JPH0642026B2 - Magneto-optical element material - Google Patents

Magneto-optical element material

Info

Publication number
JPH0642026B2
JPH0642026B2 JP59141828A JP14182884A JPH0642026B2 JP H0642026 B2 JPH0642026 B2 JP H0642026B2 JP 59141828 A JP59141828 A JP 59141828A JP 14182884 A JP14182884 A JP 14182884A JP H0642026 B2 JPH0642026 B2 JP H0642026B2
Authority
JP
Japan
Prior art keywords
garnet
magneto
film
lattice constant
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59141828A
Other languages
Japanese (ja)
Other versions
JPS6120926A (en
Inventor
孟俊 日比谷
武正 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59141828A priority Critical patent/JPH0642026B2/en
Publication of JPS6120926A publication Critical patent/JPS6120926A/en
Publication of JPH0642026B2 publication Critical patent/JPH0642026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ファラデー回転効果を利用した光アイソレー
タ、サーキュレータまたはスイッチなどに用いられる磁
気光学素子用磁性ガーネット材料に関する。
Description: TECHNICAL FIELD The present invention relates to a magnetic garnet material for a magneto-optical element used in an optical isolator, a circulator, a switch, or the like that utilizes the Faraday rotation effect.

(従来技術とその問題点) 近時、光ファイバ通信技術の進歩は目ざましい。低損失
ファイバと長時間連続発振可能な半導体レーザの開発に
より、光ファイバ通信技術は通信量の増加に対応し安価
でしかも高品質の通信手段を提供する手段として期待さ
れている。しかしながら、光伝送路の途中に設けられる
スイッチ等の部品から反射される戻り光が光源である半
導体レーザに入るとレーザ発振の安定性を損うという大
きな問題がある。
(Prior art and its problems) Recently, the progress of optical fiber communication technology is remarkable. With the development of a low-loss fiber and a semiconductor laser capable of continuously oscillating for a long time, optical fiber communication technology is expected as a means for providing an inexpensive and high-quality communication means in response to an increase in communication volume. However, there is a serious problem that the stability of laser oscillation is impaired when the return light reflected from components such as a switch provided in the middle of the optical transmission path enters the semiconductor laser which is the light source.

この問題の解決のために、光アイソレータをレーザ光源
の後段に設けることが提案されている。1.3〜1.8μmの
長波長帯用光アイソレータとしては、電子通信学会技術
研究報告OQE78-133に報告されているように、強磁性体
であるイットリウム・鉄・ガーネット(Y3Fe5O12・YIG)
のファラデー効果を用いたものが提案されている。この
報告で用いられているYIGはフラックス法で育成された
バルク単結晶である。
In order to solve this problem, it has been proposed to provide an optical isolator after the laser light source. As an optical isolator for the long wavelength band of 1.3 to 1.8 μm, yttrium, iron, garnet (Y 3 Fe 5 O 12 , YIG), which is a ferromagnetic material, has been reported, as reported in IEICE Technical Report OQE78-133. )
The one using the Faraday effect of is proposed. The YIG used in this report is a bulk single crystal grown by the flux method.

一方、YIGを光が通過する際に入射偏向面の回転が生ず
るためには、YIGは光の入射方向と平行に磁気的に飽
和していなければならない。円筒形に加工したYIGバ
ルク単結晶を用いる場合には、飽和のための外部磁場は
極めて大きくなり2000Oeにも達する。この問題点を解決
するために、電子通信学会技術研究報告OQE80-53に示さ
れるごとく、YIGバルク単結晶や第7回日本応用磁気
学会学術講演概要集163〜164頁(講演番号8pC-1,-2)19
83年に示されるごとくビスマスを置換させたガドリニウ
ム、鉄ガーネット、バルク単結晶を薄板状に研磨したも
のを用いることが提案されている。しかしながら、バル
ク単結晶を用いるかぎり高品質なYIGやBi置換ガドリ
ニウム鉄ガーネットのバルク単結晶を入手することは極
めて難しく、このため光アイソレータの原材料コストは
高くなり、光アイソレータの普及を阻げている。この解
決のために、特願昭55-126239に開示される如く、非磁
性ガーネット基板上にエピタキシャル成長させたガーネ
ット厚膜の採用が提案されている。これにより、原材料
コストを安価にしかつバルク結晶より高品質なガーネッ
ト材料を得ることが可能である。
On the other hand, in order for the incident deflecting surface to rotate when light passes through the YIG, the YIG must be magnetically saturated in parallel with the incident direction of the light. When a YIG bulk single crystal processed into a cylindrical shape is used, the external magnetic field for saturation becomes extremely large and reaches 2000 Oe. In order to solve this problem, YIG bulk single crystal and the 7th Annual Meeting of the Japan Society for Applied Magnetics, pp.163-164 (Lecture number 8pC-1, as shown in Technical Report OQE80-53 of IEICE) -2) 19
As shown in 1983, it is proposed to use bismuth-substituted gadolinium, iron garnet, or bulk single crystal polished into a thin plate. However, as long as a bulk single crystal is used, it is extremely difficult to obtain a high-quality bulk single crystal of YIG or Bi-substituted gadolinium iron garnet. Therefore, the raw material cost of the optical isolator becomes high, which prevents the spread of the optical isolator. . To solve this problem, as disclosed in Japanese Patent Application No. 55-126239, it has been proposed to employ a garnet thick film epitaxially grown on a non-magnetic garnet substrate. This makes it possible to reduce the raw material cost and obtain a garnet material of higher quality than bulk crystals.

エピタキシャル成長させたガーネット膜をこのような磁
気光学素子として用いる場合、ファラデー回転係数が大
きい材料を用いれば光路長を小さくすることができ、素
子をより小型化することが可能である。Biを置換させた
ガーネットは、ファラデー回転係数の大きい材料であ
り、特に希土類イオンとしてGd3+を用いる場合にはジャ
ーナル・オブ・アプライドフィジクス(Journal of App
lied Physics)第44巻、4789ページ(1973年)およびジ
ャパニーズ・ジャーナル・オブ・アプライドフィジクス
(Japanese Journal of Applied Physics)第13巻、166
3ページ(1974年)に開示されているように、大量にBi
を固浴させることができ、しかも優れた性能指数(ファ
ラデー回転係数と吸収係数との比)を示す。さらに、膜
厚の大きいガーネット膜が得られればさらにファラデ回
転角の大きい優れた磁気光学素子材料となる。
When the epitaxially grown garnet film is used as such a magneto-optical element, if a material having a large Faraday rotation coefficient is used, the optical path length can be shortened, and the element can be further downsized. Garnet substituting Bi is a material with a large Faraday rotation coefficient, and especially when Gd 3+ is used as a rare earth ion, the Journal of Applied Physics (Journal of App
lied Physics, Vol. 44, page 4789 (1973) and Japanese Journal of Applied Physics, Vol. 13, 166.
Large amounts of Bi, as disclosed on page 3 (1974)
Can be used as a solid bath, and exhibits an excellent figure of merit (ratio between Faraday rotation coefficient and absorption coefficient). Further, if a garnet film having a large film thickness can be obtained, it becomes an excellent magneto-optical element material having a large Farade rotation angle.

このBi置換ガーネット厚膜を用いた光アイソレータを光
通信等で用いるとき、行きと帰りでフアラデー回転を45
゜ずつ行なってうまく反射もどり光をカットする必要が
ある。0.8μm帯では上記膜厚が少なくとも40μmは必
要であり、1.3μm帯では少なくとも200μm必要であ
る。しかしこれまでの技術において育成可能な膜厚は、
10μm程度が限界であり、Bi置換ガーネットの厚膜
化が重要な課題となっていた。
When the optical isolator using this Bi-substituted garnet thick film is used in optical communication, etc., the Faraday rotation is 45
It is necessary to do this step by step to make a good reflection and cut back the light. In the 0.8 μm band, the film thickness needs to be at least 40 μm, and in the 1.3 μm band, at least 200 μm. However, the film thickness that can be grown with conventional technology is
The limit is about 10 μm, and increasing the film thickness of Bi-substituted garnet has been an important issue.

Bi置換ガーネットの厚膜化においての問題点は、
(1)Bi3+は、イオン半径が大きいためBi3+の置換
量が膜厚方向において変化すると結晶の格子定数が著し
く変化し、基板と膜厚の格子定数差により割れや結晶欠
陥が発生する。(ii)ジャーナル・オブ・クリスタルグロ
ウス(J.Crystal Growth)第56巻132〜136頁(1982年)
に示される如くBi置換ガーネット膜を育成するためのフ
ラックスであるpbが膜に入り光吸収を増大させる、こと
である。
Problems in thickening Bi-substituted garnets include:
(1) Since Bi 3+ has a large ionic radius, when the substitution amount of Bi 3+ changes in the film thickness direction, the crystal lattice constant changes significantly, and cracks and crystal defects occur due to the difference in the lattice constant between the substrate and the film thickness. To do. (ii) Journal of Crystal Growth, Volume 56, pp. 132-136 (1982)
As shown in (3), pb, which is the flux for growing the Bi-substituted garnet film, enters the film and increases the light absorption.

(1)の問題を解決するための方法として、特開昭58-5
4314号公報に示されるように非磁性ガーネット基板の結
晶方位を検討することにより膜厚40μm以上のBi置
換ガーネット厚膜を得ることが可能である。しかし、膜
厚方向の格子定数変化が大きいため複屈折が発生し、光
アイソレータ用ガーネット厚膜として重要な特性である
消光比が十分とれないと言う問題があった。
As a method for solving the problem of (1), JP-A-58-5
By examining the crystal orientation of the non-magnetic garnet substrate as disclosed in Japanese Patent No. 4314, it is possible to obtain a Bi-substituted garnet thick film having a thickness of 40 μm or more. However, since there is a large change in the lattice constant in the film thickness direction, birefringence occurs, and there is a problem that the extinction ratio, which is an important characteristic as a garnet thick film for optical isolators, cannot be sufficiently obtained.

(発明の目的) 本発明の目的は、基板と膜との格子定数の整合がよくこ
のため鏡面状態を示し、しかも光吸収が小さく膜厚が大
きいため優れた性能指数を示すAl3+を置換した磁気光
学ガーネット材料を提供することである。
(Object of the Invention) The object of the present invention is to replace Al 3+, which has a good lattice index matching between the substrate and the film, and therefore exhibits a mirror surface state, and has an excellent figure of merit due to its small light absorption and large film thickness. Another object of the present invention is to provide a magneto-optical garnet material.

(発明のもととなった実験事実) 本発明者らは、PbO-Bi2O3-B2O3系の融液よりGd3-xBixFe
5-y-zAlyGazO12(但しx=0.9〜1.3,y=0.07〜0.08,z=
0.25〜0.30)をNd3Ga5O12単結晶{111}基板上に育成し
た。膜厚方向や結晶面内における格子定数変化を均一に
するため、融液中にAl2O3を添加した。この結果、膜厚
が50〜300μmの厚膜を育成しても結晶表面が鏡面
であり、Al3+の効果により膜厚方向および面内の格子
定数変化が小さいため消光比が40dB得られ、かつ1
00deg/dB以上の性能指数が得られることを見出し本発
明をなすに至った。
(Experimental facts that are the basis of the invention) The present inventors have found that Gd 3 -xBixFe from the PbO-Bi 2 O 3 -B 2 O 3 -based melt.
5 -y-zAlyGa z O 12 (however, x = 0.9 to 1.3, y = 0.07 to 0.08, z =
0.25-0.30) was grown on a Nd 3 Ga 5 O 12 single crystal {111} substrate. Al 2 O 3 was added to the melt in order to make uniform the lattice constant change in the film thickness direction and in the crystal plane. As a result, even if a thick film having a film thickness of 50 to 300 μm is grown, the crystal surface is a mirror surface and the extinction ratio of 40 dB can be obtained because the lattice constant change in the film thickness direction and in the plane is small due to the effect of Al 3+ . And 1
The inventors have found that a performance index of 00 deg / dB or more can be obtained, and completed the present invention.

(実施例1) PbO-Bi2O3-B2O3系融剤より{111}Nd3Ga5O12基板上に液
相エピタキシャル法により育成した厚さ210μmのGd1.9
Bi1.1Fe4.63Al0.07Ga0.30O12ガーネット厚膜は格子定数
が12.518Åであり、12.509Åの格子定数を有する基板と
の格子定数不整合による欠陥は現われず鏡面を呈した。
この材料のファラデー回転係数および光吸収係数はそれ
ぞれ-1850deg/cmおよび1.6cm-1で、性能指数(ファラデ
ー回転係数と吸収損との比)は267deg/dBであり、磁気
光学材料として優れた特性を示した。
Example 1 A 210 μm-thick Gd 1.9 film grown on a {111} Nd 3 Ga 5 O 12 substrate from a PbO—Bi 2 O 3 —B 2 O 3 -based flux by a liquid phase epitaxial method.
The Bi 1.1 Fe 4.63 Al 0.07 Ga 0.30 O 12 garnet thick film had a lattice constant of 12.518 Å, and did not show any defects due to the lattice constant mismatch with the substrate having a lattice constant of 12.509 Å, and exhibited a mirror surface.
The Faraday rotation coefficient and light absorption coefficient of this material are -1850 deg / cm and 1.6 cm -1 , respectively, and the figure of merit (ratio between Faraday rotation coefficient and absorption loss) is 267 deg / dB. showed that.

(実施例2) PbO-Bi2O3-B2O3系融剤より{111}Nd3Ga5O12基板上に液
相エピタキシャル法により育成した厚さ300μmのGd2.1
Bi0.9Fe4.64Al0.08Ga0.28O12ガーネット厚膜は格子定数
が12.508Åであり、基板との格子定数不整合による欠陥
は現われず鏡面を呈した。この材料のファラデー回転係
数および光吸収係数はそれぞれ-1872deg/cmおよび1.3cm
-1、性能指数は332deg/dBであり磁気光学材料として優
れた特性を示した。
Example 2 A 300 μm-thick Gd 2.1 film grown on a {111} Nd 3 Ga 5 O 12 substrate from a PbO—Bi 2 O 3 —B 2 O 3 -based flux by a liquid phase epitaxial method.
The Bi 0.9 Fe 4.64 Al 0.08 Ga 0.28 O 12 garnet thick film had a lattice constant of 12.508 Å, and did not show defects due to the lattice constant mismatch with the substrate, and exhibited a mirror surface. The Faraday rotation coefficient and light absorption coefficient of this material are -1872deg / cm and 1.3cm, respectively.
-1 , the figure of merit is 332deg / dB, which shows excellent characteristics as a magneto-optical material.

なお、Biをガーネット分子式あたり1.3を越えて置換さ
せると格子定数が大きくなりすぎ、格子定数不整合によ
りガーネット厚膜表面上にファセットが生じ結晶性を劣
化させた。またAlおよびGaを置換させる限界は両者を合
せて分子式あたり0.38であった。これを越えると、たと
えBiを増加させてもファラデー回転係数が小さくなり、
むしろBiの増加に伴うPbの増加による光吸収が問題とな
った。
It should be noted that when Bi is replaced by more than 1.3 per garnet molecular formula, the lattice constant becomes too large and lattice constant mismatch causes facets on the garnet thick film surface to deteriorate the crystallinity. The limit for substituting Al and Ga was 0.38 per molecular formula. Beyond this, the Faraday rotation coefficient becomes smaller even if Bi is increased,
Rather, light absorption due to the increase of Pb with the increase of Bi became a problem.

またGaやAlの量が少なすぎると格子定数のマッチングが
とれなくなるので少なくともGaを分子式あたり0.25以上
含ませる。
If the amount of Ga or Al is too small, the lattice constant cannot be matched, so at least 0.25 or more of Ga should be included per molecular formula.

(発明の効果) 以上、本発明を用いることにより、膜厚が40μm以上
で表面が鏡面を呈し、性能指数が100deg/dB以上の性能
指数が得られるBi置換ガドリニウムガーネット厚膜とな
り、光アイソレータ、サーキュレータ、スイッチなどの
磁気光学素子として用いることが可能である。
(Effects of the Invention) As described above, by using the present invention, a Bi-substituted gadolinium garnet thick film having a film thickness of 40 μm or more and a mirror-like surface and a performance index of 100 deg / dB or more is obtained, and an optical isolator, It can be used as a magneto-optical element such as a circulator and a switch.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非磁性ガーネット{111}単結晶基板上
にガーネット液層エピタキシャル厚膜が形成された磁気
光学素子材料において、膜厚が40μm以上であり、そ
の組成式がGd3-xBixFe5-y-zAlyGazO12(但し、x=0.9
〜1.3、y=0.07〜0.08、z=0.25〜0.30)であることを特
徴とする磁気光学素子材料。
1. A magneto-optical element material comprising a non-magnetic garnet {111} single crystal substrate on which a garnet liquid layer epitaxial thick film is formed, having a film thickness of 40 μm or more and having a composition formula of Gd 3-x Bi x. Fe 5-yz Al y Ga z O 12 (however, x = 0.9
.About.1.3, y = 0.07 to 0.08, and z = 0.25 to 0.30).
JP59141828A 1984-07-09 1984-07-09 Magneto-optical element material Expired - Lifetime JPH0642026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59141828A JPH0642026B2 (en) 1984-07-09 1984-07-09 Magneto-optical element material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59141828A JPH0642026B2 (en) 1984-07-09 1984-07-09 Magneto-optical element material

Publications (2)

Publication Number Publication Date
JPS6120926A JPS6120926A (en) 1986-01-29
JPH0642026B2 true JPH0642026B2 (en) 1994-06-01

Family

ID=15301068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59141828A Expired - Lifetime JPH0642026B2 (en) 1984-07-09 1984-07-09 Magneto-optical element material

Country Status (1)

Country Link
JP (1) JPH0642026B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317426A (en) * 1986-07-09 1988-01-25 Nec Corp Optical isolator
JPH07104224A (en) * 1993-10-07 1995-04-21 Mitsubishi Gas Chem Co Inc Nonreciprocity optical device
JP3458865B2 (en) * 1994-05-23 2003-10-20 三菱瓦斯化学株式会社 Low saturation magnetic field bismuth-substituted rare earth iron garnet single crystal and its use
JP3699629B2 (en) * 2000-02-22 2005-09-28 Tdk株式会社 Magnetic garnet material and magneto-optical element using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854315A (en) * 1981-09-28 1983-03-31 Nec Corp Optical isolator

Also Published As

Publication number Publication date
JPS6120926A (en) 1986-01-29

Similar Documents

Publication Publication Date Title
US4981341A (en) Apparatus comprising a magneto-optic isolator utilizing a garnet layer
US5408565A (en) Thin-film magneto-optic polarization rotator
US6545795B2 (en) Magneto-optical member and optical isolator using the same
Wolfe et al. Thin‐film waveguide magneto‐optic isolator
US4728178A (en) Faceted magneto-optical garnet layer and light modulator using the same
JP2786078B2 (en) Faraday rotator and optical isolator
JPH0642026B2 (en) Magneto-optical element material
US6483645B1 (en) Garnet crystal for Faraday rotator and optical isolator having the same
Tsushima et al. Research activities on magneto-optical devices in Japan
JPS61113026A (en) Medium for magnetooptic element
Hibiya et al. Growth and characterization of 300-µm thick bi-substituted gadolinium Iron garnet films for an optical isolator
JPS63107900A (en) Material for magneto-optical element
JPH0727823B2 (en) Magnetic material for magneto-optical element
JP2874319B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
Wolfe Thin films for non-reciprocal magneto-optic devices
JPH0415199B2 (en)
JP2786016B2 (en) Optical isolator
JPS61205698A (en) Magnetooptical material
JP2867736B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JPS6278194A (en) Magneto-optical garnet single crystal film and method of growing same
Whitcomb et al. Fabrication of thin film magnetic garnet structures for intra‐cavity laser applications
JPS59147320A (en) Optical non-reciprocal element
JP3594207B2 (en) Hetero-crystal junction type optical isolator
KR0146002B1 (en) Magnetic optical composition
JPS6126020A (en) Facet-formed magnetooptic garnet layer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term