JPS61113026A - Medium for magnetooptic element - Google Patents

Medium for magnetooptic element

Info

Publication number
JPS61113026A
JPS61113026A JP23473884A JP23473884A JPS61113026A JP S61113026 A JPS61113026 A JP S61113026A JP 23473884 A JP23473884 A JP 23473884A JP 23473884 A JP23473884 A JP 23473884A JP S61113026 A JPS61113026 A JP S61113026A
Authority
JP
Japan
Prior art keywords
film
optical
substrate
thick film
compsn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23473884A
Other languages
Japanese (ja)
Inventor
Yuuko Yokoyama
横山 侑子
Naoki Koshizuka
直己 腰塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP23473884A priority Critical patent/JPS61113026A/en
Publication of JPS61113026A publication Critical patent/JPS61113026A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To grow a thick film having >=45 deg. Faraday rotation angle in the wavelength region of 0.8mum band and 1.3-1.7mum band by specifying the compsn. of a bismuth-substd. iron garnet film. CONSTITUTION:The magnetic garnet film having the compsn. which contains elements Bi, Gd, Fe, R (R=Lu, Yb, Y, Tm), M (M=Ga, Al, Ge) and the balance O and unavoidable impurities and is x=0.4-0.8, y=0-0.1, z=0-0.1 in the chemical formula (Bi1-x-yGdxRy)3(Fe1-zMz)5O12 is grown by a liquid phase epitaxial method on a substrate. PbO, Bi2O3, Fe2O3, Ge2O3, B2O3, R2O3 and M2O3 (R=Lu, Yb, Tm, Y, etc., M=Ga, Al, Ge, etc.) are used as the molten mixture for growing the thick film by an LPE method. The compsn. and temp. of the molten liquid are so controlled that the growth rate attains >=0.5mum/min and the substrate is immersed into the molten liquid for 60-240 minutes, by which the film having >=30mum thickness and exhibiting the specular surface is obtd.

Description

【発明の詳細な説明】 [技術分野] 本発明は、光応用機器、光通信などに不可欠な光アイソ
レータや光サーキュレータに用いる磁気光学素子用媒体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a medium for magneto-optical elements used in optical isolators and optical circulators essential for optical application equipment, optical communications, and the like.

[従来技術] 半導体レーザを光源として使用する光応用機器において
、光コネクタなどの端面からの反射光が光源のレーザに
戻ると発振モードに変化が起こり雑音の原因となる。こ
の戻り光を阻止するため光アイソレータが使用されてい
る。波長0.8 p、 m帯の光アイソレータとしては
鉛ガラスや常磁性ガラスが使用されているが、そのファ
ラデー回転係数は強磁性体に比べて桁違いに小さく、素
子として必要な偏光面の回転を得るには、多重反射をさ
せて光路長を10cm以上と長くする必要がある。その
ため、素子の大型化は避けられず、また精密加工を要す
るなどから製作コストが高いこととも相まって、民生機
器用のアイソレータの入手は困難な状況にある。
[Prior Art] In optical equipment that uses a semiconductor laser as a light source, when reflected light from an end face of an optical connector or the like returns to the laser of the light source, the oscillation mode changes, causing noise. Optical isolators are used to block this return light. Lead glass and paramagnetic glass are used as optical isolators for wavelengths of 0.8 p and m bands, but their Faraday rotation coefficients are orders of magnitude smaller than those of ferromagnetic materials, and the rotation of the plane of polarization necessary for the device is In order to obtain this, it is necessary to cause multiple reflections and increase the optical path length to 10 cm or more. Therefore, it is inevitable that the device becomes larger, and the manufacturing cost is high due to the need for precision processing, making it difficult to obtain isolators for consumer devices.

光通信において重要な1.3〜1.7μm帯の波長域で
は、イツトリウム鉄ガーネット単結晶が使用されている
。この単結晶はフラックス法やトラベリングソルベント
フローティングゾーン法により育成され、円筒状に切り
出した単結晶の端面を光学研磨したものが用いられる。
Yttrium iron garnet single crystal is used in the wavelength range of 1.3 to 1.7 μm, which is important in optical communications. This single crystal is grown by a flux method or a traveling solvent floating zone method, and the end face of the single crystal cut into a cylindrical shape is optically polished.

大型の単結晶育成には長時間(10日以上)を要し、ま
たフラックスのインクルージヨンなどの欠陥が入る場合
が多く、歩留りが悪いためコストが高く、更に、磁化を
飽和させるのに比較的大きな磁界(〜3kOe)を要す
るため素子が大型になるなどの欠点もある。
It takes a long time (10 days or more) to grow a large single crystal, and defects such as flux inclusions often occur, resulting in low yields and high costs.Furthermore, it takes a relatively long time to saturate magnetization. It also has disadvantages, such as requiring a large magnetic field (~3 kOe), making the device large.

このように現在使用されている光アイソレータは0.8
 g m帯、1.3〜1.7JL11帯のいずれでも多
くの問題点があり、小型、高性能、低コストの光アイソ
レータの開発が望まれている。
In this way, the optical isolators currently used are 0.8
There are many problems in both the gm band and the 1.3 to 1.7 JL11 band, and it is desired to develop a small, high performance, low cost optical isolator.

小型で高性能な光アイソレータ用の媒体として、ビスマ
ス置換鉄ガーネット単結晶が現在量も注目されている。
Bismuth-substituted iron garnet single crystals are currently attracting attention as a medium for small, high-performance optical isolators.

このバルク単結晶は、改良されたフラックス法で既に育
成されているが、大型化、ビスマス置換量の不均一性、
歩留りや精密加工を要することなど、コストと性能の面
で問題点を残している。このため、液相エピタキシャル
(LPE)法による良質なビスマス置換鉄ガーネツト厚
膜(使用する光の波長でファラデー回転角が45度とな
る厚さ)の育成条件の確立が要望されている。
This bulk single crystal has already been grown using an improved flux method, but due to the large size and non-uniformity of the amount of bismuth substitution,
Problems remain in terms of cost and performance, such as low yield and the need for precision processing. For this reason, it is desired to establish conditions for growing a high-quality bismuth-substituted iron garnet thick film (thickness such that the Faraday rotation angle is 45 degrees at the wavelength of the light used) by the liquid phase epitaxial (LPE) method.

通常、PbO−B203−Bi203を溶剤とするLP
E法において、膜の成長速度は0.1〜2 p−m/m
inである。
Usually, LP using PbO-B203-Bi203 as a solvent
In the E method, the film growth rate is 0.1 to 2 p-m/m.
It is in.

育成時間を長くすれば、膜厚は時間に比例して大きくな
ると考えられるが、一般に307zm以上の厚みになる
と、育成の途中でファセットの成長、フラックスのイン
クルージヨンなどを生じ良質な膜の成長が阻まれ、膜面
は鏡面を示せないようになる。特にビスマス置換鉄ガー
ネツト膜では、ビスマスを多く入れるために過飽和度を
大きくし、また成長温度を低くする必要があり、鏡面を
持った厚膜の育成はさらに難しいのが現状である。
It is thought that if the growth time is increased, the film thickness will increase in proportion to the time, but in general, when the film thickness exceeds 307 zm, facet growth and flux inclusion occur during the growth, making it difficult to grow a good quality film. This prevents the film surface from exhibiting a mirror surface. Particularly in the case of bismuth-substituted iron garnet films, it is necessary to increase the degree of supersaturation in order to incorporate a large amount of bismuth and to lower the growth temperature, making it even more difficult to grow thick films with mirror surfaces.

[目的] 本発明の目的は、0.8 p−m帯および1.3〜1.
7μm帯の波長域で、ファラデー回転角が45度以上で
ある厚膜育成を可能なように組成を適切に定めたビスマ
ス置換鉄ガーネツト膜から成る磁気光学素子用媒体を提
供することにある。
[Objective] The object of the present invention is to control the 0.8 pm band and the 1.3-1.
An object of the present invention is to provide a medium for a magneto-optical element comprising a bismuth-substituted iron garnet film having an appropriately determined composition so as to enable the growth of a thick film with a Faraday rotation angle of 45 degrees or more in the 7 μm wavelength range.

[発明の構成] このような目的を達成すべく、本発明は、液相エピタキ
シャル法により基板上に育成した厚みが30g、m以上
の磁性ガーネット膜から成り、元素Bi、Gd、Fe、
R(R=Lu、Yb、Y、Tm)、M(M”Ga、 A
n 、 Ge)、残余の○および不可避の不純物を含み
、その化学式(Bi   Gd R) (Fe  M 
) 0  において、×=1−x−y  ! y 3 
1z z 5120.4〜o、e、y* 0〜0.1.
z= 0〜0.1の組成を有することを特徴とするもの
である。
[Structure of the Invention] In order to achieve such an object, the present invention consists of a magnetic garnet film with a thickness of 30 g or more grown on a substrate by a liquid phase epitaxial method, and containing elements Bi, Gd, Fe,
R (R=Lu, Yb, Y, Tm), M (M”Ga, A
n, Ge), residual ○ and unavoidable impurities, and its chemical formula (Bi Gd R) (Fe M
) 0, ×=1−x−y! y 3
1z z 5120.4~o, e, y* 0~0.1.
It is characterized by having a composition of z=0 to 0.1.

ここで、LPE法により厚膜を育成するための溶融混合
物として、PbO,Bi2O3,Fe2O3,Gd2O
3゜B2O3,R2O3およびM2O5(R畦u、Yb
、Tm、Yなど、に=Ga、AJI 、Geなど)を使
用する。これらの相対的モル比(Rパラメータ)を第1
表に示す。
Here, as a molten mixture for growing a thick film by the LPE method, PbO, Bi2O3, Fe2O3, Gd2O
3゜B2O3, R2O3 and M2O5 (Rrowu, Yb
, Tm, Y, etc., =Ga, AJI, Ge, etc.) are used. These relative molar ratios (R parameters) are
Shown in the table.

第1表 ビスマス置換鉄ガーネツト厚膜な成長させるためのm−
mの相対的モル比基板としては格子定数が12.508
AであるNGG(Nd3Ga5012)または、格子定
数が12.497人である5−G(iG[(GdMgC
a) (GaZr)5012]基板を用いる。膜と基板
の格子不整合が±0.005人以内、成長速度が0.5
 p、 m/min以上となるように溶融液の組成およ
び温度を調節し、60〜240分溶融液に基板を浸すこ
とにより、厚みが301Lm以上で鏡面を示す膜が得ら
れる。
Table 1 m- for thick film growth of bismuth-substituted iron garnet
Relative molar ratio of m As a substrate, the lattice constant is 12.508
NGG (Nd3Ga5012) which is A or 5-G (iG[(GdMgC) whose lattice constant is 12.497
a) A (GaZr)5012] substrate is used. Lattice mismatch between film and substrate is within ±0.005, growth rate is 0.5
By adjusting the composition and temperature of the melt so that it is at least p, m/min and immersing the substrate in the melt for 60 to 240 minutes, a film having a thickness of at least 301 Lm and exhibiting a mirror surface can be obtained.

[実施例] 以下に、図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

以上のような条件での膜作製の実施例と波長0.81L
mにおける磁気光学特性を示す。
Example of film production under the above conditions and wavelength 0.81L
The magneto-optical properties at m are shown.

実施例1゜ 溶融混合物のうち、M2O3としてAJI、、03を用
い(R203は不使用)、その相対的モル比がR1=1
2.R2’0.011.  R3= 7.25.  R
4=0.12゜R5=0.  R6= 1.8である混
合物を使用した。
Example 1゜Among the molten mixture, AJI,.03 was used as M2O3 (R203 was not used), and the relative molar ratio was R1=1.
2. R2'0.011. R3=7.25. R
4=0.12°R5=0. A mixture was used in which R6 = 1.8.

NGO基板を840℃の溶融液中に60分間浸すことに
より、厚みが105 g mの(Bind)  (Fe
AJl )5012膜が得られた。波長0.8μmでこ
の膜の光吸収係数αは、α=124cm−’、ファラデ
ー回転係数θfはIθfI = 4800deg/Cm
であり、磁気光学性能指数は8.?deg/dBとなっ
た。
(Bind) (Fe
AJl)5012 membrane was obtained. At a wavelength of 0.8 μm, the light absorption coefficient α of this film is α = 124 cm-', and the Faraday rotation coefficient θf is IθfI = 4800 deg/Cm.
The magneto-optical figure of merit is 8. ? deg/dB.

実施例2゜ ROとしてYb Oを用い(M2O3は不使用)、その
相対的モル比がR1=15. R2= O,RA =7
.25. Ra ’ 0.11.  Rs ”0.1.
  R6= 1.8である混合物を使用した。5−GG
G基板を803℃の溶融液中に80分間浸すことにより
、厚みが8Qp、mの(BiGdYb)31e50□2
膜が得られた。この場合、波長Q、8gn+でα=17
5cm’ 、  lθfl = 5350deg/Cl
11であり、磁気光学性能指数は7.9deg/dBと
なった。
Example 2゜Yb2O was used as RO (M2O3 was not used), and its relative molar ratio was R1 = 15. R2=O, RA=7
.. 25. Ra' 0.11. Rs”0.1.
A mixture was used in which R6 = 1.8. 5-GG
(BiGdYb)31e50□2 with a thickness of 8Qp,m was obtained by immersing the G substrate in a melt at 803°C for 80 minutes.
A membrane was obtained. In this case, α=17 at wavelength Q, 8gn+
5cm', lθfl = 5350deg/Cl
11, and the magneto-optical figure of merit was 7.9 deg/dB.

実施例3゜ MOとしてA9.0  を用い(R203は不便用)、
その相対的モル比が、R,=12. R2=0.022
.  R3=7.25. R4=0.12. Rs =
O,R6=1.8である混合物を使用した。5−GGG
基板を845°Cの溶融液中に80分間浸すことにより
厚みが140 p、 mの膜が得られた。波長0.8 
p、mでa =180cm”、Iθfl =5500d
eg/amであり、磁気光学性能指数はf3.llde
g/dBとなった。
Example 3: Using A9.0 as MO (R203 is for inconvenience),
The relative molar ratio is R,=12. R2=0.022
.. R3=7.25. R4=0.12. Rs =
A mixture in which O, R6 = 1.8 was used. 5-GGG
A film with a thickness of 140 μm was obtained by immersing the substrate in the melt at 845° C. for 80 minutes. Wavelength 0.8
p, m, a = 180cm”, Iθfl = 5500d
eg/am, and the magneto-optical figure of merit is f3. llde
g/dB.

実施例1〜3で得られた厚膜はすべて鏡面を有し、粗さ
計により測定した表面の凹凸は2.00Å以下であった
。このことは、基板を浸す時間をさらに長くすることに
より、さらに厚みを大きくすることが可能であることを
示す。
All of the thick films obtained in Examples 1 to 3 had mirror surfaces, and the surface irregularities measured by a roughness meter were 2.00 Å or less. This indicates that it is possible to further increase the thickness by increasing the soaking time of the substrate.

第1図は厚膜の断面の顕微鏡写真である。膜tまインク
ルージボンなどの欠陥を持だなI/)良質な結晶である
ことが分かる。膜表面が直線でないのは研磨が不完全で
あることによるものである。  。
FIG. 1 is a micrograph of a cross section of a thick film. It can be seen that the crystal is of good quality, although the film does not have defects such as inclusion bonds. The reason why the film surface is not straight is due to incomplete polishing. .

第2図は、本発明による厚膜媒体を用いて作成した光ア
イソレータの構造を示す。ここで1は本発明によるビス
マス置換鉄ガーネツト厚膜、2はこの厚膜1の両側に配
設した偏光ビームスプリッタ、3は厚膜1に磁界を印加
するように、厚膜lおよびビームスプ、リッタ2を取り
囲んで配置した永久磁石、例えばSmCo磁石(H=1
.8kOe) テある。
FIG. 2 shows the structure of an optical isolator made using thick film media according to the present invention. Here, 1 is a bismuth-substituted iron garnet thick film according to the present invention, 2 is a polarizing beam splitter disposed on both sides of this thick film 1, and 3 is a thick film 1, a beam splitter, and a ritter so as to apply a magnetic field to the thick film 1. A permanent magnet, for example a SmCo magnet (H=1
.. 8kOe) Yes.

この媒体1は実施例1のNGO基板を研磨により取り去
り、さらにファラデー回転係数が0.8Ii、m帯で4
5度になるように研磨すること番こよりイ乍製した。こ
の媒体の緒特性を第2表に示す。
This medium 1 has the NGO substrate of Example 1 removed by polishing, and has a Faraday rotation coefficient of 0.8Ii and 4 in the m band.
It was prepared by polishing it to a 5 degree angle. The characteristics of this medium are shown in Table 2.

第  2  表 厚  膜  の  諸  特  性 用9厚        d             
     90IL厘成長温度 TG       8
40℃飽和温度 Ts       883℃キ、リ一
温度  T、            300  ℃補
償温度 Tcosp     −98℃飽和磁界 Hs
       5100eフアラデ一回転係数 θ(−
5020deq/cm吸収損失 α1     580
dB/cmこの媒体のキュリ一温度は300°Cであり
、補償温度は一98°Cであった。波長3.78Bmの
ファラデー回転係数は約5000deg/amであるた
め、45degの回転に必要とする膜厚は90 p、 
mであった。この媒体の磁化を飽和させるのに要する磁
場は5100eと小さいので、第2図に用いた永久磁石
3よりも小さい磁石で磁化を飽和させることが可能であ
る。アイソレータの特性としては、波長9.78 g 
mで挿入損失が13.3dB、アイソレーションは18
d Bであった。これらの特性を改善するには、媒体の
磁気光学性能指数の向」二が不可欠といえるが、本発明
者は面内磁化膜として成長したままの(B+NdLu)
  (FeAu )5012膜において波長0.8 g
 mで性能指数が10deg/dBの膜を得た。
2nd table thickness 9thickness d for various properties of the film
90IL growth temperature TG 8
40°C saturation temperature Ts 883°C temperature T, 300°C compensation temperature Tcosp -98°C saturation magnetic field Hs
5100e Farade one rotation coefficient θ(-
5020 deq/cm absorption loss α1 580
dB/cm The Curie temperature of this medium was 300°C and the compensation temperature was -98°C. Since the Faraday rotation coefficient at a wavelength of 3.78 Bm is approximately 5000 deg/am, the film thickness required for 45 deg rotation is 90 p.
It was m. Since the magnetic field required to saturate the magnetization of this medium is as small as 5100e, it is possible to saturate the magnetization with a smaller magnet than the permanent magnet 3 used in FIG. The characteristics of the isolator are that the wavelength is 9.78 g.
m, insertion loss is 13.3 dB, isolation is 18
It was dB. In order to improve these characteristics, it is essential to improve the magneto-optical figure of merit of the medium.
(FeAu) Wavelength 0.8 g in 5012 film
A film with a figure of merit of 10 deg/dB was obtained.

さらに、この膜を還元処理することによって吸収損失を
下げ、性能指数が14deg/dBに向上することを見
いだした。従って、現在の技術により挿入損失が4dB
以下、アイソレーションが20dB以上の素子の作成も
可能である。
Furthermore, it has been found that by subjecting this film to reduction treatment, the absorption loss can be lowered and the figure of merit can be improved to 14 deg/dB. Therefore, with current technology, the insertion loss is 4 dB.
Hereinafter, it is also possible to create an element with an isolation of 20 dB or more.

以上光アイソレータについて述べたが、本発明による厚
膜は、光サーキュレータなど45度のファラデー回転を
用いる他の磁気光学素子の媒体としても好適であること
は明らかである。
Although the optical isolator has been described above, it is clear that the thick film according to the present invention is also suitable as a medium for other magneto-optical elements that use 45 degrees of Faraday rotation, such as optical circulators.

[効果] 以上詳細に説明したように、本発明によれば、LPE法
による厚みが39pm以上の良質なビスマス置換鉄ガー
ネツト厚膜を育成することが可能である。本発明厚膜媒
体は、小型、高性能かつ低コストで、さらに、周辺装置
の軽減化も期待できる光アイソレータや光サーキュレー
タなどの磁気光学素子を作製するのに有効である。
[Effects] As described above in detail, according to the present invention, it is possible to grow a high-quality bismuth-substituted iron garnet thick film having a thickness of 39 pm or more by the LPE method. The thick film medium of the present invention is effective for producing magneto-optical elements such as optical isolators and optical circulators, which are small in size, have high performance, are low in cost, and can also be expected to reduce the number of peripheral devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はNGG基板に育成した(B+Gd)  (Fe
Ajj )50+。 厚膜の断面の結晶構造を示す顕微鏡写真、第2図は磁性
ガーネット厚膜を用いた光アイソレークの構成例を示す
線図である。
Figure 1 shows (B+Gd) (Fe
Ajj) 50+. A micrograph showing the crystal structure of a cross section of the thick film, and FIG. 2 is a diagram showing an example of the configuration of an optical isolake using a magnetic garnet thick film.

Claims (1)

【特許請求の範囲】[Claims] 液相エピタキシャル法により基板上に育成した厚みが3
0μm以上の磁性ガーネット膜から成り、元素Bi、G
d、Fe、R(R=Lu、Yb、Y、Tm)、M(M=
Ga、Al、Ge)、残余のOおよび不可避の不純物を
含み、その化学式(Bi_1_−_x_−_yGd_x
R_y)_3(Fe_1_−_zM_z)_5O_1_
2において、x=0.4〜0.8、y=0〜0.1、z
=0〜0.1の組成を有することを特徴とする磁気光学
素子用媒体。
The thickness grown on the substrate by liquid phase epitaxial method is 3.
Consists of a magnetic garnet film of 0 μm or more, containing elements Bi and G.
d, Fe, R (R=Lu, Yb, Y, Tm), M (M=
Ga, Al, Ge), including residual O and unavoidable impurities, and has the chemical formula (Bi_1_-_x_-_yGd_x
R_y)_3(Fe_1_-_zM_z)_5O_1_
2, x=0.4-0.8, y=0-0.1, z
1. A medium for a magneto-optical element, characterized in that it has a composition of =0 to 0.1.
JP23473884A 1984-11-07 1984-11-07 Medium for magnetooptic element Pending JPS61113026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23473884A JPS61113026A (en) 1984-11-07 1984-11-07 Medium for magnetooptic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23473884A JPS61113026A (en) 1984-11-07 1984-11-07 Medium for magnetooptic element

Publications (1)

Publication Number Publication Date
JPS61113026A true JPS61113026A (en) 1986-05-30

Family

ID=16975581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23473884A Pending JPS61113026A (en) 1984-11-07 1984-11-07 Medium for magnetooptic element

Country Status (1)

Country Link
JP (1) JPS61113026A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270288A (en) * 1985-09-19 1987-03-31 Matsushita Electric Ind Co Ltd Production of magneto-optical element
JPS62288199A (en) * 1986-06-09 1987-12-15 Sumitomo Metal Mining Co Ltd Material for magneto-optical element
EP0252509A2 (en) * 1986-07-09 1988-01-13 Nec Corporation An Optical isolator device having two cascaded isolator elements with different light beam rotation angels
JPS6370506A (en) * 1986-09-12 1988-03-30 Sony Corp Magnetic garnet for photo isolator
JPS63291028A (en) * 1987-05-25 1988-11-28 Furukawa Electric Co Ltd:The Farady element
JP2008074703A (en) * 1998-02-20 2008-04-03 Seikoh Giken Co Ltd Bismuth substituted-type garnet thick-film material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168622A (en) * 1980-05-30 1981-12-24 Nec Corp Magnetooptic nonreciprocal optical element
JPS58139082A (en) * 1982-02-15 1983-08-18 Hitachi Ltd Magnetic field measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168622A (en) * 1980-05-30 1981-12-24 Nec Corp Magnetooptic nonreciprocal optical element
JPS58139082A (en) * 1982-02-15 1983-08-18 Hitachi Ltd Magnetic field measuring apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270288A (en) * 1985-09-19 1987-03-31 Matsushita Electric Ind Co Ltd Production of magneto-optical element
JPS62288199A (en) * 1986-06-09 1987-12-15 Sumitomo Metal Mining Co Ltd Material for magneto-optical element
JPH0375516B2 (en) * 1986-06-09 1991-12-02 Sumitomo Metal Mining Co
EP0252509A2 (en) * 1986-07-09 1988-01-13 Nec Corporation An Optical isolator device having two cascaded isolator elements with different light beam rotation angels
JPS6370506A (en) * 1986-09-12 1988-03-30 Sony Corp Magnetic garnet for photo isolator
JPS63291028A (en) * 1987-05-25 1988-11-28 Furukawa Electric Co Ltd:The Farady element
JP2008074703A (en) * 1998-02-20 2008-04-03 Seikoh Giken Co Ltd Bismuth substituted-type garnet thick-film material

Similar Documents

Publication Publication Date Title
JPS61113026A (en) Medium for magnetooptic element
US4932760A (en) Magneto-optic garnet
US5479290A (en) Faraday's rotator and optical isolator
JPS63107900A (en) Material for magneto-optical element
EP1162635B1 (en) Material for bismuth substituted garnet thick film and a manufacturing method thereof
JPH09202697A (en) Production of bismuth-substituted type garnet
JPH0642026B2 (en) Magneto-optical element material
JPH0766114B2 (en) Magneto-optical element material
JP2867736B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JPS6278194A (en) Magneto-optical garnet single crystal film and method of growing same
JPH0415199B2 (en)
JPH11100300A (en) Bismuth-substituted garnet material and its production
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JPH0727823B2 (en) Magnetic material for magneto-optical element
JP2794306B2 (en) Magnetic garnet material and Faraday rotating element
JPH0369847B2 (en)
JP2742537B2 (en) Magneto-optical thin film and method of manufacturing the same
JP3698933B2 (en) Magneto-optic garnet single crystal
JPH03242620A (en) Magneto-optical material
JP2729288B2 (en) Manufacturing method of magneto-optical thin film
JPS5957990A (en) Method for growing liquid phase epitaxial thick film of garnet
JPH0359012B2 (en)
JPS61205698A (en) Magnetooptical material
JPH1192291A (en) Bismuth substituted type garnet thick film material and its production
JPS60145996A (en) Growth of magneto-optical garnet material