JPS63107900A - Material for magneto-optical element - Google Patents

Material for magneto-optical element

Info

Publication number
JPS63107900A
JPS63107900A JP25376086A JP25376086A JPS63107900A JP S63107900 A JPS63107900 A JP S63107900A JP 25376086 A JP25376086 A JP 25376086A JP 25376086 A JP25376086 A JP 25376086A JP S63107900 A JPS63107900 A JP S63107900A
Authority
JP
Japan
Prior art keywords
film
magneto
substrate
optical
faraday rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25376086A
Other languages
Japanese (ja)
Inventor
Norio Takeda
憲夫 武田
Yasunori Tagami
田上 保徳
Shizuo Togo
東郷 静雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP25376086A priority Critical patent/JPS63107900A/en
Publication of JPS63107900A publication Critical patent/JPS63107900A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a material for a magneto-optical element having superior magneto-optical characteristics at 0.8mum band wavelength by growing magnetic garnet having a specified compsn. contg. Y, Gd, Bi, Fe, O, and Ga or Al on a specified single crystal substrate. CONSTITUTION:Magnetic garnet represented by formula II (where L is Ga and/or Al, x=0.2-0.4, y=0.9-1.3 and z=0-0.5) is grown on a single crystal substrate represented by formula I by a liq. phase epitaxy to >=30mum thickness to obtain a material for a magneto-optical element. Since a formed thick film of >=30mum thickness and the substrate match in lattice constant, the film has a specular surface and such superior characteristics as >=8,000deg/cm Faraday rotation coefft. and >=20deg/dB performance index.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はファラデー回転効果を利用した光アイソレータ
、光サーキュレータ等に用いられる磁気光学素子用材料
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a material for magneto-optical elements used in optical isolators, optical circulators, etc. that utilize the Faraday rotation effect.

〔従来技術とその問題点〕[Prior art and its problems]

半導体レーザは光応用機器や光通信の光源として広く利
用されているが、反射光が半導体レーザに戻るとレーザ
発振が不安定になるという大きな問題がある。
Semiconductor lasers are widely used as light sources in optical applications and optical communications, but there is a major problem in that laser oscillation becomes unstable when reflected light returns to the semiconductor laser.

この戻り光を阻止するために光アイソレータが使用され
ている。波長1.3〜1.7μm帯ではイツトリウム・
鉄・ガーネット(YIG)のバルク単結晶波長0.8μ
m帯では常磁性ガラスが光アイソレータのファラデー回
転材料に用いられているが、素子の小型化、製作コスト
の低減化を図る上でよりファラデー回転係数の大きな材
料が望まれている。
Optical isolators are used to block this returning light. In the wavelength band of 1.3 to 1.7 μm, yttrium
Bulk single crystal wavelength of iron/garnet (YIG) 0.8μ
In the m-band, paramagnetic glass is used as a Faraday rotation material for optical isolators, but a material with a larger Faraday rotation coefficient is desired in order to miniaturize the device and reduce manufacturing costs.

ファラデー回転係数の大きな材料として、旧を固溶した
ガーネットが知られている。この材料はすでに改良され
たフラックス法でバルク単結晶として製造されているが
量産化が難しいことや、素子化に際して精密加工を要す
ることなどの問題点があることから、この材料をファラ
デー回転素子に用いる限り、光アイソレータのコストを
下げることは期待できない。このため量産性に優れ、か
つ加工の容易な液相エピタキシャル(LPE)法による
ビスマス置換型鉄ガーネット厚膜作製法が検討されてい
る。
Garnet with a solid solution of chloride is known as a material with a large Faraday rotation coefficient. This material has already been manufactured as a bulk single crystal using an improved flux method, but there are problems such as difficulty in mass production and the need for precision machining to create devices, so this material is used in Faraday rotary devices. As long as it is used, it cannot be expected to reduce the cost of the optical isolator. For this reason, a method for producing a bismuth-substituted iron garnet thick film using a liquid phase epitaxial (LPE) method, which is excellent in mass production and easy to process, is being considered.

例えば、第8回日本応用磁気学会学術講演概要集(19
84,11) P、31においてNdzGasO+t(
NGG)基板上に育成された(GdBi) 3 (Fe
AIGa) sO+ z厚膜が報告されている。
For example, the 8th Japanese Society of Applied Magnetics Academic Lecture Abstracts (19
84,11) NdzGasO+t(
(GdBi) 3 (Fe
AIGa) sO+ z thick films have been reported.

この厚膜の波長0.8μmにおけるファラデー回転係数
IMは7500deg/cm、性能指数1eFl/α(
αは光吸収係数dB/cm)は23deg/dBと優れ
た値を示している。この厚膜を用いて光アイソレーター
を作製する場合、偏光面を45度回転させるためには6
0μmの厚膜が必要となり、その際、光吸収による損失
は36χとなる。
The Faraday rotation coefficient IM of this thick film at a wavelength of 0.8 μm is 7500 deg/cm, and the figure of merit 1eFl/α (
The optical absorption coefficient α (dB/cm) is an excellent value of 23 deg/dB. When making an optical isolator using this thick film, it is necessary to rotate the polarization plane by 45 degrees.
A thick film of 0 μm is required, and the loss due to light absorption is 36χ.

ところで、このような厚い膜をLPE法でガーネット基
板上に育成するに際しては、基板と膜との格子定数差を
小さくする必要がある。格子定数差が大きい場合、特に
厚膜成長においては膜中にこの格子定数差に起因する欠
陥が入りやす(なるため、良質な膜成長が阻害され膜面
ば鏡面を示せないようになる。
By the way, when growing such a thick film on a garnet substrate by the LPE method, it is necessary to reduce the difference in lattice constant between the substrate and the film. When the difference in lattice constants is large, defects due to the difference in lattice constants are likely to occur in the film, especially when growing a thick film (thus, good quality film growth is inhibited and the film surface cannot exhibit a mirror surface).

上記(GdBi) s (FeAIGa) Sol を
膜においては格子定1&12.509人のNGG基板を
用いることにより、格子整合がとれ厚膜の育成が可能と
なった。
In the above (GdBi) s (FeAIGa) Sol film, by using an NGG substrate with a lattice constant of 1 & 12.509, lattice matching was achieved and a thick film could be grown.

しかしながら、NGG基板は波長0.9μm以下におい
てNd’+イオンによる大きな光吸収があるため育成し
た厚膜を0.8μm帯の磁気光学材料に利用する際は基
板のNGGを研摩して完全に除去しなければならない。
However, NGG substrates have large optical absorption by Nd'+ ions at wavelengths below 0.9 μm, so when using the grown thick film for magneto-optical materials in the 0.8 μm band, the NGG on the substrate must be completely removed by polishing. Must.

しかも膜厚は数十ミクロンであることから精密な加工を
要するとともに研摩で残った膜の取り扱いは極めて困難
になる。したがって0.8μm帯用0磁気光学材料の提
供を目的とする場合には、この波長域に光吸収のない基
板を使用し基板をつけたまま素子化することが望ましい
Moreover, since the film thickness is several tens of microns, precise machining is required and the film remaining after polishing is extremely difficult to handle. Therefore, when the purpose is to provide a magneto-optical material for the 0.8 μm band, it is desirable to use a substrate that does not absorb light in this wavelength range and to fabricate the device with the substrate attached.

この目的に叶うガーネット単結晶基板で現在、工業的な
生産が可能なものには、格子定数が12.496±0.
003人の(CaGd)3(MgZrGa)sO+z 
(S−GGG)と格子定数が12.383人のGdxG
asO+g (GGG)がある。
Garnet single crystal substrates that meet this purpose and can currently be produced industrially have a lattice constant of 12.496±0.
003 (CaGd)3(MgZrGa)sO+z
(S-GGG) and GdxG with a lattice constant of 12.383
There is asO+g (GGG).

この5−GGG基板を用いて育成された0、8μm帯用
0磁PE法Bi置換型鉄ガーネット厚膜としては、特開
昭61−113026公報において、(Bit−X−Y
GdX Ry )+(Fe+−Jz)s、o+z (但
し、R=Lu、 Yb、 Y 、 Tm ;M=Gas
 A1% Ge ; X=0.4〜0.8 、y=o 
〜0.1、 Z=0〜0.1)厚膜が報告されているが
、I(lIFI・〜5500deg/cm−1eFl/
α= 〜9 deg/dBであり、実用上問題がある。
A 0-magnetic PE method Bi-substituted iron garnet thick film grown using this 5-GGG substrate for the 0 and 8 μm band is described in JP-A-61-113026 (Bit-X-Y
GdX Ry)+(Fe+-Jz)s, o+z (However, R=Lu, Yb, Y, Tm; M=Gas
A1% Ge; X=0.4-0.8, y=o
~0.1, Z=0~0.1) thick films have been reported, but I(lIFI・~5500deg/cm−1eFl/
α = ~9 deg/dB, which is a practical problem.

一方、格子定数の小さいGGG基板を用いた実用可能な
旧多量置換磁性ガーネット厚膜作製の報告はなされてい
ない。
On the other hand, there has been no report on the production of a practically practicable old massively substituted magnetic garnet thick film using a GGG substrate with a small lattice constant.

〔本発明の目的〕[Object of the present invention]

本発明の目的は、0.8μm帯の波長域で透明な非磁性
ガーネット単結晶基板上に育成され、該波長域でのファ
ラデー回転角が45度以上の厚膜で、しかも優れた磁気
光学特性を示す磁気光学材料を提供することである。
The object of the present invention is to provide a thick film grown on a non-magnetic garnet single crystal substrate that is transparent in the 0.8 μm wavelength range, with a Faraday rotation angle of 45 degrees or more in the wavelength range, and with excellent magneto-optical properties. An object of the present invention is to provide a magneto-optical material exhibiting the following properties.

〔発明の構成〕[Structure of the invention]

本発明者らはこのような目的を達成すべ(鋭意検討した
結果、次のような事実を見出した。
The inventors of the present invention have made the following findings as a result of intensive study to achieve such an objective.

すなわちPb0−BizOs−BzOz系の融液より、
Y2−、−yGd xBiyFes−zLzO+z(但
し、LはGa、 AI又はそれらの組合せ、X・0.2
J、4 、y=0.9〜1.3 、z=0〜0.5)を
(CaGd) :l (MgZrGa) so + z
単結晶基板上に育成したところ、膜と基板との格子定数
の整合がよいため膜表面が鏡面を呈し、しかもファラデ
ー回転係数が8000deg/cm以上、性能指数が2
0deg/dB以上の優れた特性を示す30μm以上の
厚膜が得られたのである。
That is, from the Pb0-BizOs-BzOz system melt,
Y2-, -yGd xBiyFes-zLzO+z (L is Ga, AI or a combination thereof, X・0.2
J, 4, y=0.9~1.3, z=0~0.5) as (CaGd) :l (MgZrGa) so + z
When grown on a single crystal substrate, the film surface exhibited a mirror surface due to good lattice constant matching between the film and the substrate, and furthermore, the Faraday rotation coefficient was 8000 deg/cm or more, and the figure of merit was 2.
A thick film of 30 μm or more and exhibiting excellent characteristics of 0 deg/dB or more was obtained.

このBiW換型鉄ガーネットのファラデー回転係数はB
i直換量にほぼ比例して大きくなることから、できるだ
け多くのBiを固?容させたガーネット膜が好ましいが
、Biをy・1.4以上固溶させると膜の格子定数が大
きくなって基板との格子整合がとれなくなり、得られた
膜は鏡面を呈することができなくなる。
The Faraday rotation coefficient of this BiW iron garnet is B
Since it increases almost in proportion to the amount of i direct conversion, it is necessary to harden as much Bi as possible. However, if Bi is dissolved in a solid solution of y 1.4 or more, the lattice constant of the film becomes large and lattice matching with the substrate cannot be achieved, and the resulting film cannot exhibit a mirror surface. .

Feをイオン半径の小さいAIやGaで置換するのは膜
との格子整合を図るのと膜の飽和磁界の大きさをコント
ロールすることが目的であるが、AIやGa置換量を増
していくとファラデー回転係数が小さくなるとか、ファ
ラデー回転係数の温度依存性が大きくなるといった問題
が生じてくるので、2・0〜0.5が好ましい。
The purpose of replacing Fe with AI or Ga, which has a small ionic radius, is to achieve lattice matching with the film and to control the magnitude of the saturation magnetic field of the film, but as the amount of AI or Ga replacement increases, Since problems such as a decrease in the Faraday rotation coefficient or an increase in the temperature dependence of the Faraday rotation coefficient, a value of 2.0 to 0.5 is preferable.

Bi霞換ガーネット膜を育成するための融液組成を溶液
混合物の相対モル比(Rパラメーター)で示すと第1表
のとおりである。
Table 1 shows the melt composition for growing a Bi haze-exchanged garnet film in terms of the relative molar ratio (R parameter) of the solution mixture.

第1表 溶融混合物の相対モル比 以下に実施例をあげて説明する。Table 1 Relative molar ratio of molten mixture Examples will be described below.

なお、ファラデー回転係数1□□□及び光吸収係数αは
いずれも波長0.78μmでの測定結果である。
Note that the Faraday rotation coefficient 1□□□ and the light absorption coefficient α are both measurement results at a wavelength of 0.78 μm.

〔実施例〕〔Example〕

実施例1 第2表の実施例1に示す組成の融液に、格子定数12.
496人の(CaGd) x (MgZrGa) sO
t z基板を750 ”Cで90分間浸すことにより、
厚みが45μmのYl、5Gdo、 Ji l+ zF
ea、 1A1o、 z(L を膜を育成した。膜の格
子定数は12.498人であり、基板との格子定数差に
よる欠陥は観察されず鏡面を呈した。
Example 1 A melt having the composition shown in Example 1 in Table 2 was given a lattice constant of 12.
496 (CaGd) x (MgZrGa) sO
By soaking the tz substrate at 750"C for 90 minutes,
Yl with a thickness of 45 μm, 5Gdo, Ji l+ zF
A film was grown using ea, 1A1o, z(L). The lattice constant of the film was 12.498, and no defects due to the difference in lattice constant with the substrate were observed, and a mirror surface was observed.

この膜のファラデー回転係数1川は11 、700de
g/cm、光吸収係数αは478dB/cm 、磁気光
学性能指数!印/αは24.5deg/dBとなり、磁
気光学素子用材料として極めて優れた特性を示した。
The Faraday rotation coefficient of this film is 11,700 de
g/cm, optical absorption coefficient α is 478 dB/cm, magneto-optical figure of merit! The mark/α was 24.5 deg/dB, indicating extremely excellent properties as a material for magneto-optical elements.

実施例2 第2表の実施例2に示す組成の融液に、(CaGd)s
(MgZrGa)so+z基板を760°Cで120分
間浸すことにより、厚みが60 p mのYl、 tG
do、 Ji 1. oFe4.qGa6+1012膜
を育成した。膜の格子定数は12.493人であり、基
板との格子定数差による欠陥は観察されず鏡面を呈した
Example 2 (CaGd)s was added to the melt having the composition shown in Example 2 in Table 2.
By soaking the (MgZrGa)so+z substrate at 760 °C for 120 min, Yl, tG with a thickness of 60 pm was obtained.
do, Ji 1. oFe4. A qGa6+1012 film was grown. The lattice constant of the film was 12.493, and no defects due to the difference in lattice constant with the substrate were observed, and the film exhibited a mirror surface.

この場合、Iは10,200deg/cm、 cr= 
440dB/cm。
In this case, I is 10,200deg/cm, cr=
440dB/cm.

IEI、t/α・23.2deg/dBとなり、磁気光
学素子用材料として極めて優れた特性を示した。
The IEI was t/α·23.2 deg/dB, showing extremely excellent properties as a material for magneto-optical elements.

次にこの厚膜のアイソレーション(逆方向損失と順方向
損失の比)測定を試みた。
Next, we attempted to measure the isolation (ratio of reverse loss to forward loss) of this thick film.

即ち、基板両面に育成された膜のうち、片方の膜を研摩
により除去し残った方の膜をファラデー回転角として4
5度をなすように化学エツチングにより厚膜調整を行い
、次いで膜面及び基板面それぞれに反射防止膜を施し、
グラントムソンプリズム及ヒSm−Co磁石を用いてア
イソレーションを測定した。
That is, among the films grown on both sides of the substrate, one film is removed by polishing and the remaining film is set to a Faraday rotation angle of 4.
A thick film is adjusted by chemical etching so that it forms a 5 degree angle, and then an anti-reflection film is applied to each of the film surface and the substrate surface.
Isolation was measured using a Glan-Thompson prism and a Hi-Sm-Co magnet.

その結果、アイソレーションとして35dBと極めて良
好な値を得た。
As a result, an extremely good isolation value of 35 dB was obtained.

実施例1及び2の厚膜育成条件においては基板を融液に
浸す時間をさらに長くすることにより、さらに厚みを増
すことが可能である。
Under the thick film growth conditions of Examples 1 and 2, it is possible to further increase the thickness by further increasing the time during which the substrate is immersed in the melt.

比較例1 第2表の比較例1の融液に(CaGd) x (MgZ
rGa) s。
Comparative Example 1 In the melt of Comparative Example 1 in Table 2, (CaGd) x (MgZ
rGa) s.

、2基板を770℃で60分間浸すことにより、厚みが
52μmのGd2. aBi +、 oFe4. s^
lo、ffi膜を育成した。膜の格子定数は12.51
2人であり、基板との不整合による欠陥が多数見られた
, 2 substrates were immersed at 770°C for 60 minutes to form a Gd2. aBi +, oFe4. s^
lo and ffi membranes were grown. The lattice constant of the film is 12.51
There were two people involved, and many defects were observed due to misalignment with the substrate.

第2表 ビスマス匝換鉄ガーネット膜育成のための融液
組成 〔発明の効果〕 本発明によれば、LPE法により、透明な非磁性ガーネ
ット基板上に、厚膜が30,17m以上で表面が鏡面を
呈し、ファラデー回転角が8000deg/cm以上、
性能指数が20deg/dB以上の高性能ビスマス置換
型鉄ガーネット厚膜が得られる。
Table 2 Melt composition for growing bismuth-converted iron garnet film [Effects of the invention] According to the present invention, a thick film of 30.17 m or more and a surface roughness of 30. Exhibits a mirror surface and has a Faraday rotation angle of 8000 deg/cm or more,
A high-performance bismuth-substituted iron garnet thick film with a figure of merit of 20 deg/dB or more can be obtained.

本発明の材料は0.8μm帯の波長域における光アイソ
レータや光サーキュレータなどの磁気光学素子用材料と
して好適である。
The material of the present invention is suitable as a material for magneto-optical elements such as optical isolators and optical circulators in the 0.8 μm wavelength range.

特許出願人 三菱瓦斯化学株式会社 代理人 弁理士 小 堀 貞 文 手続補正占(自発) 昭和62年 1月 5日Patent applicant: Mitsubishi Gas Chemical Co., Ltd. Agent: Patent Attorney Sadafumi Kohori Procedural correction divination (voluntary) January 5, 1986

Claims (1)

【特許請求の範囲】 液相エピタキシャル法により(CaGd)_3(MgZ
rGa)_5O_1_2単結晶基板上に育成された30
μm以上の厚みをもつ磁性ガーネットからなり、その組
成式がY_3_−_x_−_yGd_xBi_yFe_
5_−_2L_2O_1_2 (但し、LはGa、Al又はそれらの組合せ、x=0.
2〜0.4、y=0.9〜1.3、z=0〜0.5) であることを特徴とする0.8μm帯波長域用磁気光学
素子材料
[Claims] (CaGd)_3(MgZ
rGa)_5O_1_2 30 grown on a single crystal substrate
It is made of magnetic garnet with a thickness of μm or more, and its composition formula is Y_3_-_x_-_yGd_xBi_yFe_
5_-_2L_2O_1_2 (L is Ga, Al, or a combination thereof, x=0.
2 to 0.4, y = 0.9 to 1.3, z = 0 to 0.5)
JP25376086A 1986-10-27 1986-10-27 Material for magneto-optical element Pending JPS63107900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25376086A JPS63107900A (en) 1986-10-27 1986-10-27 Material for magneto-optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25376086A JPS63107900A (en) 1986-10-27 1986-10-27 Material for magneto-optical element

Publications (1)

Publication Number Publication Date
JPS63107900A true JPS63107900A (en) 1988-05-12

Family

ID=17255760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25376086A Pending JPS63107900A (en) 1986-10-27 1986-10-27 Material for magneto-optical element

Country Status (1)

Country Link
JP (1) JPS63107900A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291028A (en) * 1987-05-25 1988-11-28 Furukawa Electric Co Ltd:The Farady element
EP0345759A2 (en) * 1988-06-10 1989-12-13 Matsushita Electric Industrial Co., Ltd. A magnetic field measurement apparatus
JPH0222619A (en) * 1988-07-11 1990-01-25 Nec Corp Optical isolator and its production
EP0415668A2 (en) * 1989-08-29 1991-03-06 Ngk Insulators, Ltd. High sensitivity optical magnetic field sensors
CN111187064A (en) * 2020-01-13 2020-05-22 横店集团东磁股份有限公司 High-stability garnet microwave ferrite magnetic sheet and preparation method thereof
JP2021021830A (en) * 2019-07-26 2021-02-18 京セラ株式会社 Isolator and optical transmitter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291028A (en) * 1987-05-25 1988-11-28 Furukawa Electric Co Ltd:The Farady element
EP0345759A2 (en) * 1988-06-10 1989-12-13 Matsushita Electric Industrial Co., Ltd. A magnetic field measurement apparatus
JPH01312483A (en) * 1988-06-10 1989-12-18 Matsushita Electric Ind Co Ltd Magnetic field measuring apparatus
JPH0222619A (en) * 1988-07-11 1990-01-25 Nec Corp Optical isolator and its production
EP0415668A2 (en) * 1989-08-29 1991-03-06 Ngk Insulators, Ltd. High sensitivity optical magnetic field sensors
US5140156A (en) * 1989-08-29 1992-08-18 Ngk Insulators, Ltd. High sensitivity optical magnetic field sensors having a magnetooptical garnet-type ferrite polycrystal
JP2021021830A (en) * 2019-07-26 2021-02-18 京セラ株式会社 Isolator and optical transmitter
CN111187064A (en) * 2020-01-13 2020-05-22 横店集团东磁股份有限公司 High-stability garnet microwave ferrite magnetic sheet and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS63107900A (en) Material for magneto-optical element
EP0330500B1 (en) Magneto-optic garnet
JPS61113026A (en) Medium for magnetooptic element
JPS62143893A (en) Growth of magneto-optical crystal
JPS61292613A (en) Faraday rotor and its production
EP0338859B1 (en) Faraday rotator
JP2924282B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP2867736B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JPH0642026B2 (en) Magneto-optical element material
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JPH02131216A (en) Magneto-optical element material
JPS63112500A (en) Liquid epitaxial film growth method for garnet
JPS6278194A (en) Magneto-optical garnet single crystal film and method of growing same
JPH03242620A (en) Magneto-optical material
JPS62138397A (en) Magnetic garnet material for magneto-optical element
JPS62138396A (en) Magnetic garnet material for magneto-optical element
JP2843433B2 (en) Bi-substituted magnetic garnet and magneto-optical element
Whitcomb et al. Fabrication of thin film magnetic garnet structures for intra‐cavity laser applications
JPS59141495A (en) Growth of thick film of garnet single crystal
JPS63233098A (en) Method for growing bismuth garnet crystal
JPH0933870A (en) Faraday rotator with low saturation magnetic field
JPS62194222A (en) Magnetooptic element material
JPH11100300A (en) Bismuth-substituted garnet material and its production
JPS5957990A (en) Method for growing liquid phase epitaxial thick film of garnet
JPS61205698A (en) Magnetooptical material