which is sufficient for use as an optical isolator.

実施例 2 Hg0.3Cd0.5Mn0.2Teの組成をもつ単結晶を実施
例1と同様にブリツジマを法によつて育成した。
これにより、(110)面を端面とする直径5mm、厚
さ1.25mmの円板を作製した。波長1.3μmのレーザ
光を45°回転させるためには1.5kGの磁場を必要と
したが、光の透過率は高く、挿入損失は1.2dBで
抑えられ。その結果、光アイソレータとして十分
に使えることが確認できた。
Example 2 A single crystal having a composition of Hg 0.3 Cd 0.5 Mn 0.2 Te was grown in the same manner as in Example 1 by the Buritsima method.
As a result, a disk having a diameter of 5 mm and a thickness of 1.25 mm was produced, with the (110) plane as the end face. A magnetic field of 1.5 kG was required to rotate a laser beam with a wavelength of 1.3 μm by 45 degrees, but the light transmittance was high and the insertion loss was kept to 1.2 dB. As a result, it was confirmed that it could be used satisfactorily as an optical isolator.

実施例 3 周知の波長1.3μmの半導体レーザ8を第8図に
示すようにInP基板9上に形成し、当該半導体レ
ーザ8をホトレジストで覆つた。その後、MBE
(分子線エピタキシイ)法でHg,Cd,Mn,Te
を同時蒸着した。各元素はクヌーセンセル(Hg,
Cd,Te)および電子ビームハース(Mn)から
同時に蒸着した。その際蒸着速度を予め測定し、
膜組成がHg0.4Cd0.4Mn0.2Teになるようにクヌー
センセルの温度と電子ビームの電流値を保持し
た。基板温度は200°、成長速度は0.3nm/sであ
つた。InPと(HgCdMn)Teでは格子定数に違
いがあるが、(100)InP基板上に膜はエピタキシ
ヤル成長し、膜厚5.5μmの単結晶膜になつた。ホ
トリソグラフイとアルゴンイオンミリングにより
幅50μm、長さ1.6mmの薄膜型の光アイソレータ1
0を作製した。さらに金属膜を用いた偏光子を形
成した半導体レーザと光アイソレータを同一基板
上にモノリシツク化したものを磁場中に入れ、レ
ーザ発振を行わせた。その結果、導波格を形成し
ないにもかかわらず、レーザ光の入出射端面およ
び、アイソレータ中での散乱損失は少なく、挿入
損失は2dBであつた。
Example 3 A well-known semiconductor laser 8 having a wavelength of 1.3 μm was formed on an InP substrate 9 as shown in FIG. 8, and the semiconductor laser 8 was covered with photoresist. Then M.B.E.
Hg, Cd, Mn, Te using (molecular beam epitaxy) method
was co-deposited. Each element is a Knudsen cell (Hg,
Cd, Te) and electron beam hearth (Mn) were simultaneously deposited. At that time, the deposition rate was measured in advance,
The temperature of the Knudsen cell and the current value of the electron beam were maintained so that the film composition was Hg 0.4 Cd 0.4 Mn 0.2 Te. The substrate temperature was 200° and the growth rate was 0.3 nm/s. Although InP and (HgCdMn)Te have different lattice constants, the film was epitaxially grown on the (100) InP substrate, resulting in a single crystal film with a thickness of 5.5 μm. Thin film optical isolator 1 with a width of 50 μm and a length of 1.6 mm made by photolithography and argon ion milling.
0 was created. Furthermore, a monolithic semiconductor laser with a polarizer formed using a metal film and an optical isolator on the same substrate were placed in a magnetic field to cause laser oscillation. As a result, even though no waveguide was formed, the scattering loss at the input/output end face of the laser beam and in the isolator was small, and the insertion loss was 2 dB.

実施例 4 実施例3と同じプロセスに従い、GaAs基板上
に波長0.83μmの半導体レーザを作製したのち、
Hg0.2Cd0.5Mn0.3Teの組成をもつ薄膜を同一基板
上に形成した。幅50μm、長さ1.6mmの島状光アイ
ソレータを加工形成した結果、0.88kGの磁場の
もとで15dBのアイソレーシヨンが達成された。
その際の挿入損失は2.5dBであつた。
Example 4 Following the same process as Example 3, a semiconductor laser with a wavelength of 0.83 μm was fabricated on a GaAs substrate.
A thin film with a composition of Hg 0.2 Cd 0.5 Mn 0.3 Te was formed on the same substrate. As a result of fabricating an island-shaped optical isolator with a width of 50 μm and a length of 1.6 mm, an isolation of 15 dB was achieved under a magnetic field of 0.88 kG.
The insertion loss at that time was 2.5dB.

〔発明の効果〕〔Effect of the invention〕

本発明によれば実用上有用な波長0.8〜1.5μm
のレーザ光に対する挿入損失が小さく、かつアイ
ソレーシヨンの優れた光アイソレータが作製でき
る。また、−族化合物半導体上にエピタキシ
ヤル成長させ、半導体レーザと光アイソレータを
一体化することができるため、光部品としての信
頼性が高くなる。すなわち、半導体レーザと光ア
イソレータの個別部品を1つの基板上に接着した
場合には、温度変動によつて各部分の距離が変化
するなどの現象が生じる。これに対して、モノリ
シツク化することによつて、これらの変動要因が
除去できる。
According to the present invention, a practically useful wavelength of 0.8 to 1.5 μm
An optical isolator with low insertion loss and excellent isolation for the laser beam can be manufactured. Further, since the semiconductor laser and the optical isolator can be integrated by epitaxial growth on the - group compound semiconductor, the reliability as an optical component is increased. That is, when individual parts such as a semiconductor laser and an optical isolator are bonded onto one substrate, phenomena such as the distance between the parts change due to temperature fluctuations occur. On the other hand, by making it monolithic, these fluctuation factors can be removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーザと光アイソレータからなる光部
品の構成を示す図、第2図はHgTe−MnTe−
CaTeの3元系相図、第3図は(Hg・Mn・Cd)
Teの各試料のバンドギヤツプエネルギを示す図、
第4図は(Hg・Mn・Cd)Teの各試料の波長
0.8μmの光に対するベルデ定数を示す図、第5図
は(Hg・Mn・Cd)Teの各試料の波長1.3μmの
光に対するベルデ定数を示す図、第6図は
(Hg・Mn・Cd)Teの各試料の波長1.5μmの光に
対するベルデ定数を示す図、第7図は光アイソレ
ータに適する組成範囲を示す図、第8図は半導体
レーザと光アイソレータをモノリシツク化した光
部品の構造を示す図である。 1……光アイソレータ、2……偏光子、3……
レーザ光、4……検光子、5……レーザ、6……
レーザ光、7……2相になつた組成、8……半導
体レーザ、9……InP基板、10……光アイソレ
ータ。
Figure 1 shows the configuration of an optical component consisting of a laser and an optical isolator, and Figure 2 shows the HgTe-MnTe-
The ternary phase diagram of CaTe, Figure 3 is (Hg, Mn, Cd)
Diagram showing the bandgap energy of each sample of Te,
Figure 4 shows the wavelength of each sample of (Hg/Mn/Cd)Te.
Figure 5 shows the Verdet constant for 0.8 μm light, Figure 5 shows the Verdet constant for each sample of (Hg, Mn, Cd) Te, for light with a wavelength of 1.3 μm, Figure 6 shows (Hg, Mn, Cd) Figure 7 shows the Verdet constant for light with a wavelength of 1.5 μm for each Te sample. Figure 7 shows the composition range suitable for an optical isolator. Figure 8 shows the structure of an optical component that is a monolithic combination of a semiconductor laser and an optical isolator. It is a diagram. 1... Optical isolator, 2... Polarizer, 3...
Laser light, 4... Analyzer, 5... Laser, 6...
Laser light, 7... Two-phase composition, 8... Semiconductor laser, 9... InP substrate, 10... Optical isolator.

Claims (1)

【特許請求の範囲】 1 MnTe−HgTe−CdTe系合金より成ること
を特徴とするフアラデー効果を有する磁性半導体
材料。 2 前記MnTe−HgTe−CdTe系合金は、
MnTe−HgTe−CdTe3元系相図において、
Mn0.1Hg0.2Cd0.7Te,Mn0.1Hg0.4Cd0.5Te,Mn0.3
Hg0.4Cd0.3Te,Mn0.4Hg0.2Cd0.4Te,Mn0.4Hg0.1
Cd0.5Te,Mn0.2Hg0.1Cd0.7Teの6点に囲まれる範
囲に組成にもつことを特徴とする特許請求の範囲
第1項記載の磁性半導体材料。 3 前記MnTe−HgTe−CdTe磁性半導体層は
−族化合物半導体基板上にエピタキシヤル成
長にて形成されたことを特徴とする特許請求の範
囲第1項又は第2項記載の磁性半導体材料。 4 前記−族化合物半導体基板がInP結晶よ
り成ることを特徴とする特許請求の範囲第3項記
載の磁性半導体材料。 5 前記−族化合物半導体基板がGaAs結晶
より成ることを特徴とする特許請求の範囲第3項
記載の磁性半導体材料。 6 MnTe−HgTe−CdTe系合金を用いて構成
されたことを特徴とする光アイソレータ。 7 前記MnTe−HgTe−CdTe系合金は、
MnTe−HgTe−CdTe3元系相図において、
Mn0.1Hg0.2Cd0.7Te,Mn0.1Hg0.4Cd0.5Te,Mn0.3
Hg0.4Cd0.3Te,Mn0.4Hg0.2Cd0.4Te,Mn0.4Hg0.1
Cd0.5Te,Mn0.2Hg0.1Cd0.7Teの6点に囲まれた範
囲に組成をもつことを特徴とする特許請求の範囲
第6項記載の光アイソレータ。 8 前記MnTe−HgTe−CdTe磁性半導体層は
−族化合物半導体基板上にエピタキシヤル成
長にて形成されたことを特徴とする特許請求の範
囲第7項記載の光アイソレータ。 9 前記−族化合物半導体基板がInP結晶よ
り成ることを特徴とする特許請求の範囲第8項記
載の光アイソレータ。 10 前記−族化合物半導体基板がGaAs結
晶より成ることを特徴とする特許請求の範囲第8
項記載の光アイソレータ。
[Claims] 1. A magnetic semiconductor material having a Faraday effect, characterized by being made of a MnTe-HgTe-CdTe alloy. 2 The MnTe-HgTe-CdTe alloy is
In the MnTe−HgTe−CdTe ternary system phase diagram,
Mn 0.1 Hg 0.2 Cd 0.7 Te, Mn 0.1 Hg 0.4 Cd 0.5 Te, Mn 0.3
Hg 0.4 Cd 0.3 Te, Mn 0.4 Hg 0.2 Cd 0.4 Te, Mn 0.4 Hg 0.1
The magnetic semiconductor material according to claim 1, characterized in that it has a composition within the range of six points: Cd 0.5 Te, Mn 0.2 Hg 0.1 Cd 0.7 Te. 3. The magnetic semiconductor material according to claim 1 or 2, wherein the MnTe-HgTe-CdTe magnetic semiconductor layer is formed by epitaxial growth on a - group compound semiconductor substrate. 4. The magnetic semiconductor material according to claim 3, wherein the - group compound semiconductor substrate is made of InP crystal. 5. The magnetic semiconductor material according to claim 3, wherein the - group compound semiconductor substrate is made of GaAs crystal. 6. An optical isolator characterized by being constructed using a MnTe-HgTe-CdTe alloy. 7 The MnTe-HgTe-CdTe alloy is
In the MnTe−HgTe−CdTe ternary system phase diagram,
Mn 0.1 Hg 0.2 Cd 0.7 Te, Mn 0.1 Hg 0.4 Cd 0.5 Te, Mn 0.3
Hg 0.4 Cd 0.3 Te, Mn 0.4 Hg 0.2 Cd 0.4 Te, Mn 0.4 Hg 0.1
The optical isolator according to claim 6, characterized in that the optical isolator has a composition within a range surrounded by six points: Cd 0.5 Te, Mn 0.2 Hg 0.1 Cd 0.7 Te. 8. The optical isolator according to claim 7, wherein the MnTe-HgTe-CdTe magnetic semiconductor layer is formed on a - group compound semiconductor substrate by epitaxial growth. 9. The optical isolator according to claim 8, wherein the - group compound semiconductor substrate is made of InP crystal. 10 Claim 8, wherein the - group compound semiconductor substrate is made of GaAs crystal.
Optical isolator as described in section.
JP24444384A 1984-11-21 1984-11-21 Magnetic semiconductor material and optical isolator Granted JPS61123814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24444384A JPS61123814A (en) 1984-11-21 1984-11-21 Magnetic semiconductor material and optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24444384A JPS61123814A (en) 1984-11-21 1984-11-21 Magnetic semiconductor material and optical isolator

Publications (2)

Publication Number Publication Date
JPS61123814A JPS61123814A (en) 1986-06-11
JPH0576611B2 true JPH0576611B2 (en) 1993-10-25

Family

ID=17118726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24444384A Granted JPS61123814A (en) 1984-11-21 1984-11-21 Magnetic semiconductor material and optical isolator

Country Status (1)

Country Link
JP (1) JPS61123814A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2679083B2 (en) * 1988-02-26 1997-11-19 三菱瓦斯化学株式会社 Magneto-optical garnet
EP0470523B1 (en) * 1990-08-04 1999-01-27 Canon Kabushiki Kaisha Optical polarization-state converting apparatus for use as isolator, modulator and the like
US5245465A (en) * 1990-08-04 1993-09-14 Canon Kabushiki Kaisha Optical polarization-state converting apparatus for use as isolator, modulator and the like
JP2841260B2 (en) * 1993-01-25 1998-12-24 株式会社トーキン Magneto-optical element
CA2132616C (en) * 1993-01-25 1999-06-08 Koichi Onodera Magneto-optical element
JPH06222310A (en) * 1993-01-25 1994-08-12 Tokin Corp Magneto-optical element
WO1995017538A1 (en) * 1993-12-22 1995-06-29 Tokin Corporation Magneto-optical device and method for production thereof
US5790299A (en) * 1995-12-15 1998-08-04 Optics For Research Optical isolator employing a cadmium-zinc-tellurium composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLIED OPTICS=1983 *
PHYS.STAT.SOL.64707=1981 *

Also Published As

Publication number Publication date
JPS61123814A (en) 1986-06-11

Similar Documents

Publication Publication Date Title
JPH0576611B2 (en)
EP0330500B1 (en) Magneto-optic garnet
JP2786078B2 (en) Faraday rotator and optical isolator
US6483645B1 (en) Garnet crystal for Faraday rotator and optical isolator having the same
Hibiya et al. Growth and characterization of 300-µm thick bi-substituted gadolinium Iron garnet films for an optical isolator
US5596447A (en) Magnetooptical element
JP2924282B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
US4755026A (en) Magnetooptic garnet
JP2816370B2 (en) Magneto-optical material
Nakano et al. Magneto-optical properties of YIG single crystal by TSFZ method
JP2874319B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JP2841260B2 (en) Magneto-optical element
JP2867736B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
KR100345021B1 (en) Magneto-optical elements
JPH0642026B2 (en) Magneto-optical element material
JPH0774118B2 (en) Method for manufacturing magneto-optical element
Whitcomb et al. Fabrication of thin film magnetic garnet structures for intra‐cavity laser applications
JP2979434B2 (en) Optical isolator using magneto-optical element
JPS59141495A (en) Growth of thick film of garnet single crystal
JPH0654744B2 (en) Manufacturing method of bismuth substituted magnetic garnet
Nakajima et al. A new improved (YbTbBi)/sub 3/Fe/sub 5/O/sub 12/epitaxial thick film
JPH11326854A (en) Production of single crystal of cd1-x-ymnxhgyte for magnetooptical element
JP2843433B2 (en) Bi-substituted magnetic garnet and magneto-optical element
JPH06222310A (en) Magneto-optical element