JPH0277719A - Magneto-optical garnet for temperature compensation - Google Patents

Magneto-optical garnet for temperature compensation

Info

Publication number
JPH0277719A
JPH0277719A JP22851388A JP22851388A JPH0277719A JP H0277719 A JPH0277719 A JP H0277719A JP 22851388 A JP22851388 A JP 22851388A JP 22851388 A JP22851388 A JP 22851388A JP H0277719 A JPH0277719 A JP H0277719A
Authority
JP
Japan
Prior art keywords
film
garnet
faraday rotation
temperature
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22851388A
Other languages
Japanese (ja)
Inventor
Kazushi Shirai
一志 白井
Norio Takeda
憲夫 武田
Kozo Arii
有井 光三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP22851388A priority Critical patent/JPH0277719A/en
Publication of JPH0277719A publication Critical patent/JPH0277719A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the magneto-optical garnet for temp. compensation of a thin film having a large effect of temp. compensation by forming the single crystal of magnetic garnet having a specific compsn. on a single crystal substrate of (CaGd)3(MgZrGa)5O12 by liquid phase epitaxy and combining this magnetic garnet with a thin film for polarization. CONSTITUTION:This magneto-optical garnet is formed by growing the single crystal of the magnetic garnet having the prescribed compsn. on the single crystal substrate of the (CaGd)3(MgZrGa)5O12 by the liquid phase epitaxy and the compsn. thereof is expressed by the general formula HO3-x-yGdxBiyFe5-zGazO12 (where 0.8<=x<=1.3, 0.7<=y<=1.2, 1.2<=z<=1.7). The temp. coefft. of the Faraday rotation coefft. of this film approaches from the plus positive side to 0 and, therefore, the film is combined with the magnetic garnet which is generally used for polarization and has the temp. coefft. of the Faraday rotation coefft. approaching from the negative side to zero, by which the production of the Faraday rotating element having nearly the specified angle of Faraday rotation in spite of a change in temp. as a whole is enabled. The thin combination is formable of both of the film for polarization and the film for temp. compensation.

Description

【発明の詳細な説明】 [発明の概要] 磁気光学ガーネットのファラデー回転角は周囲環境温度
の変化によって変化するが、この温度特性を打ち消すよ
うな温度補償用磁気光学ガーネッ1〜を組み合わせるこ
とにより、ある温度範囲において全体のファラデー回転
角がほぼ一定になるようなファラデー回転素子を構成す
ることがおこなわれているが、このような磁気光学ガー
ネットの組合せに際し、各々の膜厚が従来報告されてい
る温度補償用膜を使用した場合よりもはるかに薄い組合
せでの作製が可能さなった。
[Detailed Description of the Invention] [Summary of the Invention] The Faraday rotation angle of the magneto-optic garnet changes with changes in the ambient temperature, but by combining magneto-optic garnets 1 to 1 for temperature compensation that cancel out this temperature characteristic, It has been attempted to construct a Faraday rotation element in which the overall Faraday rotation angle is approximately constant within a certain temperature range, but when combining such magneto-optic garnets, the thickness of each film has not been previously reported. It is now possible to fabricate a much thinner combination than when using a temperature compensation film.

[産業上の利用分野] 本発明は光アイソレータや光ザーキュレータなどに用い
られるファラデー回転素子に関する。
[Industrial Application Field] The present invention relates to a Faraday rotation element used in optical isolators, optical circulators, and the like.

[従来の技術] 半導体レーザは、光応用機器あるいは光通信などのコヒ
ーレントな光源として広く利用されているが、半導体レ
ーザから放出された光線が光学系などによって反射され
て再びこの半導体レーザに戻るとレーザ発振が不安定に
なるという問題がある。
[Prior Art] Semiconductor lasers are widely used as coherent light sources in optical applications and optical communications, but when the light beam emitted from the semiconductor laser is reflected by an optical system and returns to the semiconductor laser, There is a problem that laser oscillation becomes unstable.

この問題に対処するために、半導体レーザの光出力側に
光アイソレータを設け、半導体レーザから放出された光
が戻らないように光路を設定することが行われている。
In order to deal with this problem, an optical isolator is provided on the optical output side of the semiconductor laser, and an optical path is set so that the light emitted from the semiconductor laser does not return.

このような半擁体レーザから放出された光線と反射光線
とをファラデー回転効果によって分離するための光アイ
ソレータ用磁気光学素子材料として、近年、ファラデー
回転係数が従来用いられてい4YIGの数倍も大意<、
しかも量産性のある液相エピタキシャル(LPE)法に
よるビスマス置換型鉄ガーネット厚膜が多数報告されて
いる。
In recent years, a Faraday rotation coefficient has been conventionally used as a magneto-optical element material for an optical isolator to separate the light beam emitted from such a half-retentive laser and the reflected light beam by the Faraday rotation effect. <,
Moreover, many bismuth-substituted iron garnet thick films produced by liquid phase epitaxial (LPE) method, which can be mass-produced, have been reported.

例えば(GdBi) 3 (FeAIGa) 50□2
が「第8回日本応用磁気学会学術講演概要集」 (19
84−)第31頁に、(YbTbBi)3 Fe、○I
2が「第10回日本応用磁気学会学術講演概要集」 (
1986)第88頁に記載されている。
For example (GdBi) 3 (FeAIGa) 50□2
"Summary of the 8th Japanese Society of Applied Magnetics Academic Lectures" (19
84-) On page 31, (YbTbBi)3Fe, ○I
2 is “Summary of the 10th Academic Lectures of the Japanese Society of Applied Magnetics” (
1986), page 88.

しかしながら、一般にビスマス置換鉄ガーネッ、トにお
けるファラデー回転係数は周囲環境の温度変化によって
変化するものであり、アイソレーションに大きく影響す
る。杏記の(YbTbBi)3FesO+2の場合、1
.3μm〜1.55μm帯での値を例にとるとファラデ
ー回転係数は一側−からOへ近づきその変化率は1℃当
り0.13%、  である。これを(1)式によりアイ
ソレーション′に換算すると室温で設定したアイソレー
タを60・ ℃で使用することでアイソレーションは2
9 、(i Bと性能が大きく低下する。
However, in general, the Faraday rotation coefficient in bismuth-substituted iron garnet changes with changes in the temperature of the surrounding environment, which greatly affects isolation. In the case of Anki's (YbTbBi)3FesO+2, 1
.. Taking values in the 3 μm to 1.55 μm band as an example, the Faraday rotation coefficient approaches from - to O on one side, and its rate of change is 0.13% per 1°C. Converting this to isolation' using equation (1), if an isolator set at room temperature is used at 60°C, isolation is 2.
9, (iB) and the performance decreases significantly.

Is = 10 X log (1/5in2(△θ)
)   (1)ここで、■Sはアイソレーション、△θ
はファラデー回転角の45+Jegからのずれの角度を
表す。
Is = 10 X log (1/5in2(△θ)
) (1) Here, ■S is isolation, △θ
represents the angle of deviation of the Faraday rotation angle from 45+Jeg.

そこで、ファラデー回転係数が温度の上昇につれて+側
から0に近づくような特性をもつ磁性ガーネットを温度
補虞用として組み合わせ、全体とりで温度が変化しても
ファラデー回転角をほぼ一牢に保つ方法が用いられる。
Therefore, we combined magnetic garnet, which has a characteristic that the Faraday rotation coefficient approaches 0 from the + side as the temperature rises, as a temperature compensation material, and kept the Faraday rotation angle almost constant even if the temperature changed overall. is used.

温度補償用膜としては、上記「第10回日本応用磁気学
会学術講演概要集J  (198’6)第88頁に記載
されている(GdB i) 3 (FeAI Ga)5
O1□などが提案されている。
As a temperature compensation film, (GdB i) 3 (FeAI Ga) 5 described in the above-mentioned "10th Japanese Society of Applied Magnetics, Academic Conference Abstracts J (198'6), page 88" is used.
O1□ and the like have been proposed.

この場合、偏光用膜(温を、補償用膜にくらべてより大
きく偏光面を回転させる膜)、すなわち(YbTbB 
]) 3Fes 012のみでファラデー回転素子を構
成すると、その膜厚は波長1,3μmにおいて231μ
mで済むのに対し、温度補償用膜(GdBi)3 (F
eAIGa)50.2を組合せ、温度依存性のないファ
ラデー回転素子を構成する場合は、偏光用膜が483μ
m、温度補償用が367μmもの膜厚が必要となると報
告されている。
In this case, a polarizing film (a film that rotates the plane of polarization more than a temperature compensation film), that is, (YbTbB
]) When a Faraday rotation element is constructed with only 3Fes 012, its film thickness is 231 μm at a wavelength of 1.3 μm.
m, whereas temperature compensation film (GdBi) 3 (F
eAIGa) 50.2 to form a temperature-independent Faraday rotation element, the polarizing film should be 483μ
It is reported that a film thickness of 367 μm is required for temperature compensation.

[発明が解決しようとする問題点] このようにファラデー回転角の温度特性が異なる膜を組
合せる場合、温度補償膜、偏光用膜ともにかなりの膜厚
が必要となる。
[Problems to be Solved by the Invention] When films having different temperature characteristics of Faraday rotation angle are combined as described above, both the temperature compensation film and the polarizing film need to be considerably thick.

ところがLPE法においては、膜厚が厚くなるほど良質
な結晶が得難“くなるという問題点があった。
However, the LPE method has a problem in that the thicker the film, the more difficult it is to obtain high-quality crystals.

本発明は上記問題点を解決するためになされたものであ
り、なるべく偏光用膜の膜厚および温度補償用の膜厚と
もに薄い組合せになるような温度補償の効果が大きい温
度補償用の磁気光学ガーネットを提供することを目的と
する。
The present invention has been made in order to solve the above-mentioned problems, and is a magneto-optical device for temperature compensation that has a large temperature compensation effect, in which the thickness of the polarizing film and the film thickness for temperature compensation are both as thin as possible. The purpose is to provide garnet.

[問題点を解決するための手段] 本発明は、(CaGd)3  CWigZrGa)s0
12単結晶基板上に液相エピタキシャル法で育成される
磁性ガーネット単結晶で、一般式 HO2−x−y G
 d、、B 1 y F es−20a2012 (た
だし、0.8≦X≦1.3、0. 7≦y≦1.2.1
.2≦2≦1.7)で表される組成を有することを特徴
とする、ファラデー回絵素子用ビスマス置換磁性ガーネ
ットにおけるファラデー回転角の温度変化を補うための
温度補償用磁気光学ガーネットである。
[Means for solving the problems] The present invention provides (CaGd)3 CWigZrGa)s0
12 A magnetic garnet single crystal grown by liquid phase epitaxial method on a single crystal substrate, with the general formula HO2-x-y G
d,, B 1 y F es-20a2012 (However, 0.8≦X≦1.3, 0.7≦y≦1.2.1
.. The present invention is a temperature-compensating magneto-optical garnet for compensating for temperature changes in the Faraday rotation angle in a bismuth-substituted magnetic garnet for use in Faraday rotation elements, characterized by having a composition expressed by 2≦2≦1.7).

[作用]  “ 一般式 I(03−M’y cd、BiyFes 2 
Ga201□(ただし、0.8≦X≦1.3、 0. 
7≦y≦1.2、 1.2≦2≦1.7)で表されるビ
スマス置換磁性ガーネット膜のファラデー回転係数の温
度係数は+側から0に近づくので、−般に偏光用として
用いられるファラデー回転係数の温度係数が一側から0
に近づく磁性ガーネットと組み合わせることにより、全
体として温度が変化してもファラデー回転角がほぼ一定
になるファラブー回転素子の作製が可能である。
[Action] “General formula I (03-M'y cd, BiyFes 2
Ga201□ (however, 0.8≦X≦1.3, 0.
Since the temperature coefficient of the Faraday rotation coefficient of the bismuth-substituted magnetic garnet film expressed as 7≦y≦1.2, 1.2≦2≦1.7 approaches 0 from the + side, it is generally used for polarization. The temperature coefficient of the Faraday rotation coefficient is 0 from one side.
By combining it with a magnetic garnet that approaches , it is possible to create a Farabout rotation element whose Faraday rotation angle remains almost constant even when the overall temperature changes.

偏光用膜と温度補償用膜の組合せは以下に示す三つの方
法があるが、いずれにおいても同等の効果が期待される
There are three methods of combining a polarizing film and a temperature compensating film as shown below, and the same effect is expected in any of them.

1) 基板上に先ず温度補償用膜もしくは偏光用膜のい
ずれかを液相エピタキシャル成長させ、その膜上に残る
一方の膜を成長させる。
1) First, either a temperature compensation film or a polarization film is grown by liquid phase epitaxial growth on a substrate, and the remaining film is grown on top of that film.

2) 基板上に温度補償用膜または偏光用膜を液相エピ
タキシャル成長させ、基板反対側に残る一方の膜を成長
させる。
2) A temperature compensation film or a polarization film is grown on the substrate by liquid phase epitaxial growth, and one film remaining on the opposite side of the substrate is grown.

3) 温度補償用膜、偏光用膜それぞれ別々に液相エピ
タキシャル成長により作製して張り合わせる。
3) The temperature compensation film and the polarization film are separately produced by liquid phase epitaxial growth and bonded together.

本発明においては、偏光用膜の膜厚および温度補償用の
膜厚ともに、従来報告されている温度補償用膜を使用し
た場合よりもはるかに薄い組合せになる。
In the present invention, both the thickness of the polarizing film and the thickness of the temperature compensation film are much thinner than in the case where a conventionally reported temperature compensation film is used.

[実施例] 以下、本発明を実施例によってさらに詳細に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 第1表に示す融液中に浸漬した(111)面の5GGG
 ((CaGd) 3 (MgZrCa) 、01□)
基板上に、777℃で5時間の液相エピタキシャル成長
により、鏡面で140μm厚のHOo。
Example 1 5GGG with (111) plane immersed in the melt shown in Table 1
((CaGd) 3 (MgZrCa) , 01□)
HOo with a mirror thickness of 140 μm was grown on the substrate by liquid phase epitaxial growth at 777° C. for 5 hours.

o Gd+、o B I +、o F e3.e Ga
+、2012の組成を有する磁性ガーネット単結晶膜が
得られた。
o Gd+, o B I +, o F e3. e Ga
A magnetic garnet single crystal film having a composition of +, 2012 was obtained.

この温度補償用膜のファラデー回転係数は波長1.55
μmの光に対し+590d、eg/cmであった。第1
図に、この温度補償用膜のファラデー回転係数の温度変
化を示す。室温付近でのファラデー回転係数の1℃当り
の変化率は、0.75%と極めて大きい。
The Faraday rotation coefficient of this temperature compensation film is 1.55 at wavelength.
It was +590d, eg/cm for μm light. 1st
The figure shows the temperature change in the Faraday rotation coefficient of this temperature compensation film. The rate of change of the Faraday rotation coefficient per 1°C near room temperature is extremely large at 0.75%.

ここで、偏光用膜には上記(YbTbB i) 3Fe
5O1□(ファラデー回転係数−−1947deg/c
m、温度変化率0.13%)を用い、これと温度補償用
膜とを膜を組み合わせて光アイソレータ用のファラデー
回転素子として使用する場合を想定する。
Here, the polarizing film contains the above (YbTbB i) 3Fe
5O1□ (Faraday rotation coefficient--1947deg/c
Let us assume a case where this is used in combination with a temperature compensation film and used as a Faraday rotation element for an optical isolator.

要求される偏光面の回転角は、2つの膜を透過して45
degであるが、広い温度範囲にわたって特性の変化が
少ない安定な素子を得るための最適な組合せは、波長1
.3μmに対しては偏光用膜が280μm、温度補償用
膜が110μmとなり、温度補償用膜として前記の(G
dB+)3 (F eA I Ga) s 0+2を組
合せた場合の、偏光用膜483μm、温度補償用367
μmの組合せ(前出)に比べ非常に薄い膜厚となる。
The required rotation angle of the plane of polarization is 45 after passing through the two films.
deg, but the optimal combination to obtain a stable element with little change in characteristics over a wide temperature range is
.. For 3 μm, the polarizing film is 280 μm and the temperature compensation film is 110 μm.
dB+)3 (F eA I Ga) s When combined with 0+2, polarizing film 483 μm, temperature compensation 367
The film thickness is much thinner than the μm combination (described above).

実施例2 偏光用膜には温度特性に優れたH O+ 、 2 T 
b o。
Example 2 The polarizing film contains H O+ and 2 T, which have excellent temperature characteristics.
bo.

s B jl、2 F e5O12(77ラデ一回転係
数−1360deg/cm、温度変化率0.11%)を
用いた。
s B jl, 2 Fe5O12 (77 rad one rotation coefficient -1360 deg/cm, temperature change rate 0.11%) was used.

温度補償用膜、偏光用膜それぞれ別々に液相エピタキシ
ャル成長させ、ついでこれらを張り合わせて作製したフ
ァラデー回転素子の、ファラデー回転角の温度変化を第
2図に示す。−10℃〜60℃の範囲において△θは0
. 5以下であり、(1)式によると40dB以上のア
イソレーションを保つことが明らかである。ここで比較
例として第3図に、単独のガーネッ1〜膜としては優れ
た温度特性を持つ(HoTbB i ) 3 F es
 012の回転角の温度による変化を示す。この場合に
は40dB以上のアイソレーションを保つ温度範囲、ず
なわち1Δθ]が0.5deg以下になる温度範囲は1
6〜34℃と非常に狭くなっている。
FIG. 2 shows the temperature change in the Faraday rotation angle of a Faraday rotation element manufactured by separately growing a temperature compensation film and a polarization film by liquid phase epitaxial growth and then bonding them together. △θ is 0 in the range of -10℃ to 60℃
.. 5 or less, and according to equation (1), it is clear that isolation of 40 dB or more is maintained. Here, as a comparative example, FIG.
012 shows changes in rotation angle due to temperature. In this case, the temperature range in which isolation of 40 dB or more is maintained, that is, the temperature range in which 1Δθ] is 0.5 deg or less is 1
The range is extremely narrow, ranging from 6 to 34 degrees Celsius.

[発明の効果] 本発明の温度補償の効果が大きい膜と偏光用膜を組み合
わせることにより温度補償用、偏光用ともに従来報告さ
れたものよりもはるかに薄い膜厚の組合せで広い温度範
囲にわたり安定に動作するファラデー回転素子の作製が
可能である。
[Effect of the invention] By combining the film with a large temperature compensation effect of the present invention and a polarizing film, both temperature compensation and polarization can be stabilized over a wide temperature range with a combination of film thicknesses that are much thinner than those previously reported. It is possible to fabricate a Faraday rotation element that operates as follows.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はHo+、a Gd+、o B i +、o F
 e3.e Ga、−20,ガーネット膜のファラデー
回転係数の温度特性を示す図、第2図はHOl、2 T
bo、6B11.2 F es 0+2ガーネツト膜と
HO+−o G d I。 o B i +、o F e3.s Ga 1.20+
2ガーネツト膜とを組み合わせたファラデー回転素子を
透過する光の偏光面の回転角の温度変化を示す図、第3
図は(HoTbBi) 3Fes 012ガーネツト膜
のファラデー回転素子を透過する光の偏光面の回転角の
温度変化を示す図である。 特許出願人 三菱瓦斯化学株式会社 代理人  弁理士 小 堀 貞 文 第1図 温   度  (℃) 第2図 温   度  (’C) 第3図 温   度  (℃)
Figure 1 shows Ho+, a Gd+, o B i +, o F
e3. Figure 2 shows the temperature characteristics of the Faraday rotation coefficient of e Ga, -20, garnet film, Figure 2 is HOl, 2 T
bo, 6B11.2 F es 0+2 garnet membrane and HO+-o G d I. o B i +, o F e3. s Ga 1.20+
Figure 3 shows temperature changes in the rotation angle of the polarization plane of light transmitted through a Faraday rotator in which two garnet films are combined.
The figure shows a temperature change in the rotation angle of the polarization plane of light transmitted through a Faraday rotation element of (HoTbBi)3Fes012 garnet film. Patent Applicant Mitsubishi Gas Chemical Co., Ltd. Agent Patent Attorney Sadafumi Kobori Figure 1 Temperature (℃) Figure 2 Temperature ('C) Figure 3 Temperature (℃)

Claims (2)

【特許請求の範囲】[Claims] (1)(CaGd)_3(MgZrGa)_5O_1_
2単結晶基板上に液相エピタキシャル法で育成される磁
性ガーネット単結晶で、一般式Ho_3_−_x_−_
yGd_xBi_yFe_5_−_zGa_zO_1_
2(ただし、0.8≦x≦1.3、0.7≦y≦1.2
、 1.2≦z≦1.7)で表される組成を有することを特
徴とする、ファラデー回転素子用ビスマス置換磁性ガー
ネットにおけるファラデー回転角の温度変化を補うため
の温度補償用磁気光学ガーネット。
(1) (CaGd)_3(MgZrGa)_5O_1_
2 A magnetic garnet single crystal grown by liquid phase epitaxial method on a single crystal substrate, with the general formula Ho_3_-_x_-_
yGd_xBi_yFe_5_-_zGa_zO_1_
2 (however, 0.8≦x≦1.3, 0.7≦y≦1.2
, 1.2≦z≦1.7) A magneto-optical garnet for temperature compensation for compensating for temperature changes in Faraday rotation angle in bismuth-substituted magnetic garnet for use in Faraday rotation elements.
(2)請求項第1項の温度補償用ガーネットを偏光用ガ
ーネットと組合せてなるガーネット膜
(2) A garnet film formed by combining the temperature compensating garnet of claim 1 with a polarizing garnet.
JP22851388A 1988-09-14 1988-09-14 Magneto-optical garnet for temperature compensation Pending JPH0277719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22851388A JPH0277719A (en) 1988-09-14 1988-09-14 Magneto-optical garnet for temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22851388A JPH0277719A (en) 1988-09-14 1988-09-14 Magneto-optical garnet for temperature compensation

Publications (1)

Publication Number Publication Date
JPH0277719A true JPH0277719A (en) 1990-03-16

Family

ID=16877606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22851388A Pending JPH0277719A (en) 1988-09-14 1988-09-14 Magneto-optical garnet for temperature compensation

Country Status (1)

Country Link
JP (1) JPH0277719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690153A1 (en) 1994-07-01 1996-01-03 Shin-Etsu Chemical Co., Ltd. Oxide garnet single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690153A1 (en) 1994-07-01 1996-01-03 Shin-Etsu Chemical Co., Ltd. Oxide garnet single crystal
US5616176A (en) * 1994-07-01 1997-04-01 Shin-Etsu Chemical Co., Ltd. Oxide garnet single crystal

Similar Documents

Publication Publication Date Title
Levy et al. Integrated optical isolators with sputter-deposited thin-film magnets
CA1115396A (en) Ferrimagnetic faraday elements for ring lasers
Milek Linear electrooptic modular materials
JPH01217313A (en) Magneto-optic garnet
JPH0277719A (en) Magneto-optical garnet for temperature compensation
JPS61292613A (en) Faraday rotor and its production
JPH01269916A (en) Faraday rotating element
JPS61123814A (en) Magnetic semiconductor material and optical isolator
JPS63107900A (en) Material for magneto-optical element
US6031654A (en) Low magnet-saturation bismuth-substituted rare-earth iron garnet single crystal film
JPH0415199B2 (en)
JP2860800B2 (en) Method for producing lithium niobate single crystal thin film
JPS63110417A (en) Magnetooptic element
JPH0642026B2 (en) Magneto-optical element material
JPS623022A (en) Magneto-optical garnet
JPH05173102A (en) Faraday rotor
JPS6278194A (en) Magneto-optical garnet single crystal film and method of growing same
Whitcomb et al. Fabrication of thin film magnetic garnet structures for intra‐cavity laser applications
JPS63159225A (en) Magnetooptical garnet
JPH0369847B2 (en)
JPH01297618A (en) Production of magneto-optical garnet
JPH03242620A (en) Magneto-optical material
Rivera et al. Integrated isolators for opto-electro-mechanical systems and devices
JPS60198880A (en) Laser device
JPH01257917A (en) Magneto-optical garnet