JPS59147320A - Optical non-reciprocal element - Google Patents

Optical non-reciprocal element

Info

Publication number
JPS59147320A
JPS59147320A JP2061683A JP2061683A JPS59147320A JP S59147320 A JPS59147320 A JP S59147320A JP 2061683 A JP2061683 A JP 2061683A JP 2061683 A JP2061683 A JP 2061683A JP S59147320 A JPS59147320 A JP S59147320A
Authority
JP
Japan
Prior art keywords
crystal
rare earth
polarizer
analyzer
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2061683A
Other languages
Japanese (ja)
Inventor
Kaoru Takahashi
薫 高橋
Osamu Kamata
修 鎌田
Satoshi Ishizuka
石塚 訓
Akimoto Serizawa
晧元 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2061683A priority Critical patent/JPS59147320A/en
Publication of JPS59147320A publication Critical patent/JPS59147320A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain an optical non-reciprocal element which absorbs less light and has high Faraday rotation performance by providing a magnetooptic element having rare earth-iron garnet crystal among a polarizer, analyzer, and magnet. CONSTITUTION:The magnetooptic element which has rare earth-iron garnet crystal 11 shown by a formula (1.3<=x<=1.5 and 0<=y<=1.0) which is grown on an Sm3Ga5O12 substrate 11 by a liquid-crystal epitaxial method so that the direction of crystal growth and the optical axis are parallel to the polarization direction of incident light is provided among the polarizer 2, analyzer 2, and magnet 4. Consequently, low-strain crystal grown on the SmGG substrate with good grating comformity by the liquid-crystal epitaxial method is mass-produced securely in a short time to obtain the optical non-reciprocal element with a high isolation ratio.

Description

【発明の詳細な説明】 産業上の利用分野 半導体レーザ光源において、反射光がレーザ活性層に戻
る事が動作不安定およびノイズ増加の原因となっている
。従って半導体レーザを安定に動作するには、レーザ〜
からの光は通すが、レーザーへの反射光は阻止する先非
相反素子が必要である。光通信の分野においても、光源
である半導体半導体レーザの安定化は高速変調、アナロ
グ変調の実用化のだめに強く要求されている。このよう
に、本発明にかかる非相反素子は、光通信、光記録再生
装置、光センサなど光を使う多くのシステムに利用され
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application In semiconductor laser light sources, reflected light returning to the laser active layer causes unstable operation and increased noise. Therefore, in order to operate a semiconductor laser stably, the laser ~
A nonreciprocal element is required to allow light from the laser to pass through, but to block light reflected from the laser. In the field of optical communications as well, stabilization of semiconductor lasers as light sources is strongly required in order to put high-speed modulation and analog modulation into practical use. As described above, the non-reciprocal element according to the present invention is used in many systems that use light, such as optical communication, optical recording/reproducing devices, and optical sensors.

従来例の構成とその問題点 先非相反素子利用の一例と、して波長8000A帯域の
アイソレータについて説明する。
A conventional configuration and its problems will now be described as an example of the use of non-reciprocal elements, and an isolator with a wavelength band of 8000A.

一般にアイソレータは第1図に示すように、偏光子、磁
気光学結晶、磁石及び検光子から成り、偏光子と検光子
の偏波方向が45°になるように配置されている。1は
偏光子、2は検光子、3d:磁気光学結晶、4は磁石、
5は入射方向の光線。
Generally, as shown in FIG. 1, an isolator consists of a polarizer, a magneto-optical crystal, a magnet, and an analyzer, and the polarizer and analyzer are arranged so that the polarization directions of the polarizer and the analyzer are 45 degrees. 1 is a polarizer, 2 is an analyzer, 3d is a magneto-optic crystal, 4 is a magnet,
5 is the ray in the incident direction.

6は入射方向と逆方向の光、線を示す。6 indicates light and lines in the direction opposite to the incident direction.

第1図において、順方向に偏光子1を通過してきた偏波
方向のそろっだ光5は、磁気光学結晶3によりθ−VH
t(V:単位長単位磁場蟲りの回転角、H:磁場、t=
結晶中の光路長)だけ偏波方向か回転される。磁気光学
結晶3の磁化が飽和している場合はθ−θpt  と表
わすことができ、θFをンアラテー回転能(単位長当り
の回転角)という。θ−45°となるようにV、H,t
を選ぶと、入射光は検光子を通過することができる。
In FIG. 1, light 5 having uniform polarization directions that has passed through the polarizer 1 in the forward direction is converted into θ-VH by the magneto-optic crystal 3.
t(V: rotation angle of unit length unit magnetic field, H: magnetic field, t=
The polarization direction is rotated by the optical path length in the crystal. When the magnetization of the magneto-optic crystal 3 is saturated, it can be expressed as θ-θpt, and θF is called the rotational power (rotation angle per unit length). V, H, t so that θ-45°
If you choose , the incident light can pass through the analyzer.

一方、逆方向に検光子2を通過して偏波方向のそろった
光は磁気光学結晶3の持つ非相反性より偏波面がさらに
45°回転するため、偏光子と偏波方向が直交し、通過
することができない。このように構成された素子がアイ
ソレータであり、磁気光学結晶3がその特性を決めてい
る。
On the other hand, the light that passes through the analyzer 2 in the opposite direction and has a uniform polarization direction has its polarization plane further rotated by 45 degrees due to the non-reciprocity of the magneto-optic crystal 3, so that the polarizer and the polarization direction are perpendicular to each other. cannot pass. The element configured in this manner is an isolator, and the magneto-optic crystal 3 determines its characteristics.

従来の8000人帯域のアイソレータは磁気光学結晶3
として常磁性ガラスを用いているために次のような欠点
があった。
The conventional isolator for the 8000-person band is magneto-optic crystal 3.
Since paramagnetic glass was used as the material, there were the following drawbacks.

常磁性ガラスはVが小さいため、lを数10m必要とし
、小型化するためには常磁性ガラスの両端にミラーをつ
け、反射型光路にしてtを大きくしなけねはならず、そ
の過程での損失も大きい。
Since paramagnetic glass has a small V, it requires a length of several tens of meters, and in order to make it smaller, it is necessary to attach mirrors to both ends of the paramagnetic glass and make it a reflective optical path, increasing t. The loss is also large.

また常磁性であるため磁化が飽和せず、θはHの変化に
対応して変化し、θ−46°を保つことか困難となり、
アイソレータの性能が落ちる。Hは温度によって変化す
るたけでなく、永久磁石中の結晶の位置によっても微妙
に異なる。また1、波長1.3μm帯域の弊インレータ
は通常磁気光学結晶3としてフェリ磁性体(すなわち飽
和磁化をもつ−の希土類鉄ガーネットYIGを用いてい
るが、これはaoooA帯域に大きな吸収を持つため、
8000人帯域用アイソレータには使用不可能であった
Also, since it is paramagnetic, the magnetization does not saturate, and θ changes in response to changes in H, making it difficult to maintain θ-46°.
Isolator performance deteriorates. H not only changes depending on the temperature, but also varies slightly depending on the position of the crystal in the permanent magnet. In addition, 1. Our inverter for the wavelength band of 1.3 μm usually uses a ferrimagnetic material (that is, rare earth iron garnet YIG with saturation magnetization) as the magneto-optic crystal 3, but since this has large absorption in the aoooA band,
It could not be used as an isolator for the 8,000-person band.

まだ従来の薄膜型非相反素子は、GGG基板上のYIG
のように基板と格子定数の違いからくるひずみのために
アイソレーション比か悪い欠点を有している。
The conventional thin film type non-reciprocal element is YIG on GGG substrate.
It has the disadvantage of a poor isolation ratio due to distortion caused by the difference in substrate and lattice constants.

発明の目的 本発明は、希土類鉄ガーネットの組成を選択し吸収が少
なくファラデー回転能が高い磁気光学結晶を用いるもの
であり、さらにS mGG (Sm3Ga6012)基
板上にも成長を行ない、得られた結晶を用いて先非相反
素子を構成することを目的とする。
Purpose of the Invention The present invention uses a magneto-optic crystal with low absorption and high Faraday rotation ability by selecting the composition of rare earth iron garnet, and further grows the crystal on an S mGG (Sm3Ga6012) substrate. The purpose of this study is to construct a non-reciprocal element using .

発明の構成 本発明に用いる希土類鉄ガーネットは(B i xLu
3−x )F e 5−y S cyol 2 (1−
3≦X≦1.5.0≦y≦1.0)で弄わされる。希土
類鉄ガーネットは一般式Re3Fe6012(Reは希
土類原子)で表わされ、O原子で作る122面体位置希
土類原子、8面体位置と4面体位置にFe原子が占めて
いる構造をしている。希土類原子をBiで置換するとフ
ァラデー回転角か犬きくなり、また8通体位置のFe原
子が80ooA帯域での吸収の原因であるため、γ こ才1を希土類原子で置換すると吸収が+なくなる。
Structure of the Invention The rare earth iron garnet used in the present invention is (B i xLu
3-x) F e 5-y S cyol 2 (1-
3≦X≦1.5.0≦y≦1.0). Rare earth iron garnet is represented by the general formula Re3Fe6012 (Re is a rare earth atom) and has a structure in which rare earth atoms are formed by O atoms occupying 122 dodecahedral positions, and Fe atoms occupy octahedral and tetrahedral positions. If the rare earth atom is replaced with Bi, the Faraday rotation angle becomes sharper, and since the Fe atom at the octagonal position is the cause of absorption in the 8000A band, if γ kosai 1 is replaced with a rare earth atom, the absorption disappears.

このように、8面体位置のFe原子を選択的に置換する
ため、それに有利であり、しかも単時間に確実に量産で
き低コスト化が可能なLPE結晶成長法で単結晶成長さ
せる。基板は結晶との格子定数の差が小さく、吸収の小
さいS rrl 3G a 6012が最適である。
In this way, since the Fe atoms at the octahedral positions are selectively substituted, the single crystal is grown using the LPE crystal growth method, which is advantageous for selectively replacing Fe atoms at octahedral positions, and can be mass-produced reliably in a short period of time and at low cost. The optimum substrate is S rrl 3G a 6012, which has a small difference in lattice constant from the crystal and has low absorption.

1ずファラデー回転角を大きくするためにBi原子を希
土類と置換することについて説明する。
First, the substitution of Bi atoms with rare earth elements in order to increase the Faraday rotation angle will be explained.

Bi 原子を多く入れるほど回転角は増大するが、同時
にガーネットの格子定数も増大する。前述のようにS 
mGG  基板上にLPEで結晶成長させることを考え
ると、SmGG  の格子定数に対してLPE成長可能
な格子定数が制限される。そこで、できるだけ多くのB
i原子を置換するために、希土類鉄ガーネット中で最も
小さい格子定数を持つL u3F e 6012  の
Lu  とB13+を置換するのが3+ 適当である。
As more Bi atoms are added, the rotation angle increases, but at the same time, the lattice constant of garnet also increases. As mentioned above, S
When considering growing a crystal on an mGG substrate by LPE, the lattice constant that can be grown by LPE is limited compared to the lattice constant of SmGG. Therefore, as many B as possible
In order to replace the i atom, it is appropriate to replace B13+ with Lu of L u3F e 6012 which has the smallest lattice constant among rare earth iron garnets.

次に吸収を減らすために8面体位置のFe原子を希土類
原子と置換することについて説明する。
Next, a description will be given of replacing Fe atoms at octahedral positions with rare earth atoms in order to reduce absorption.

置換する希土類イオンに1、選択的に8面体位置にのみ
入りうるSc’+を選ぶ。置換されるFe3+量が増す
に従いキュリ一点が減少するため、Sc”の置換量は・
、使用温度範囲で結晶がフェリ磁性体である様に選ぶ必
要がある。
As the rare earth ion to be substituted, 1 is selected, and Sc'+, which can selectively enter only the octahedral position, is selected. As the amount of Fe3+ to be replaced increases, one point of Curie decreases, so the amount of replacement of Sc'' is
, the crystal must be selected so that it is a ferrimagnetic material within the operating temperature range.

そこで、格子定数とキュリ一点の制約を満たしかつ、高
ファラデー回転角と低吸収のガーネット結晶の組成とし
て(B1xLu3−x)Fe5−アSCyO12(1,
3zxz1.6.o≦y二1.○)か決定する。
Therefore, the composition of a garnet crystal that satisfies the constraints of lattice constant and single Curie point, has a high Faraday rotation angle, and has low absorption is (B1xLu3-x)Fe5-ASCyO12(1,
3zxz1.6. o≦y21. ○).

実施例の説明 酸化物、弗化物等の混晶をフラックス溶媒として組成、
成分を選択することによって、B12O3゜Lu2O3
,Fe2O3,5C203の各酸化物組成比より(B 
1 xL us −x) F e s’ yS c y
ol 2の希土類ガーネットを単結晶化することができ
た。
Description of Examples Composition of mixed crystals such as oxides and fluorides as a flux solvent,
By selecting the components, B12O3゜Lu2O3
, Fe2O3, 5C203 (B
1 xL us -x) F e s' yS cy
We were able to single-crystallize ol 2 rare earth garnet.

SmGG  を基板として用いたときには、Bi の組
成としてB 1−+ 、 4 L u 1. e F 
e s○12までLu と置換し、エピタキシャル成長
させることが可能であった。また、Sc組組成上○≦y
≦2 丑でFeイオンと置換することが可能であった。
When SmGG is used as a substrate, the Bi composition is B1-+, 4Lu1. e F
It was possible to replace up to e s○12 with Lu and perform epitaxial growth. Also, due to the composition of the Sc group, ○≦y
It was possible to replace Fe ions with ≦2 ox.

1例として、SmGG  上に成長した希土類ガーネ 
ッ ト (Bil、 4Lu1.6) 〔5cFe) 
 Fe5O12組成のエピタキシャル成長膜において、
成長膜厚56μmでファラデー回転角80Q○0/cT
n、キュリ一温度約160℃を得た。
As an example, rare earth garnet grown on SmGG
(Bil, 4Lu1.6) [5cFe)
In the epitaxially grown film with Fe5O12 composition,
Faraday rotation angle 80Q○0/cT with grown film thickness 56μm
n, a Curie temperature of about 160°C was obtained.

第2図に、本希土類ガーネットを用いたアイソレータの
構成例の断面図を示す。1,2は各々偏光子、検光子を
示し、1oはSmGG  基板で11はその上に成長さ
せた希土類ガーネット結晶、4は磁石、6は入射光、6
は反射光を示す。希土類ガーネット結晶11は入射する
光の偏波方向に対して結晶成長方向と洸軸を平行に配置
し、ひずみによる複屈折の効果を等方向になるようにし
た。
FIG. 2 shows a cross-sectional view of an example of the structure of an isolator using this rare earth garnet. 1 and 2 indicate a polarizer and an analyzer, respectively, 1o is an SmGG substrate, 11 is a rare earth garnet crystal grown on it, 4 is a magnet, 6 is an incident light, 6
indicates reflected light. The rare earth garnet crystal 11 is arranged so that the crystal growth direction and the optical axis are parallel to the polarization direction of the incident light, so that the effect of birefringence due to strain is in the same direction.

さらに、偏光子1 、検光子2およびガーネット結晶1
0には誘電体多層膜による反射防止膜が施された。その
結果、8600人にピーク波長をもつ半導体レーザを光
源としたときに偏光子透過後の光量を基準として挿入損
失(2dB、アイソレーション比〉40dBなる特性を
もつアイソレータが得られた。
Furthermore, polarizer 1, analyzer 2 and garnet crystal 1
0 was coated with an antireflection coating made of a dielectric multilayer film. As a result, when a semiconductor laser having a peak wavelength of 8,600 was used as a light source, an isolator was obtained that had an insertion loss of 2 dB and an isolation ratio of 40 dB based on the amount of light after passing through a polarizer.

発明の効果 本発明により、高ファラデー回転能、低吸収の磁気光学
結晶を得て、高アイソレーシヨン比の先非相反素子が得
られた。特にS mGG  基板上に格子整合よ(LP
E成長させたことによって、低ひずみの結晶が短時間に
確実に量産することができた。
Effects of the Invention According to the present invention, a magneto-optic crystal with high Faraday rotation ability and low absorption was obtained, and a non-reciprocal element with a high isolation ratio was obtained. In particular, lattice matching on the S mGG substrate (LP
By using E-growth, low-strain crystals could be reliably mass-produced in a short period of time.

【図面の簡単な説明】 第1図は一般的なアイソレータの構成の図、第2図は本
発明の一実施例のアイソレータの概略構成図である。 1・・偏光子、2・・・・・・検光子、3・・・・・・
磁気光学結晶、4・・磁石、6・・・・・・順方向の光
路、6・・・・・逆方向の光路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram of the configuration of a general isolator, and FIG. 2 is a schematic diagram of the configuration of an isolator according to an embodiment of the present invention. 1...Polarizer, 2...Analyzer, 3...
Magneto-optical crystal, 4... Magnet, 6... Forward optical path, 6... Reverse optical path. Name of agent: Patent attorney Toshio Nakao and 1 other person1

Claims (4)

【特許請求の範囲】[Claims] (1)偏光子、検光子、磁石間に、一般式%式% 0二y二1.○)で示される希土類鉄ガーネット結晶を
有する磁気光学素子を用いた先非相反素子。
(1) Between the polarizer, analyzer, and magnet, use the general formula % 02y21. A non-reciprocal element using a magneto-optical element having a rare earth iron garnet crystal indicated by ○).
(2) Sm3G85012基板上に結晶を液相エヒリ
キンヤル法により形成してなる特許請求の範囲第1項に
記載の先非相反素子。
(2) The non-reciprocal element according to claim 1, wherein a crystal is formed on a Sm3G85012 substrate by a liquid phase Echlikinyar method.
(3)  磁気光学素子をファラデー回転素子として用
いた特許請求の範囲第2項に記載の幕勝吊光非相反素子
(3) The Makusho suspended optical non-reciprocal element according to claim 2, which uses a magneto-optical element as a Faraday rotation element.
(4)  ファラデー回転素子の成長面を光軸に対して
平行に配置してなる特許請求の範囲第3項に記載の先非
相反素子。
(4) The non-reciprocal element according to claim 3, wherein the growth surface of the Faraday rotation element is arranged parallel to the optical axis.
JP2061683A 1983-02-10 1983-02-10 Optical non-reciprocal element Pending JPS59147320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2061683A JPS59147320A (en) 1983-02-10 1983-02-10 Optical non-reciprocal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2061683A JPS59147320A (en) 1983-02-10 1983-02-10 Optical non-reciprocal element

Publications (1)

Publication Number Publication Date
JPS59147320A true JPS59147320A (en) 1984-08-23

Family

ID=12032176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2061683A Pending JPS59147320A (en) 1983-02-10 1983-02-10 Optical non-reciprocal element

Country Status (1)

Country Link
JP (1) JPS59147320A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179415A (en) * 1985-02-05 1986-08-12 Matsushita Electric Ind Co Ltd Magneto-optical element and its production
JPS62194222A (en) * 1986-02-20 1987-08-26 Sumitomo Metal Mining Co Ltd Magnetooptic element material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179415A (en) * 1985-02-05 1986-08-12 Matsushita Electric Ind Co Ltd Magneto-optical element and its production
JPH0533769B2 (en) * 1985-02-05 1993-05-20 Matsushita Electric Ind Co Ltd
JPS62194222A (en) * 1986-02-20 1987-08-26 Sumitomo Metal Mining Co Ltd Magnetooptic element material

Similar Documents

Publication Publication Date Title
US5408565A (en) Thin-film magneto-optic polarization rotator
US5898516A (en) Faraday rotator having a rectangular shaped hysteresis
US5640516A (en) Faraday rotator
Deeter et al. Crystals and Glasses
JP3458865B2 (en) Low saturation magnetic field bismuth-substituted rare earth iron garnet single crystal and its use
JPS59147320A (en) Optical non-reciprocal element
JP4400959B2 (en) Garnet crystal for Faraday rotator and optical isolator having the same
JPS62186220A (en) Optical isolator
US6031654A (en) Low magnet-saturation bismuth-substituted rare-earth iron garnet single crystal film
JP3037474B2 (en) Faraday rotator
JP2679157B2 (en) Terbium iron garnet and magneto-optical element using the same
JP2874319B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JPH07104224A (en) Nonreciprocity optical device
JPH0727823B2 (en) Magnetic material for magneto-optical element
JPH0642026B2 (en) Magneto-optical element material
JP3594207B2 (en) Hetero-crystal junction type optical isolator
JPH0933870A (en) Faraday rotator with low saturation magnetic field
JP2000187193A (en) Optical attenuator
JPH0359012B2 (en)
JPH0746666B2 (en) Method for producing magnetic net containing bismuth
JPS61179413A (en) Optical isolator
JP2000298247A (en) Optical isolator and irreversible phase reciprocal component
JPS645283B2 (en)
JPH0634926A (en) Faraday rotor
JPS63273828A (en) Optical isolator