JPS61292613A - Faraday rotor and its production - Google Patents
Faraday rotor and its productionInfo
- Publication number
- JPS61292613A JPS61292613A JP13437285A JP13437285A JPS61292613A JP S61292613 A JPS61292613 A JP S61292613A JP 13437285 A JP13437285 A JP 13437285A JP 13437285 A JP13437285 A JP 13437285A JP S61292613 A JPS61292613 A JP S61292613A
- Authority
- JP
- Japan
- Prior art keywords
- film
- faraday rotation
- faraday
- films
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ファラデー回転子及びその製造方法に関し、
特に液相エピタキシャル法によるファラデー回転子の製
造方法に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a Faraday rotator and a method for manufacturing the same.
In particular, the present invention relates to a method for manufacturing a Faraday rotator using a liquid phase epitaxial method.
非磁性ガーネット結晶基板上に、液相エピタキシャル(
LPE )法により育成した磁性ガーネット液相エピタ
キシャル結晶膜は、磁気光学素子用として重要である。Liquid phase epitaxial (
Magnetic garnet liquid phase epitaxial crystal films grown by the LPE method are important for use in magneto-optical devices.
特開昭57−17919号公報に開示されるごとく、こ
の磁性LPE膜を厚膜化してもバルクのガーネット結晶
と同等の性能が得られることにより、従来高価であった
バルクの低コスト化が試みられている。磁性ガーネット
膜を厚膜化する場合の結晶成長方法は、第3図に示され
るように、縦型炉1の中心部に、融液2の入つたるっぽ
3がおかれ、白金治具5とアルミナ棒6で保持された非
磁性ガーネット基板4をるつぼ上部から挿入し、融液の
中に浸すことによって結晶成長がおこなわれるようにな
っている。7はヒータ。As disclosed in Japanese Unexamined Patent Publication No. 57-17919, even if this magnetic LPE film is made thicker, performance equivalent to that of bulk garnet crystal can be obtained, thereby attempting to reduce the cost of bulk, which was previously expensive. It is being The crystal growth method for thickening the magnetic garnet film is as shown in FIG. 5 and a nonmagnetic garnet substrate 4 held by an alumina rod 6 are inserted from above into the crucible and immersed in the melt, thereby causing crystal growth. 7 is a heater.
8はるつぼ支持台である。8 is a crucible support stand.
この方法により育成される磁気光学材料は、光フアイバ
通信技術の中で、半導体レーザの発振を安定させるため
に用いられる光アイソレータのファラデー回転子として
使われる。光アイソレータの概略を第4図に示す。半導
体レーザ9からの出射光10が偏光子11を通り、縦方
向の位相を持つ光に分けられる。そこからファラデー回
転子12を通り、中を透過した光の位相は進行方向に4
5回転し、あらかじめ45傾けておいた検光子13を通
シ光ファイバーへ入射する。光フアイバー伝送中、コネ
クタや光スイッチなどの反射光が再び検光子13へ戻り
ファラデー回転子12へ入射する。この戻り光14は、
ファラデー回転子12によって、さらに45回転し出射
光の位相に対して90”ずれる。偏光子11は、縦の位
相のみ透過するため、戻シ光14は、ここで遮断される
。これによって、半導体レーザ9に戻り光14は入射せ
ず安定した発振ができるようになる。現在、ファラデー
回転子として、 (GdY)5Fe5012. Y、F
e501□。Magneto-optical materials grown by this method are used as Faraday rotators in optical isolators used to stabilize the oscillation of semiconductor lasers in optical fiber communication technology. A schematic diagram of the optical isolator is shown in FIG. Emitted light 10 from the semiconductor laser 9 passes through a polarizer 11 and is separated into light having a vertical phase. From there, the phase of the light that passes through the Faraday rotator 12 is 4 in the traveling direction.
It rotates 5 times and enters the optical fiber through the analyzer 13, which has been tilted 45 degrees in advance. During optical fiber transmission, reflected light from connectors, optical switches, etc. returns to the analyzer 13 and enters the Faraday rotator 12. This return light 14 is
The Faraday rotator 12 further rotates the light by 45 times and shifts the phase of the emitted light by 90''. Since the polarizer 11 transmits only the vertical phase, the returned light 14 is blocked here. The light 14 returns to the laser 9 and stable oscillation is possible without being incident.Currently, (GdY)5Fe5012.Y,F is used as a Faraday rotator.
e501□.
Gd2Bi1Fe501□などが用いられている。Gd2Bi1Fe501□ and the like are used.
これらの材料は、光通信用の半導体レーザの波長1,3
μm帯において、小さい吸収係数(1,5m−1以下)
を有し、かつ、大きなファラデー回転係数(200〜1
500deg/Crn即ち、厚さ1mあたり200〜1
500回転する。)を示すため、試料形状が2.2〜0
、3 tan厚でファラデー回転子としての役目を果た
す。そのため、小型の半導体レーデダイオードモジュー
ルに組み込むのに非常に適した材料とされている。しか
し、これらの材料は、温度変化に対して、ファラデー回
転係数が変化する。Gd2Bi1Fe501□膜のファ
ラデー回転係数の温度変化を第5図に示す。そのため、
先に示した光アイソレータの中で温度変化が生じた場合
、アイソレーション機能が低下し、半導体レーザの発振
を不安定にするという問題があった。These materials are suitable for wavelengths 1 and 3 of semiconductor lasers for optical communications.
Small absorption coefficient (below 1.5 m-1) in the μm band
and a large Faraday rotation coefficient (200 to 1
500deg/Crn, that is, 200 to 1 per meter of thickness
Rotates 500 times. ), the sample shape is 2.2 to 0.
, 3 tan thick and serves as a Faraday rotator. Therefore, it is considered to be an extremely suitable material for incorporating into small semiconductor radar diode modules. However, the Faraday rotation coefficient of these materials changes with respect to temperature changes. FIG. 5 shows the temperature change in the Faraday rotation coefficient of the Gd2Bi1Fe501□ film. Therefore,
When a temperature change occurs in the above-mentioned optical isolator, there is a problem in that the isolation function deteriorates and the oscillation of the semiconductor laser becomes unstable.
本発明の目的は、温度変化に対するファラデー回転係数
の変化を補償できるファラデー回転子を提供することに
ある。An object of the present invention is to provide a Faraday rotator that can compensate for changes in Faraday rotation coefficient due to temperature changes.
本発明の他の目的は、温度変化に対するファラデー回転
係数の変化を補償できるファラデー回転子の製造方法を
提供することにある。Another object of the present invention is to provide a method for manufacturing a Faraday rotator that can compensate for changes in the Faraday rotation coefficient due to temperature changes.
本発明によれば、第1及び第2の膜を有し、該第1及び
第2の膜は、該第1及び第2の膜を垂直に透過する光が
受けるファラデー回転の温度による変化が、前記第1及
び第2の膜で相殺されて最小となるように、相互に反対
方向に変化する温度特性のファラデー回転係数を有して
いることを特徴とするファラデー回転子が得られる。According to the present invention, the present invention has first and second films, and the first and second films are configured to prevent a change in Faraday rotation due to temperature of light that perpendicularly passes through the first and second films. A Faraday rotator is obtained, characterized in that the first and second films have Faraday rotation coefficients of temperature characteristics that change in opposite directions so as to be canceled out and minimized.
更に本発明によれば、融液に非磁性基板を接触させ、液
相エピタキシャル法により該基板上に単結晶膜を得る結
晶成長法を用いて、第1の膜を前記基板上に成長させ、
続いて該第1の膜上に第2の膜を成長させ、該第1及び
第2の膜は、該第1及び第2の膜を垂直に透過する光が
受けるファラデー回転の温度による変化が、前記第1及
び第2の膜で相殺されて最小となるように、相互に反対
方向に変化する温度特性のファラデー回転係数を有して
いることを特徴とするファラデー回転子の製造方法が得
られる。Further, according to the present invention, a first film is grown on the substrate using a crystal growth method in which a nonmagnetic substrate is brought into contact with the melt and a single crystal film is obtained on the substrate by liquid phase epitaxial method,
Subsequently, a second film is grown on the first film, and the first and second films are arranged such that the Faraday rotation of the light transmitted perpendicularly through the first and second films changes with temperature. , a method for manufacturing a Faraday rotator is obtained, characterized in that the first and second films have Faraday rotation coefficients of temperature characteristics that change in opposite directions so as to be canceled out and minimized. It will be done.
次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
第1図を参照すると1本発明の一実施例によるファラデ
ー回転子が示されている。このファラデー回転子は、縦
型炉の中におかれだるつぼ内の融液に非磁性基板20を
接触させ、液相エピタキシャル法により該基板上に単結
晶膜を得る結晶成長法を用いて形成される。このとき、
第2図に示されるように、ファラデー回転係数が温度上
昇に対して、−側から0に近ずく材料を第−膜21とし
て基板20上に成長させ、第−膜21上に、ファラデー
回転係数が、温度上昇に対して+側からOに近ずく材料
を第二膜22として成長させることにより、第−膜と第
二膜を垂直に透過する光がうけるファラデー回転係数の
温度変化が最小となるようにする。Referring to FIG. 1, a Faraday rotator according to one embodiment of the present invention is shown. This Faraday rotator is formed using a crystal growth method in which a nonmagnetic substrate 20 is brought into contact with a melt in a crucible placed in a vertical furnace, and a single crystal film is obtained on the substrate by liquid phase epitaxial method. be done. At this time,
As shown in FIG. 2, a material whose Faraday rotation coefficient approaches 0 from the - side with respect to temperature rise is grown on the substrate 20 as the -th film 21, and the Faraday rotation coefficient is grown on the -th film 21. However, by growing a material that approaches O from the + side as the second film 22 as the temperature rises, the temperature change in the Faraday rotation coefficient of the light transmitted perpendicularly through the - film and the second film can be minimized. I will make it happen.
具体的には、 PbO−Bi203−B203系融剤よ
シ(111)Nd3Ga5012基板(非磁性基板)2
0上に液相エピタキシャル法により、第−膜21として
Gd 2.。Bil、。Specifically, PbO-Bi203-B203 based flux (111)Nd3Ga5012 substrate (non-magnetic substrate) 2
0 as the second film 21 by liquid phase epitaxial method. . Bill,.
Fe4.65AtO,05Ga0.30012を育成し
た。この材料は、第2図に示すように、0〜50℃の温
度上昇に対して、ファラデー回転係数が一側の値からO
へ近ずく。第−膜21の膜厚は約150μmであった。Fe4.65AtO,05Ga0.30012 was grown. As shown in Figure 2, the Faraday rotation coefficient of this material changes from one value to 0 when the temperature rises from 0 to 50°C.
approach. The thickness of the first film 21 was approximately 150 μm.
第−膜21(0表面を、メカノケミカル研磨によす無歪
み研磨し+ P b O−B 20 s系融剤よりGd
2.QB’ 1.0Fe4.65示されるように0〜5
0℃の温度上昇に対して。-th film 21 (0 surface is polished without distortion by mechanochemical polishing + Gd from P b O-B 20 s flux
2. QB' 1.0Fe4.65 0-5 as shown
For a temperature increase of 0°C.
ファラデー回転係数が+側の値からOへ近ずく。The Faraday rotation coefficient approaches O from the + side value.
第二膜22の膜厚は、約700μmであった。第二膜上
を再びメカノケミカル研磨によって無歪み研磨した後、
第−膜21と第二膜22に対して垂直に光を透過させフ
ァラデー回転係数の温度依存性を調べた結果、第2図の
30に示されるように。The thickness of the second film 22 was approximately 700 μm. After strain-free polishing on the second film again by mechanochemical polishing,
As a result of examining the temperature dependence of the Faraday rotation coefficient by transmitting light perpendicularly to the first film 21 and the second film 22, the results are as shown at 30 in FIG.
温度変化に対してきわめて変化の小さいほぼ一定のファ
ラデー回転係数を持つことがわかった。It was found that the material has a nearly constant Faraday rotation coefficient that shows very little variation with respect to temperature changes.
なお、基板20は非磁性体なので、磁界によりファラデ
ー回転を生せしめることはなく、第1膜21及び第2膜
22のファラデー回転係数の温度特性に影響を与えない
。従って、第1膜21及び第2膜22に基板20が付い
た状態でファラデー回転子として使用してもさしつかえ
ない。もちろん、基板20を除去した状態でファラデー
回転子として使用してもよい。Note that since the substrate 20 is a non-magnetic material, the magnetic field does not cause Faraday rotation, and the temperature characteristics of the Faraday rotation coefficients of the first film 21 and the second film 22 are not affected. Therefore, the first film 21 and the second film 22 may be used as a Faraday rotator with the substrate 20 attached. Of course, it may be used as a Faraday rotator with the substrate 20 removed.
また、上記実施例では第−膜のファラデー回転係数が温
度上昇に対して−の値から0に近すき。Further, in the above embodiment, the Faraday rotation coefficient of the -th film approaches 0 from a - value with respect to temperature rise.
第二膜では逆に十の値からOに近すいたが、第一と第二
の膜の順序を入れかえても同様な効果が得られることは
云うまでもない。On the contrary, in the case of the second film, the value approached 0 from the value of 10, but it goes without saying that the same effect can be obtained even if the order of the first and second films is switched.
また第一の膜の厚さを二分割して第一、第三の膜にわけ
、第一、第二、第三の膜を順に形成しても同様な効果が
得られるし、更に第2の膜の厚さを二分割して第二、第
四の膜にわけ、全体を第1から第4の膜で構成しても同
様の効果が得られた。Furthermore, the same effect can be obtained by dividing the thickness of the first film into first and third films and forming the first, second, and third films in this order. The same effect was obtained even when the thickness of the film was divided into second and fourth films, and the entire film was composed of the first to fourth films.
また、第−膜21及び第二膜22はコスト高となるがC
■法で形成してもよい。In addition, although the cost of the first film 21 and the second film 22 is high, C
■It may be formed by a method.
以上、説明したごとく本発明によれば、温度変化に対す
るファラデー回転係数の変化を補償できるファラデー回
転子を得ることができる。As described above, according to the present invention, it is possible to obtain a Faraday rotator that can compensate for changes in the Faraday rotation coefficient due to temperature changes.
第1図は本発明の一実施例によるファラデー回転子の断
面図、第2図は第1図の第−膜、第二膜のファラデー回
転係数の温度依存性、及び第−膜と第二膜に垂直に光を
透過させた場合のファラデー回転係数の温度依存性を示
す図、第3図はLPE炉の構造を示す断面図、第4図は
光アイソレータの概略を示す図、第5図はGd 2.[
1B 11.o Fe so 12膜のファラデー回転
係数の温度依存性を示す図である。
1は、 LPE炉本体(縦型炉)、2は融液、3はるつ
ぼ、4はガーネット基板、5は白金治具、6は、アルミ
ナ棒、7は、ヒータ、8は、るつぼ支持台、9は半導体
レーザ、11は偏光子、12はファラデー回転子、13
は検光子、20は基板。
21は第−膜、22は第二膜である。
第1図
r>へID1b−回審春肇ざFIG. 1 is a cross-sectional view of a Faraday rotator according to an embodiment of the present invention, and FIG. 2 shows the temperature dependence of the Faraday rotation coefficient of the first film and second film in FIG. 1, and the second film and the second film. Figure 3 shows the temperature dependence of the Faraday rotation coefficient when light is transmitted perpendicular to Gd2. [
1B 11. FIG. 3 is a diagram showing the temperature dependence of the Faraday rotation coefficient of the o Fe so 12 film. 1 is the LPE furnace body (vertical furnace), 2 is the melt, 3 is the crucible, 4 is the garnet substrate, 5 is the platinum jig, 6 is the alumina rod, 7 is the heater, 8 is the crucible support stand, 9 is a semiconductor laser, 11 is a polarizer, 12 is a Faraday rotator, 13
is the analyzer, and 20 is the board. 21 is a first film, and 22 is a second film. Figure 1 r> to ID1b-Issai Haru Hajime
Claims (1)
該第1及び第2の膜を垂直に透過する光が受けるファラ
デー回転の温度による変化が、前記第1及び第2の膜で
相殺されて最小となるように、相互に反対方向に変化す
る温度特性のファラデー回転係数を有していることを特
徴とするファラデー回転子。 2、融液に非磁性基板を接触させ、液相エピタキシャル
法により該基板上に単結晶膜を得る結晶成長法を用いて
、第1の膜を前記基板上に成長させ、続いて該第1の膜
上に第2の膜を成長させ、該第1及び第2の膜は、該第
1及び第2の膜を垂直に透過する光が受けるファラデー
回転の温度による変化が、前記第1及び第2の膜で相殺
されて最小となるように、相互に反対方向に変化する温
度特性のファラデー回転係数を有していることを特徴と
するファラデー回転子の製造方法。[Claims] 1. has a first and a second film, the first and second film are:
Temperatures that change in mutually opposite directions so that changes due to temperature in Faraday rotation experienced by light that perpendicularly transmits through the first and second films are canceled out by the first and second films and minimized. A Faraday rotator characterized by having a characteristic Faraday rotation coefficient. 2. A nonmagnetic substrate is brought into contact with the melt, and a first film is grown on the substrate using a crystal growth method in which a single crystal film is obtained on the substrate by liquid phase epitaxial method, and then the first film is grown on the substrate. a second film is grown on the first and second films, and the first and second films are arranged such that the temperature-dependent change in Faraday rotation of light transmitted perpendicularly through the first and second films A method for manufacturing a Faraday rotator, characterized in that it has Faraday rotation coefficients of temperature characteristics that change in opposite directions so as to be canceled out and minimized by a second film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13437285A JPS61292613A (en) | 1985-06-21 | 1985-06-21 | Faraday rotor and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13437285A JPS61292613A (en) | 1985-06-21 | 1985-06-21 | Faraday rotor and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61292613A true JPS61292613A (en) | 1986-12-23 |
Family
ID=15126844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13437285A Pending JPS61292613A (en) | 1985-06-21 | 1985-06-21 | Faraday rotor and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61292613A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4756607A (en) * | 1986-07-09 | 1988-07-12 | Nec Corporation | Optical isolator device having two cascaded isolator elements with different light beam rotation angles |
JPH02256018A (en) * | 1989-03-29 | 1990-10-16 | Tokin Corp | Faraday rotator |
US4974944A (en) * | 1988-07-21 | 1990-12-04 | Hewlett-Packard Company | Optical nonreciprocal device |
US5146361A (en) * | 1989-07-14 | 1992-09-08 | At&T Bell Laboratories | Apparatus comprising a magneto-optic isolator utilizing a garnet layer |
US5612813A (en) * | 1988-07-23 | 1997-03-18 | U.S. Philips Corporation | Optical isolator, circulator, switch or the like, including a faraday rotator |
US5640516A (en) * | 1991-04-02 | 1997-06-17 | Tdk Corporation | Faraday rotator |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55121422A (en) * | 1979-03-12 | 1980-09-18 | Matsushita Electric Ind Co Ltd | Magneto-optic element |
JPS5929222A (en) * | 1982-08-11 | 1984-02-16 | Sumitomo Electric Ind Ltd | Optical isolator |
JPS5981570A (en) * | 1982-11-01 | 1984-05-11 | Hitachi Ltd | Optical magnetic field measuring device |
-
1985
- 1985-06-21 JP JP13437285A patent/JPS61292613A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55121422A (en) * | 1979-03-12 | 1980-09-18 | Matsushita Electric Ind Co Ltd | Magneto-optic element |
JPS5929222A (en) * | 1982-08-11 | 1984-02-16 | Sumitomo Electric Ind Ltd | Optical isolator |
JPS5981570A (en) * | 1982-11-01 | 1984-05-11 | Hitachi Ltd | Optical magnetic field measuring device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4756607A (en) * | 1986-07-09 | 1988-07-12 | Nec Corporation | Optical isolator device having two cascaded isolator elements with different light beam rotation angles |
US4974944A (en) * | 1988-07-21 | 1990-12-04 | Hewlett-Packard Company | Optical nonreciprocal device |
US5612813A (en) * | 1988-07-23 | 1997-03-18 | U.S. Philips Corporation | Optical isolator, circulator, switch or the like, including a faraday rotator |
JPH02256018A (en) * | 1989-03-29 | 1990-10-16 | Tokin Corp | Faraday rotator |
US5146361A (en) * | 1989-07-14 | 1992-09-08 | At&T Bell Laboratories | Apparatus comprising a magneto-optic isolator utilizing a garnet layer |
US5640516A (en) * | 1991-04-02 | 1997-06-17 | Tdk Corporation | Faraday rotator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4195908A (en) | Magnetic mirror for imparting non-reciprocal phase shift | |
CA1115396A (en) | Ferrimagnetic faraday elements for ring lasers | |
US20020063941A1 (en) | Magneto-optical member and optical isolator using the same | |
Wolfe et al. | Thin‐film garnet materials with zero linear birefringence for magneto‐optic waveguide devices | |
Mizumoto et al. | Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd 3 Fe 5 O 12 film and application to waveguide-type optical circulator | |
US3649931A (en) | Compensated frequency biasing system for ring laser | |
JPS61292613A (en) | Faraday rotor and its production | |
JPS61123814A (en) | Magnetic semiconductor material and optical isolator | |
US6483645B1 (en) | Garnet crystal for Faraday rotator and optical isolator having the same | |
JPS63107900A (en) | Material for magneto-optical element | |
JPH08290997A (en) | Bismuth-substituted rare earth metal iron garnet single crystal | |
US6031654A (en) | Low magnet-saturation bismuth-substituted rare-earth iron garnet single crystal film | |
JPS61113026A (en) | Medium for magnetooptic element | |
JP2564689B2 (en) | Method for manufacturing optical isolator | |
JPH0642026B2 (en) | Magneto-optical element material | |
Wolfe | Thin films for non-reciprocal magneto-optic devices | |
JPH0277719A (en) | Magneto-optical garnet for temperature compensation | |
JPH07104224A (en) | Nonreciprocity optical device | |
JPH0415199B2 (en) | ||
Rivera et al. | Integrated isolators for opto-electro-mechanical systems and devices | |
JPH0727823B2 (en) | Magnetic material for magneto-optical element | |
JPS5957990A (en) | Method for growing liquid phase epitaxial thick film of garnet | |
JPS61205698A (en) | Magnetooptical material | |
JP2570826B2 (en) | Solid state circulator | |
JPS60235106A (en) | Optical isolator |