JPH05173102A - Faraday rotor - Google Patents

Faraday rotor

Info

Publication number
JPH05173102A
JPH05173102A JP8773691A JP8773691A JPH05173102A JP H05173102 A JPH05173102 A JP H05173102A JP 8773691 A JP8773691 A JP 8773691A JP 8773691 A JP8773691 A JP 8773691A JP H05173102 A JPH05173102 A JP H05173102A
Authority
JP
Japan
Prior art keywords
films
thickness
substrate
film
biig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8773691A
Other languages
Japanese (ja)
Inventor
Tsutomu Takahashi
勉 高橋
Hiroaki Toshima
博昭 戸嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Namiki Precision Jewel Co Ltd
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Namiki Precision Jewel Co Ltd, Research Development Corp of Japan filed Critical Agency of Industrial Science and Technology
Priority to JP8773691A priority Critical patent/JPH05173102A/en
Publication of JPH05173102A publication Critical patent/JPH05173102A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the formation of thicker films and to obtain the Faraday rotor having low light absorption loss by depositing specific crystal films by an ion beam sputtering method on both surfaces of a specific substrate. CONSTITUTION:Cracks and defects are tend to be generated by strains, etc., by mismatching and the thickness does not increase if the lattice constant difference DELTAa of the substrate and BiIG films increases. Then, the generation of strains and defect is controlled by using a single crystal plate 5 of nonmagnetic garnet having the lattice constant difference DELTAa within + or -0.03Angstrom , i.e., 12, 60 to 12, 66Angstrom lattice constants. Further, the front and rear surfaces of the substrate 5 are deposited respectively with Bi3Fe5O12 films 6 by the ion sputtering method at >=2.5mum which is the thickness of half the thickness to obtain 45 deg. Faraday rotating angle so as to have the structure to decrease the light absorption loss by increasing the thickness of the BiIG films as far as possible. The Bi3Fe5O12. films 6 are formed of a single crystal or polycrystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信,光計測,光記
録などに用いられる光アイソレータで、特に600〜850nm
の波長帯で使用される光アイソレータ用ファラデー回転
子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator used for optical communication, optical measurement, optical recording, etc., particularly 600 to 850 nm.
The present invention relates to a Faraday rotator for an optical isolator used in the wavelength band of.

【0002】[0002]

【従来の技術】光通信,光計測に使用される半導体レー
ザは、戻り光があるとモードホッピングノイズなどが生
じ、安定なレーザ発振ができなくなる。また最近では、
光ディスク,光磁気ディスクなどの光記録においても光
源として半導体レーザが使用され、戻り光は不具合を生
じるために光アイソレータの必要性が高まっている。
2. Description of the Related Art A semiconductor laser used for optical communication and optical measurement suffers from mode hopping noise or the like when returning light is generated, which makes stable laser oscillation impossible. Also recently
A semiconductor laser is used as a light source even in optical recording of an optical disk, a magneto-optical disk, etc., and the return light causes a problem, so that the need for an optical isolator is increasing.

【0003】一般に光アイソレータは図2に示すよう
に、偏光子1,検光子2と光の偏波面を45゜回転させる
ファラデー回転子3,そのファラデー回転子3を磁気飽
和させるための永久磁石4からなる。そして半導体レー
ザから発振される順方向の光は通過させ、逆に戻ってく
る逆方向の光はファラデー回転子の非相反作用により、
順方向での偏波面からさらに45゜回転させることによ
り、偏光子1とクロスニコルの関係となるため、 戻り
光は遮断される。
In general, an optical isolator, as shown in FIG. 2, includes a polarizer 1, an analyzer 2, a Faraday rotator 3 for rotating the plane of polarization of light by 45 °, and a permanent magnet 4 for magnetically saturating the Faraday rotator 3. Consists of. Then, the light emitted in the forward direction from the semiconductor laser is passed, and the light returned in the opposite direction is returned by the nonreciprocal action of the Faraday rotator.
By rotating it further by 45 ° from the plane of polarization in the forward direction, it becomes a crossed Nicol relationship with the polarizer 1, and the return light is blocked.

【0004】これまで実用化されている光アイソレータ
は、波長が1310nm,1550nmといった近赤外域でのものが
多く、これは光通信用のファイバーなどがその波長にお
いて光損失が低く、光通信用として適しているためであ
ることと、ファラデー回転子として使用されるバルクの
YIG(Y3Fe512)結晶やBi置換YIG(BiYIG)、
さらに液相エピタキシャル法(LPE法)により成長さ
せたBi置換ガーネット膜などの光吸収損失もその波長帯
で低いことに起因している。
Most of the optical isolators that have been put into practical use have wavelengths in the near infrared region such as 1310 nm and 1550 nm. Fibers for optical communication have low optical loss at that wavelength, and are used for optical communication. This is because it is suitable, and a bulk YIG (Y 3 Fe 5 O 12 ) crystal used as a Faraday rotator or a Bi-substituted YIG (BiYIG),
Furthermore, the light absorption loss of the Bi-substituted garnet film grown by the liquid phase epitaxial method (LPE method) is also low in that wavelength band.

【0005】一方光記録用などの光アイソレータは、記
録密度の向上と半導体生産性の容易性から780〜850nm帯
の波長が用いられている。また最近では半導体レーザの
短波長化が進み、波長が670nm付近で発振する可視光半
導体レーザが開発され、第2高調波発振(SHG)素子
も開発されたため、それに伴いより短波長での光アイソ
レータの使用が提案されている。
On the other hand, an optical isolator for optical recording uses a wavelength in the 780 to 850 nm band for the purpose of improving recording density and facilitating semiconductor productivity. Recently, the wavelength of semiconductor lasers has been shortened, a visible light semiconductor laser that oscillates at a wavelength of around 670 nm has been developed, and a second harmonic oscillation (SHG) element has also been developed. As a result, an optical isolator with a shorter wavelength has been developed. The use of is suggested.

【0006】[0006]

【発明が解決しようとする課題】しかしながら前述した
バルクのYIG,BiYIGやLPE法で成長させたBi置
換ガーネット膜においては、可視光領域では光吸収損失
が大きく(光の透過率が悪い)、光アイソレータ用のフ
ァラデー回転子としては使用が難しい。これは使用する
Ptルツボから混入する白金(Pt)や、フラックスとして
使用される鉛(Pb)等の不純物による影響で、Fe2+など
による吸収が避けられなくなるためと考えられている。
また比較的不純物が混入しないフローティングゾーン法
(FZ法)で作製したYIGなどの使用も可能ではある
が、ファラデー回転能すなわち単位長さあたり回転する
角度(゜/cm)が小さく、45゜回転するのに必要な光路長
が長くなる欠点がある。
However, in the above-mentioned bulk YIG, BiYIG or Bi-substituted garnet film grown by the LPE method, the light absorption loss is large in the visible light region (the light transmittance is poor), It is difficult to use as a Faraday rotator for isolators. This uses
It is considered that absorption by Fe 2+ becomes unavoidable due to the influence of impurities such as platinum (Pt) mixed from the Pt crucible and lead (Pb) used as flux.
It is also possible to use YIG or the like produced by the floating zone method (FZ method) in which impurities are not relatively mixed, but the Faraday rotation ability, that is, the angle (° / cm) of rotation per unit length is small, and it rotates 45 °. There is a drawback in that the optical path length required for this is long.

【0007】そこでこれらの解決策としてファラデー効
果を大きくするため、Bi置換量が多く不純物の混入も少
ない気相成長による非平衡な物質Bi3Fe512(BiIG)
ガーネットが特開平1-93426号公報において提案され
た。ところがこのBiIG膜を通常のスパッタ法により成
長させると、2次核生成などの表面欠陥が生じやすく、
厚くすることが難しいため、45゜のファラデー回転角を
得ることができない。
Therefore, in order to increase the Faraday effect as a solution to these problems, a nonequilibrium substance Bi 3 Fe 5 O 12 (BiIG) having a large amount of Bi substitution and a small amount of impurities is mixed in by vapor phase growth.
Garnet was proposed in JP-A-1-93426. However, when this BiIG film is grown by a normal sputtering method, surface defects such as secondary nucleation are likely to occur,
Since it is difficult to make it thick, it is not possible to obtain a Faraday rotation angle of 45 °.

【0008】[0008]

【課題を解決するための手段】本発明は、BiIG膜の格
子定数が12.63Åであることから、基板とBiIG膜の格
子定数差△aが大きくなると、ミスマッチによる歪など
により、クラックや欠陥が発生しやすくなり、厚くなら
ないことを実験的に見出し、△aを±0.03Å以内すなわ
ち12.60〜12.66Åの格子定数をもつ非磁性ガーネット単
結晶基板を用いることにより歪や欠陥の発生を制御して
いる。さらにBiIG膜の膜厚は、可能なかぎり薄くし、
光吸収損失を低減させる構造となるように基板の表裏
に、それぞれBiIG膜で45゜ ファラデー回転角を得る約
半分の厚みである2.5μm以上にイオンビームスパッタ法
で堆積させ、BiIG膜を単結晶または多結晶とすること
を特徴としている。
Since the lattice constant of the BiIG film is 12.63Å, when the lattice constant difference Δa between the substrate and the BiIG film becomes large, cracks and defects are generated due to strain due to mismatch, etc. It was found experimentally that it tends to occur and that it does not become thick, and the occurrence of strain and defects is controlled by using a non-magnetic garnet single crystal substrate with Δa within ± 0.03Å, that is, a lattice constant of 12.60 to 12.66Å. There is. Furthermore, the film thickness of the BiIG film should be as thin as possible,
The BiIG film was deposited on the front and back sides of the substrate by ion beam sputtering to a thickness of 2.5 μm or more, which is about half the thickness to obtain a 45 ° Faraday rotation angle on each of the front and back sides of the substrate, so as to reduce the light absorption loss. Alternatively, it is characterized by being polycrystalline.

【0009】BiIG膜のファラデー回転能は膜形成時の
条件により多少変化するが、最もファラデー効果の大き
な波長域であり、かつレーザ発信波長である633nmにお
いて、最大-90000゜/cmが得られ、実用膜厚に換算する
と-9゜/μmとなる。したがって45゜フアラデー回転角の
半分である22.5゜を得るためには、少なくとも2.5μm以
上の膜厚がそれぞれ必要であり、この範囲に限定され
る。本発明によれば、非磁性ガーネット単結晶基板の格
子定数がBiIG膜とほぼ一致するので、ファラデー回転
能の大きなBiIG膜を基板の両面に簡単に堆積させるこ
とが可能で、600〜850nmの波長帯でも45゜回転するファ
ラデー回転子が得られ、結果的にその波長帯で光アイソ
レータの製作が可能となる。
The Faraday rotatory power of the BiIG film is somewhat changed depending on the conditions at the time of film formation, but the maximum Faraday effect is in the wavelength region, and at the laser emission wavelength of 633 nm, a maximum of -90000 ° / cm can be obtained. Converted to a practical film thickness, it becomes -9 ° / μm. Therefore, in order to obtain 22.5 °, which is half of the 45 ° Faraday rotation angle, a film thickness of at least 2.5 μm or more is required, which is limited to this range. According to the present invention, since the lattice constant of the non-magnetic garnet single crystal substrate is almost the same as that of the BiIG film, it is possible to easily deposit a BiIG film having a large Faraday rotation ability on both surfaces of the substrate, and a wavelength of 600 to 850 nm. A Faraday rotator rotating at 45 ° can be obtained even in the band, and as a result, it becomes possible to manufacture an optical isolator in that wavelength band.

【0010】[0010]

【実施例1】格子定数が12.63Åのサマリウム・スカン
ジウム・ガリウム・ガーネット基板{111}上に、O2
反応ガスとしたイオンビームスパッタ法により、Bi3Fe5
12膜を基板の両面に堆積させた。このときのスパッタ
条件としては、酸素分圧2×10-4Torr,基板温度550
℃,イオン電流密度1.5mA/cm2であった。下記の表にλ=
633nmにおいて、Bi3Fe512膜をイオンビームスパッタ
法により堆積させたときの本発明と比較例を示す。
Example 1 Bi 3 Fe 5 was formed on a samarium-scandium-gallium-garnet substrate {111} having a lattice constant of 12.63Å by an ion beam sputtering method using O 2 as a reaction gas.
An O 12 film was deposited on both sides of the substrate. The sputtering conditions at this time are: oxygen partial pressure 2 × 10 −4 Torr, substrate temperature 550
The ion current density was 1.5 mA / cm 2 at ℃. In the table below λ =
The present invention and a comparative example at the time of depositing a Bi 3 Fe 5 O 12 film at 633 nm by the ion beam sputtering method are shown.

【0011】 [0011]

【0012】膜厚は上記の表に示したように、片面が2.
5μm,他の片面が3.5μmで、両面を波長633nmの光が通
過したときファラデー回転角が44.8゜であった。なおこ
のときのファラデー回転角は、Bi3Fe512膜の飽和磁化
が1600ガウスであったので、完全に膜が飽和するように
2キロガウス以上の磁界をかけて測定した。また光吸収
損失は2.5dBであった。
As shown in the table above, the film thickness is 2.
The Faraday rotation angle was 44.8 ° when light with a wavelength of 633 nm passed through both sides with 5 μm and 3.5 μm on the other side. Since the saturation magnetization of the Bi 3 Fe 5 O 12 film was 1600 gauss, the Faraday rotation angle at this time was measured by applying a magnetic field of 2 kilogauss or more so as to completely saturate the film. The optical absorption loss was 2.5 dB.

【0013】Bi3Fe512膜の格子定数12.63Åと基板の
格子定数との差が大きい比較例では、表面欠陥,クラッ
クなどの不具合が生じ、単結晶又は多結晶膜とならない
ため、当然のことながらファラデー回転角が得られず、
光吸収損失も膨大な値となって測定不能であった。
In the comparative example in which the difference between the lattice constant of the Bi 3 Fe 5 O 12 film of 12.63Å and the lattice constant of the substrate is large, defects such as surface defects and cracks occur and the film does not become a single crystal or polycrystalline film. However, I could not get the Faraday rotation angle,
The light absorption loss also became a huge value and could not be measured.

【0014】[0014]

【実施例2】格子定数が12.64Åのガドリウム・ルテシ
ウム・ガリウム・ガーネット基板{111}上に、実施例
1と同様にして波長780nmで45゜回転するファラデー回転
子を作成した。波長が780nmとするとBiIG膜のファラ
デー回転能は約-30000゜/cmとなるので片面約8μmずつ
を両面に堆積させた。下記の表にλ=780nmにおいて、Bi
3Fe512膜をイオンビームスパッタ法により堆積させた
ときの本発明と比較例を示す。
Example 2 A Faraday rotator rotating at 45 ° at a wavelength of 780 nm was prepared in the same manner as in Example 1 on a gadolinium-lutetium-gallium-garnet substrate {111} having a lattice constant of 12.64Å. When the wavelength is 780 nm, the Faraday rotation ability of the BiIG film is about -30 000 ° / cm, so about 8 μm on each side was deposited on both sides. In the table below, at λ = 780 nm, Bi
The present invention and a comparative example when a 3 Fe 5 O 12 film is deposited by the ion beam sputtering method will be shown.

【0015】 [0015]

【0016】得られたBiIG膜は多結晶膜となったが、
ファラデー回転は上記の表に示したように、BiIG膜と
格子定数差が大きい基板を用いると、厚膜化が困難とな
り、ファラデー回転子が得られなかった。
The obtained BiIG film became a polycrystalline film,
As shown in the above table, when a substrate having a large lattice constant difference from the Faraday rotation was used for Faraday rotation, it was difficult to form a thick film and a Faraday rotator could not be obtained.

【0017】[0017]

【発明の効果】以上説明したように、本発明を用いるこ
とによって堆積制御性のよいイオンビームスパッタ法に
より、結果的に約45゜回転するBiIG膜が得られるの
で、600〜850nmの波長帯でのファラデー回転子が可能と
なる。
As described above, by using the present invention, a BiIG film that rotates about 45 ° can be obtained by the ion beam sputtering method with good deposition controllability. Faraday rotator is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の 45゜ファラデー回転子の構成図。FIG. 1 is a block diagram of a 45 ° Faraday rotator of the present invention.

【図2】光アイソレータの構成図。FIG. 2 is a configuration diagram of an optical isolator.

【符号の説明】[Explanation of symbols]

1 偏光子 2 検光子 3 ファラデー回転子 4 永久磁石 5 非磁性ガーネット基板 6 Bi3Fe5121 Polarizer 2 Analyzer 3 Faraday rotator 4 Permanent magnet 5 Non-magnetic garnet substrate 6 Bi 3 Fe 5 O 12 film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 戸嶋 博昭 東京都足立区新田3丁目8番22号 並木精 密宝石株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroaki Toshima 3-8-22 Nitta, Adachi-ku, Tokyo Namiki Seisetsu Gem Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 格子定数が12.60〜12.66Åの範囲にある
非磁性ガーネット単結晶基板に、イオンビームスパッタ
法によりBi3Fe512単結晶または多結晶膜を、少なくと
も片面の厚さが2.5μm以上となるように基板両面に推積
することを特徴としたファラデー回転子。
1. A non-magnetic garnet single crystal substrate having a lattice constant in the range of 12.60 to 12.66Å is coated with a Bi 3 Fe 5 O 12 single crystal or polycrystalline film by an ion beam sputtering method to a thickness of at least one side of 2.5. A Faraday rotator characterized by depositing on both sides of the substrate so that the thickness is at least μm.
JP8773691A 1991-03-26 1991-03-26 Faraday rotor Pending JPH05173102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8773691A JPH05173102A (en) 1991-03-26 1991-03-26 Faraday rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8773691A JPH05173102A (en) 1991-03-26 1991-03-26 Faraday rotor

Publications (1)

Publication Number Publication Date
JPH05173102A true JPH05173102A (en) 1993-07-13

Family

ID=13923212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8773691A Pending JPH05173102A (en) 1991-03-26 1991-03-26 Faraday rotor

Country Status (1)

Country Link
JP (1) JPH05173102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143042A1 (en) * 2000-03-22 2001-10-10 TDK Corporation Magnetic garnet single-crystal film and method of producing the same, and faraday rotator comprising the same
JP2011150208A (en) * 2010-01-25 2011-08-04 Shin-Etsu Chemical Co Ltd Optical isolator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143042A1 (en) * 2000-03-22 2001-10-10 TDK Corporation Magnetic garnet single-crystal film and method of producing the same, and faraday rotator comprising the same
US6875270B2 (en) 2000-03-22 2005-04-05 Tdk Corporation Magnetic garnet single-crystal film and method of producing the same, and Faraday rotator comprising the same
JP2011150208A (en) * 2010-01-25 2011-08-04 Shin-Etsu Chemical Co Ltd Optical isolator

Similar Documents

Publication Publication Date Title
CA1115396A (en) Ferrimagnetic faraday elements for ring lasers
US4728178A (en) Faceted magneto-optical garnet layer and light modulator using the same
JP2679083B2 (en) Magneto-optical garnet
JPH05173102A (en) Faraday rotor
JPS61123814A (en) Magnetic semiconductor material and optical isolator
JP5147050B2 (en) Magneto-optic element
JPH0961772A (en) Polarization controller
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JPS5977408A (en) Optical isolator
JPH0424684B2 (en)
JPH0666216B2 (en) Manufacturing method of bismuth substituted magnetic garnet
EP0166924A2 (en) Faceted magneto-optical garnet layer
JPH01269916A (en) Faraday rotating element
JPH0727823B2 (en) Magnetic material for magneto-optical element
JPH0666215B2 (en) Manufacturing method of bismuth substituted magnetic garnet
JPH0654744B2 (en) Manufacturing method of bismuth substituted magnetic garnet
JPH0642026B2 (en) Magneto-optical element material
JPH0524116B2 (en)
JP3594207B2 (en) Hetero-crystal junction type optical isolator
JPH0746666B2 (en) Method for producing magnetic net containing bismuth
JPS59147320A (en) Optical non-reciprocal element
JPH02256018A (en) Faraday rotator
JP2000187193A (en) Optical attenuator
JPH0634926A (en) Faraday rotor
JPS6279608A (en) Manufacture of bismuth substitution magnetic garnet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010130