JPH0533769B2 - - Google Patents

Info

Publication number
JPH0533769B2
JPH0533769B2 JP60020331A JP2033185A JPH0533769B2 JP H0533769 B2 JPH0533769 B2 JP H0533769B2 JP 60020331 A JP60020331 A JP 60020331A JP 2033185 A JP2033185 A JP 2033185A JP H0533769 B2 JPH0533769 B2 JP H0533769B2
Authority
JP
Japan
Prior art keywords
substitution
magneto
lattice constant
rare earth
pbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60020331A
Other languages
Japanese (ja)
Other versions
JPS61179415A (en
Inventor
Kaoru Takahashi
Satoshi Ishizuka
Osamu Kamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2033185A priority Critical patent/JPS61179415A/en
Publication of JPS61179415A publication Critical patent/JPS61179415A/en
Publication of JPH0533769B2 publication Critical patent/JPH0533769B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、フアラデー効果を利用した光アイソ
レータ又はサーキユレータ等に用いられる磁気光
学素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a magneto-optical element used in an optical isolator or circulator using the Faraday effect.

従来の技術 Re3Fe5O12(Reは希土類原子)で表わされる希
土類鉄ガーネツトの希土類サイトをBi原子で置
換すると、Bi置換量に伴つてフアラデー回転能
が大きくなるため、磁気光学素子としてBi置換
希土類鉄ガーネツトが多く作られている。
Conventional technology When the rare earth sites of rare earth iron garnet represented by Re 3 Fe 5 O 12 (Re is a rare earth atom) are replaced with Bi atoms, the Faraday rotation ability increases with the amount of Bi substitution. Many substituted rare earth iron garnets are produced.

各希土類元素に対するBi置換量の限界は、品
川らによつて焼結体での報告がジヤパンジヤーナ
ル オブ アプライド フイジクス13巻 10号
1663頁(1984年)(JAPAN.J.APPL.PHYS.vo1
13.No.10,P.1663(1984年)においてなされてい
る。それによると、第3図に示す様にBi置換量
に伴いBi置換希土類鉄ガーネツトの格子定数は
大きくなるが、Bi置換量限界と母材ガーネツト
の格子定数の大きさには相関はなく、母材ガーネ
ツトとしてGd3Ga5O12を用いた時にBi置換量は最
大となり、その時の置換量はBixLu3-xFe5O12(x
=1.4)である。
The limit of Bi substitution amount for each rare earth element was reported by Shinagawa et al. in Japan Journal of Applied Physics, Vol. 13, No. 10.
1663 pages (1984) (JAPAN.J.APPL.PHYS.vo1
13. No. 10, P. 1663 (1984). According to this study, as shown in Figure 3, the lattice constant of Bi-substituted rare earth iron garnet increases with the amount of Bi substitution, but there is no correlation between the limit of Bi substitution and the size of the lattice constant of the base material garnet. When Gd 3 Ga 5 O 12 is used as the material garnet, the Bi substitution amount is maximum, and the substitution amount at that time is BixLu 3-x Fe 5 O 12 (x
= 1.4).

第3図は品川らによつて、ジヤパン ジヤーナ
ル オブ アプライド フイジクス13巻 10号
1663頁(1984年)(JAPAN.J.APPL.PHYS.vo1
13.No.10,P.1663(1984年))に発表された組成
BixRe3-xFe5O12(Reは希土類)で表わされる焼
結体希土類鉄ガーネツトのBi置換量とBi置換希
土類鉄ガーネツトの格子定数の関係及び各希土類
鉄ガーネツトへのBi置換限界を表わしたグラフ
で、第3図において横軸はBi置換量x、縦軸の
左側は格子定数、右側はそれぞれの希土類鉄ガー
ネツトの格子定数(目盛りは左側)、中央の一点
鎖線及び×印はBi置換限界を示している。また、
BixLu3-xFe5O12に関してのみ、品川らの報告の
他のBi置換希土類鉄ガーネツト、特にBixYb3-x
Fe5O12を参考にLu3Fe5O12の格子定数より、格子
定数を類推して付加したものであり、Bi置換限
界曲線を外挿することにより、Bi置換限界を求
めたものである。
Figure 3 is by Shinagawa et al., Japan Journal of Applied Physics, Vol. 13, No. 10.
1663 pages (1984) (JAPAN.J.APPL.PHYS.vo1
13.No.10, P.1663 (1984))
The relationship between the amount of Bi substitution in the sintered rare earth iron garnet represented by BixRe 3-x Fe 5 O 12 (Re is rare earth) and the lattice constant of the Bi-substituted rare earth iron garnet and the limit of Bi substitution in each rare earth iron garnet are shown. In the graph shown in Figure 3, the horizontal axis is the amount of Bi substitution x, the left side of the vertical axis is the lattice constant, the right side is the lattice constant of each rare earth iron garnet (the scale is on the left), and the dashed line and the x mark in the center are the Bi substitution limit. It shows. Also,
Only for BixLu 3-x Fe 5 O 12 , other Bi-substituted rare earth iron garnets reported by Shinagawa et al., especially BixYb 3-x
The lattice constant was added by analogy with the lattice constant of Lu 3 Fe 5 O 12 with reference to Fe 5 O 12 , and the Bi substitution limit was determined by extrapolating the Bi substitution limit curve. .

従来、磁気光学素子として用いられているBi
置換希土類鉄ガーネツト単結晶は玉城らにより日
本応用磁気学会誌Vol8,No.2,P.125(1984年)
に報告されている攪拌すくい上げフラツクス法に
よるもの、及び腰塚らにより日本応用磁気学会誌
Vol8,No.2,P.129(1984年)に報告されている
液相エピタキシヤル成長によるものであつて、そ
れらのBi置換量はいずれも、前者の組成がBi1.15
Gd1.85Fe5O12、後者の組成がYb2.25Pr0.34Bi0.73
Fe3.66Ga1.02O12と上記品川らの報告したBi置換限
界を起えてはいなかつた。
Bi conventionally used as magneto-optical elements
Substituted rare earth iron garnet single crystal was published by Tamaki et al. in Japanese Journal of Applied Magnetics Vol. 8, No. 2, P. 125 (1984).
by the stirred scooping flux method reported in , and by Koshizuka et al. in the Journal of the Japanese Society of Applied Magnetics.
Vol. 8, No. 2, P. 129 (1984) by liquid phase epitaxial growth, and the amount of Bi substitution in both of them is that the former composition is Bi 1.15.
Gd 1.85 Fe 5 O 12 , the latter has a composition of Yb 2.25 Pr 0.34 Bi 0.73
Fe 3.66 Ga 1.02 O 12 and the Bi substitution limit reported by Shinagawa et al. mentioned above did not occur.

ところが最近、J−P.KRUMMEらがアプラ
イド オプデイクス 23巻、8号、1184頁(1984
年)(APPLIED OPTICS vol 23.No.8、P.1184
(1984年))に報告し、また日比谷らが、第45回応
用物理学会技術講演会(1984年秋季)13P−L−
4で発表したように、液相エピタキシヤル成長で
上記品川らの報告したBi置換限界を超えるもの
がある。
However, recently, J-P.
) (APPLIED OPTICS vol 23.No.8, P.1184
(1984)), and Hibiya et al.
4, there are some liquid-phase epitaxial growth methods that exceed the Bi substitution limit reported by Shinagawa et al.

発明が解決しようとする問題点 上記Bi置換限界を超える多量Bi置換希土類鉄
ガーネツトはスパツタ法で積層したアモルフアス
を熱処理によつて単結晶化した報告もあるが、磁
気光学素子としては、低損失、高アイソレーシヨ
ン比を得るために結晶性の良いものが必要である
ため、液相エピタキシヤル成長したものがよい。
Problems to be Solved by the Invention There are reports of rare earth iron garnets substituted with a large amount of Bi exceeding the above Bi substitution limit to be made into single crystals by heat treatment from amorphous amorphous laminated by a sputtering method. Since a material with good crystallinity is required to obtain a high isolation ratio, it is preferable to use a material grown by liquid phase epitaxial growth.

液相エピタキシヤル成長は基板の格子定数によ
つて、その上に成長可能な膜の格子定数が制御さ
れる。上記品川らの報告によると、Bi置換希土
類鉄ガーネツトはBi置換量に伴つて格子定数が
大きくなり、また母材ガーネツトの格子定数の小
さいものほど同一Bi置換量のBi置換希土類鉄ガ
ーネツトの格子定数は小さくなる。この様子は第
3図よりわかる。
In liquid phase epitaxial growth, the lattice constant of a film that can be grown on the substrate is controlled by the lattice constant of the substrate. According to the report by Shinagawa et al. mentioned above, the lattice constant of Bi-substituted rare earth iron garnet increases with the Bi substitution amount, and the smaller the lattice constant of the base material garnet, the lower the lattice constant of Bi-substituted rare earth iron garnet with the same Bi substitution amount. becomes smaller. This situation can be seen from Figure 3.

従つて、同一基板上にできるだけ多くBi置換
したガーネツトを得るためには、母材ガーネツト
の格子定数ができるだけ小さいことが望ましい。
希土類鉄ガーネツト中で最も格子定数の小さいも
のはLu3Fe5O12の12.28Åであるが、これら母材と
するBi置換希土類鉄ガーネツトのBi置換限界は
上記品川らの報告による第3図には記載されてい
ないので、BixLu3-xFe5O12(0x3)の格子
定数の変化をLu3Fe5O12の格子定数12.28Åを通
り、BixYb3-xFe5O12(0x3)の格子定数の
変化と平行な直線であると仮定し、該BixLu3-x
Fe5O12の格子定数の変化の直線に向つて、各希
土類鉄ガーネツトでのBi置換限界曲線を外挿し、
交点のBi置換量をBi置換限界とした。これによ
ると、BixLu3-xFe5O12のBi置換限界量はx=1.0
であり、今までに上記BixLu3-xFe5O12のBi置換
限界を超えて、Bi多量置換希土類鉄ガーネツト
を成長した例はない。
Therefore, in order to obtain garnet substituted with as much Bi as possible on the same substrate, it is desirable that the lattice constant of the base material garnet be as small as possible.
Among the rare earth iron garnets, Lu 3 Fe 5 O 12 has the smallest lattice constant of 12.28 Å, but the Bi substitution limit of these base metal Bi-substituted rare earth iron garnets is shown in Figure 3 reported by Shinagawa et al. is not described, so we can change the lattice constant of BixLu 3-x Fe 5 O 12 (0x3) by passing through the lattice constant of Lu 3 Fe 5 O 12 , 12.28Å , and Assuming that it is a straight line parallel to the change in lattice constant, the BixLu 3-x
Extrapolate the Bi substitution limit curve for each rare earth iron garnet toward the straight line of change in the lattice constant of Fe 5 O 12 ,
The Bi substitution amount at the intersection point was taken as the Bi substitution limit. According to this, the Bi substitution limit amount of BixLu 3-x Fe 5 O 12 is x = 1.0
So far, there has been no example of growing Bi-substituted rare earth iron garnet exceeding the Bi substitution limit of BixLu 3-x Fe 5 O 12 mentioned above.

また、液相エピタキシヤル成長においては、基
板と成長膜の熱膨張率の違いにより、成長温度か
ら室温まで温度降下させたときに成長膜が割れた
り、割れなくても歪による損失が大きくなり、消
光比が劣化するので、できるだけ低温で成長する
必要がある。
In addition, in liquid phase epitaxial growth, due to the difference in thermal expansion coefficient between the substrate and the grown film, the grown film may crack when the temperature is lowered from the growth temperature to room temperature, or even if it does not crack, losses due to strain increase. Since the extinction ratio deteriorates, it is necessary to grow at as low a temperature as possible.

本発明は、液相エピタキシヤル成長の融液の混
合比を選択することにより、従来より報告されて
いるLu3Fe5O12へのBi量置換限界を超えて、多量
Bi置換希土類鉄ガーネツトを液相エピタキシヤ
ル成長し、これにより、1.3μm領域の波長でフア
ラデー回転能が大きく、光パワーの損失が低く、
かつ高消光比の磁気光学結晶を割れなく得ること
ができる成長方法を示すことを目的としている。
The present invention enables a large amount of Bi to be replaced by Lu 3 Fe 5 O 12 by selecting the mixing ratio of the melt for liquid phase epitaxial growth.
Bi-substituted rare earth iron garnet is grown by liquid phase epitaxial growth, which has high Faraday rotation ability at wavelengths in the 1.3 μm region and low optical power loss.
The purpose of this study is to demonstrate a growth method that can produce a magneto-optic crystal with a high extinction ratio without cracking.

問題点を解決するための手段 本発明は上記問題点を解決するため、融液とし
てB2O3,PbO,Bi2O3,Fe2O3及びLu2O3よりな
る混合液で、PbO+Bi2O3とB2O3のモル比がPbO
+Bi2O3:B2O3=x:1(但し、30≧x≧10)で
あるものを用い、ガーネツト基板として格子定数
が大きく、0.8μmもしくは1.3μmの波長に対して
透明なSm3Fe5O12またはCa−Mq−Zr置換Gd3
Ga5O12を用い、基板と成長膜の膨張係数の違い
による成長膜の歪をできるだけ少なくするために
800℃以下の低温で液相エピタキシヤル成長する
ことにより、組成がBixLu3-xFe5O12(但し、1.0≦
x≦3.0)である磁気光学結晶の製造方法を得る
ものである。
Means for Solving the Problems In order to solve the above problems, the present invention uses a mixed liquid consisting of B 2 O 3 , PbO, Bi 2 O 3 , Fe 2 O 3 and Lu 2 O 3 as a melt, PbO + Bi The molar ratio of 2 O 3 and B 2 O 3 is PbO
+Bi 2 O 3 :B 2 O 3 =x: 1 (30≧x≧10) is used, and Sm 3 which has a large lattice constant and is transparent to wavelengths of 0.8 μm or 1.3 μm is used as a garnet substrate. Fe 5 O 12 or Ca−Mq−Zr substituted Gd 3
Using Ga 5 O 12 , in order to minimize distortion of the grown film due to the difference in expansion coefficient between the substrate and the grown film.
By liquid phase epitaxial growth at a low temperature of 800℃ or less, the composition becomes Bi x Lu 3-x Fe 5 O 12 (however, 1.0≦
The present invention provides a method for manufacturing a magneto-optic crystal in which x≦3.0).

作 用 本発明は上記した製造方法により以下のように
作用します。母材ガーネツトであるLu3Fe5O12
格子定数が希土類鉄ガーネツト中で最も小さいた
め、格子定数の大きなSm3Ga5O12もしくはCa−
Mq−Zr置換Gd3Ga5O12基板上に液相エピタキシ
ヤル成長するとBi原子の置換量の多いBixLu3-x
Fe5O12(但し、1.0≦x≦3.0)が得られフアラデ
ー回転能は使用波長1.3μmで絶対値が約
2800deg/cm以上、0.8μmで絶対値が約2800deg/
cm以上、0.8μmで絶対値が約3000deg/cm以上の
高い値を得ることができる。そのため磁気光学素
子として使用する際に薄くすることができ、低吸
収損失、低歪による高消光比を得ることができ
る。さらに本発明の製造方法で示したように、融
液中のPbO+Bi2O3とB2O3のモル比がPbO+Bi2
O3:B2O3=x:1(但し、30>x>10)とするこ
とにより、(1)低温成長が可能になる、(2)Bi置換
量が多くすることができる。そのために、(1)成長
温度が低いので、成長終了後室温に戻したときに
生じる基板と成長膜の熱膨張係数差による歪が小
さいため、割れにくく、また(2)Bi置換量が多い
ため、高フアラデー回転能となり、フアラデー回
転子として必要な膜厚、通常は45degのフアラデ
ー回転角を得るだけの膜厚を従来の約1/2近くま
で薄くすることができ、基板と成長膜の熱膨張係
数差によつて生じる室温における基板と成長膜の
格子定数差による割れを防ぐことができるとい
う、2つの理由から結晶の割れを防ぐことができ
ると同時に、(1)成長温度が低いことによる低歪の
ため、高消光比であり、(2)高Bi置換のため、高
フアラデー回転能であり、フアラデー回転子とし
ての膜厚が薄いために、透過光の光パワーの損失
を少なくすることができ、磁気光学素子の特性を
高フアラデー回転能、低損失、高消光とすること
ができる。その上、基板としてSm3Fe5O12もしく
はCa−Mg−Zr置換Gd3Ga5O12を用いているの
で、光の波長としてSm3Fe5O12は0.8μm、Ca−
Mg−Zr置換Gd3Ga5O12に対しては0.8μmと1.3μm
と一般に光通信で多く用いられている帯域を用い
ることができる。
Function The present invention works as follows using the manufacturing method described above. Since the lattice constant of Lu 3 Fe 5 O 12 , which is the base metal garnet, is the smallest among the rare earth iron garnets, Sm 3 Ga 5 O 12 or Ca-
BixLu 3-x with a large amount of Bi atom substitution when grown by liquid phase epitaxial growth on Mq-Zr substituted Gd 3 Ga 5 O 12 substrate
Fe 5 O 12 (however, 1.0≦x≦3.0) is obtained, and the Faraday rotation ability has an absolute value of approximately 1.3 μm at the wavelength used.
2800deg/cm or more, the absolute value is approximately 2800deg/cm at 0.8μm
cm or more and 0.8 μm, it is possible to obtain a high absolute value of about 3000 deg/cm or more. Therefore, when used as a magneto-optical element, it can be made thin, and a high extinction ratio due to low absorption loss and low distortion can be obtained. Furthermore, as shown in the production method of the present invention, the molar ratio of PbO + Bi 2 O 3 and B 2 O 3 in the melt is PbO + Bi 2
By setting O 3 :B 2 O 3 =x:1 (30>x>10), (1) low temperature growth becomes possible, and (2) the amount of Bi substitution can be increased. For this reason, (1) the growth temperature is low, so the strain caused by the difference in thermal expansion coefficient between the substrate and the grown film is small when the temperature is returned to room temperature after growth, so it is less likely to crack; and (2) the amount of Bi substitution is large. , it has a high Faraday rotation ability, and the film thickness required for a Faraday rotator, which is usually enough to obtain a Faraday rotation angle of 45 degrees, can be reduced to about half of the conventional film thickness. It is possible to prevent crystal cracking for two reasons: (1) cracking due to the difference in lattice constant between the substrate and the grown film at room temperature caused by the difference in expansion coefficient can be prevented; (2) High Faraday rotation ability due to high Bi substitution; and thin film thickness as a Faraday rotator to reduce loss of optical power of transmitted light. Therefore, the characteristics of the magneto-optical element can be made high Faraday rotation ability, low loss, and high extinction. Moreover, since Sm 3 Fe 5 O 12 or Ca-Mg-Zr substituted Gd 3 Ga 5 O 12 is used as the substrate, the wavelength of light Sm 3 Fe 5 O 12 is 0.8 μm, Ca-
0.8 μm and 1.3 μm for Mg−Zr substituted Gd 3 Ga 5 O 12
Bands commonly used in optical communications can be used.

実施例 実施例として、Bi2O3,PbO,B2O3,Fe2O3
びLu2O3より混合され、その混合モル比が次の式
に示す値をとる融液より液相エピタキシヤル成長
させた磁気光学素子を示す。
Example As an example, liquid phase epitaxy was performed using a melt mixed with Bi 2 O 3 , PbO, B 2 O 3 , Fe 2 O 3 and Lu 2 O 3 and whose mixing molar ratio takes the value shown in the following formula. This figure shows a magneto-optical element grown in a single layer.

Fe2O3/Lu2O3=10 PbO+Bi2O3/B2O3=15 Fe2O3+Lu2O3/Fe2O3+Lu2O3+B2O3+Bi2O3+PbO=0.
1 Bi2O3/PbO=1.0 実施例 1 格子定数12.439ÅのSm3Fe5O12基板上に成長温
度690℃でエピタキシヤル成長させたガーネツト
膜は組成がBi1.3Lu1.7Fe5O12であり、使用波長が
それぞれ、0.8μm、1.15μm及び1.3μmでのフアラ
デー回転能の絶対値は9600°/cm、3200°/cm及び
2100°/cmであつた。
Fe 2 O 3 /Lu 2 O 3 =10 PbO+Bi 2 O 3 /B 2 O 3 =15 Fe 2 O 3 +Lu 2 O 3 /Fe 2 O 3 +Lu 2 O 3 +B 2 O 3 +Bi 2 O 3 +PbO=0 .
1 Bi 2 O 3 /PbO=1.0 Example 1 A garnet film epitaxially grown on a Sm 3 Fe 5 O 12 substrate with a lattice constant of 12.439 Å at a growth temperature of 690°C has a composition of Bi 1.3 Lu 1.7 Fe 5 O 12. The absolute values of Faraday rotation ability are 9600°/cm, 3200°/cm and
It was 2100°/cm.

実施例 2 格子定数12.497ÅのCa−Mg−Zr置換Gd3Ga5
O12基板上に成長温度665℃でエピタキシヤル成
長させたガーネツト膜は組成がBi1.5Lu1.5Fe5O12
であり、使用波長がそれぞれ、0.8μm、1.15μm及
び1.3μmでのフアラデー回転能の絶対値は
11500°/cm、3900°/cm、及び2800°/cmであつた。
Example 2 Ca-Mg-Zr substituted Gd 3 Ga 5 with lattice constant of 12.497 Å
The garnet film epitaxially grown on an O 12 substrate at a growth temperature of 665°C has a composition of Bi 1.5 Lu 1.5 Fe 5 O 12
The absolute value of the Faraday rotation ability when the wavelength used is 0.8 μm, 1.15 μm, and 1.3 μm, respectively, is
They were 11500°/cm, 3900°/cm, and 2800°/cm.

実施例 3 格子定数12.497ÅのCa−Mg−Zr置換Gd3Ga5
O12基板上に成長温度640℃でエピタキシヤル成
長させたガーネツト膜は組成がBi1.8Lu1.2Fe5O12
であり、使用波長がそれぞれ0.8μm、1.15μm及び
1.3μmでのフアラデー回転能の絶対値は13000°/
cm、4800°/cm、及び3800°/cmであつた。また、
波長1.3μmにおける45degのフアラデーを得るの
み必要な膜厚は118μmであつた。
Example 3 Ca-Mg-Zr substituted Gd 3 Ga 5 with lattice constant of 12.497 Å
The garnet film epitaxially grown on an O 12 substrate at a growth temperature of 640°C has a composition of Bi 1.8 Lu 1.2 Fe 5 O 12
The wavelengths used are 0.8μm, 1.15μm and
The absolute value of Faraday rotation ability at 1.3μm is 13000°/
cm, 4800°/cm, and 3800°/cm. Also,
The film thickness necessary to obtain a Faraday of 45 degrees at a wavelength of 1.3 μm was 118 μm.

第1図及び第2図に本実施例で得られた磁気光
学素子BixLu3-xFe5O12のBi組成xに対するフア
ラデー回転能及び格子定数の関係をそれぞれ示し
た。第1図は本実施例の組成BixLu3-xFe5O12
磁気光学素子のBi組成xに対する波長1.3μmでの
フアラデー回転能の関係を示したグラフ、第2図
は本実施例の組成BixLu3-xFe5O12の磁気光学素
子のBi組成xに対する格子定数の関係を示す。
FIGS. 1 and 2 respectively show the relationship between the Faraday rotation ability and the lattice constant with respect to the Bi composition x of the magneto-optical element BixLu 3-x Fe 5 O 12 obtained in this example. Figure 1 is a graph showing the relationship between the Faraday rotation ability at a wavelength of 1.3 μm and the Bi composition x of the magneto-optical element with the composition BixLu 3-x Fe 5 O 12 of this example, and Figure 2 is the graph of the composition of this example The relationship between the lattice constant and the Bi composition x of a BixLu 3-x Fe 5 O 12 magneto-optical element is shown.

なお、本発明は上記実施例の融液からの液相エ
ピタキシヤル成長させた磁性ガーネツト膜のみな
らず、本発明の特許請求の範囲を満足するいずれ
の融液から成長させた磁性ガーネツト膜であつて
組成がBixLu3-xFe5O12(但し、1.0≦x≦3.0)で
あればよい。
Note that the present invention is not limited to the magnetic garnet film grown by liquid phase epitaxial growth from the melt of the above embodiment, but also covers any magnetic garnet film grown from any melt that satisfies the claims of the present invention. It is sufficient if the composition is BixLu 3-x Fe 5 O 12 (1.0≦x≦3.0).

発明の効果 本発明の製造方法により、従来不可能とされて
いた組成BixLu3-xFe5O12(但し、1.0≦x≦3.0)
を実現し高フアラデー回転能を得ることができ、
フアラデー回転子としての膜厚を薄くすることが
できた。また、必要な膜厚が薄くなり、成長温度
も従来に比べて約100℃低いために、基板と成長
膜との熱膨張係数の差による成長まくの割れ、歪
などお影響を少なくすることができ、特に従来割
れなどの問題のあつたフアラデー回転子の液相エ
ピタキシヤル成長での厚膜成長に関して有効であ
つた。さらに、本発明の組成を本発明の製造方法
で成長すると使用波長1.3μmでのフアラデー回転
能3000°/cm以上の磁気光学素子を得ることがで
きた。この素子で45degのフアラデー回転角が得
られるフアラデー回転子の膜厚は150μm以下であ
り、基板の両側にエピタキシヤル成長すれば片側
の膜厚は75μm以下であつた。その上、光通信用
として一般に用いられている光波長0.8μmと
1.3μmに対して、Sm3Ga5O12は0.8μm、Ca−Mg
−Zr置換Gd3Ga5O12は0.8μmと1.3μmの両方とそ
れぞれ吸収の少ない基板を用いているので、磁気
光学素子として光通信用部品に使用する際に基板
をも光が通過する構成としても用いることができ
る。
Effects of the Invention The production method of the present invention produces a composition BixLu 3-x Fe 5 O 12 that was previously considered impossible (however, 1.0≦x≦3.0)
It is possible to obtain high Faraday rotation ability,
The film thickness for the Faraday rotator could be made thinner. In addition, the required film thickness is thinner and the growth temperature is approximately 100°C lower than conventional methods, which reduces the effects of cracking and distortion during growth due to the difference in thermal expansion coefficient between the substrate and the grown film. It was particularly effective for thick film growth in liquid phase epitaxial growth of Faraday rotators, which conventionally had problems such as cracking. Further, when the composition of the present invention was grown by the manufacturing method of the present invention, a magneto-optical element with a Faraday rotation ability of 3000°/cm or more at the wavelength of 1.3 μm could be obtained. The film thickness of the Faraday rotator that provides a Faraday rotation angle of 45 degrees in this device was 150 μm or less, and if it was epitaxially grown on both sides of the substrate, the film thickness on one side would be 75 μm or less. Moreover, the optical wavelength is 0.8 μm, which is commonly used for optical communication.
1.3 μm, Sm 3 Ga 5 O 12 is 0.8 μm, Ca−Mg
-Zr-substituted Gd 3 Ga 5 O 12 uses substrates with low absorption of both 0.8 μm and 1.3 μm, so when used as a magneto-optical element in optical communication components, it is configured so that light also passes through the substrate. It can also be used as

従つて本発明の製造方法を用いれば、高フアラ
デー回転能、低損失、高消光比の磁気光学素子を
得ることができた。
Therefore, by using the manufacturing method of the present invention, it was possible to obtain a magneto-optical element with high Faraday rotation ability, low loss, and high extinction ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における組成
BixLu3-xFe5O12の磁気光学素子のBi組成xに対
する波長1.3μmでのフアラデー回転能の関係を示
す図、第2図は同実施例の組成BixLu3-xFe5O12
の磁気光学素子のBi組成xに対する格子定数の
関係を示す図、第3図は従来の技術として
JAPAN.J.APPL.PHYS.vol 13.No.10,P.1663
(1984年)に発表された組成BixRe3-xFe5O12(Re
は希土類)で表わされる焼結体希土類鉄ガーネツ
トのBi置換量とBi置換希土類鉄ガーネツトの格
子定数の関係及び各希土類鉄ガーネツトのBi置
換限界を示す図である。
Figure 1 shows the composition of an embodiment of the present invention.
Figure 2 shows the relationship between the Faraday rotation ability at a wavelength of 1.3 μm and the Bi composition x of a magneto-optical element of BixLu 3 - x Fe 5 O 12 .
Figure 3 shows the relationship between the lattice constant and the Bi composition x of the magneto-optical element.
JAPAN.J.APPL.PHYS.vol 13.No.10, P.1663
(1984) announced the composition BixRe 3-x Fe 5 O 12 (Re
1 is a diagram showing the relationship between the amount of Bi substitution in a sintered rare earth iron garnet (represented by rare earth metal) and the lattice constant of the Bi-substituted rare earth iron garnet, and the Bi substitution limit of each rare earth iron garnet.

Claims (1)

【特許請求の範囲】 1 ガーネツト基板上にBixLu3-xFe5O12(1.0≦x
≦3.0)の組成を有する磁気光学素子を液相エピ
タキシヤル成長する磁気光学素子の製造方法であ
つて、 前記BixLu3-xFe5O12を成長させるための融液
が、 Bi2O3,PbO,B2O3,Fe2O3及びLu2O3より混
合され、前記融液のPbO+Bi2O3とB2O3の混合モ
ル比がPbO+Bi2O3:B2O3=y:1(但し、30≧
y≧10)であることを特徴とする磁気光学素子の
製造方法。 2 融液の成分であるFe2O3とLu2O3、Bi2O3
PbO、及びFe2O3+Lu2O3とBi2O3+PbO+B2O3
+Fe2O3+Lu2O3の混合モル比がそれぞれ、Fe2
O3:Lu2O3=a:1(5≦a≦30)、Bi2O3:PbO
=b:1(0.5≦b<1.5)、及びFe2O3+Lu2O3
Bi2O3+PbO+B2O3+Fe2O3+Lu2O3=c:1
(0.75≦c≦1.3)であることを特徴とする特許請
求の範囲第1項記載の磁気光学素子の製造方法。 3 液相エピタキシヤル成長温度が800℃以下で
あることを特徴とする特許請求の第1項記載の磁
気光学素子の製造方法。 4 ガーネツト基板がGd3Ga5O12であることを特
徴とする特許請求の範囲第1項記載の磁気光学素
子の製造方法。 5 ガーネツト基板がSm3Ga5O12であることを
特徴とする特許請求の範囲第1項記載の磁気光学
素子の製造方法。 6 ガーネツト基板がGa−Mg−Zr置換Gd3Ga5
O12である特許請求の範囲第1項記載の磁気光学
素子の製造方法。
[Claims] 1 Bi x Lu 3-x Fe 5 O 12 (1.0≦x
≦3.0), wherein the melt for growing the Bi x Lu 3-x Fe 5 O 12 is Bi 2 O. 3 , PbO, B 2 O 3 , Fe 2 O 3 and Lu 2 O 3 are mixed, and the mixing molar ratio of PbO + Bi 2 O 3 and B 2 O 3 in the melt is PbO + Bi 2 O 3 :B 2 O 3 = y: 1 (however, 30≧
y≧10). 2 Fe 2 O 3 , Lu 2 O 3 , Bi 2 O 3 and the components of the melt
PbO, and Fe 2 O 3 + Lu 2 O 3 and Bi 2 O 3 + PbO + B 2 O 3
The mixing molar ratio of +Fe 2 O 3 +Lu 2 O 3 is Fe 2
O 3 :Lu 2 O 3 =a: 1 (5≦a≦30), Bi 2 O 3 :PbO
= b: 1 (0.5≦b<1.5), and Fe 2 O 3 + Lu 2 O 3 :
Bi 2 O 3 +PbO+B 2 O 3 +Fe 2 O 3 +Lu 2 O 3 =c:1
The method for manufacturing a magneto-optical element according to claim 1, wherein (0.75≦c≦1.3). 3. The method for manufacturing a magneto-optical element according to claim 1, wherein the liquid phase epitaxial growth temperature is 800° C. or lower. 4. The method for manufacturing a magneto-optical element according to claim 1, wherein the garnet substrate is Gd 3 Ga 5 O 12 . 5. The method for manufacturing a magneto-optical element according to claim 1, wherein the garnet substrate is Sm 3 Ga 5 O 12 . 6 Garnet substrate is Ga-Mg-Zr substituted Gd 3 Ga 5
The method for manufacturing a magneto-optical element according to claim 1, wherein the magneto-optical element is O12 .
JP2033185A 1985-02-05 1985-02-05 Magneto-optical element and its production Granted JPS61179415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2033185A JPS61179415A (en) 1985-02-05 1985-02-05 Magneto-optical element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2033185A JPS61179415A (en) 1985-02-05 1985-02-05 Magneto-optical element and its production

Publications (2)

Publication Number Publication Date
JPS61179415A JPS61179415A (en) 1986-08-12
JPH0533769B2 true JPH0533769B2 (en) 1993-05-20

Family

ID=12024154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033185A Granted JPS61179415A (en) 1985-02-05 1985-02-05 Magneto-optical element and its production

Country Status (1)

Country Link
JP (1) JPS61179415A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230527A (en) * 1987-03-17 1988-09-27 Matsushita Electric Ind Co Ltd Magneto-optical element
JP2022182829A (en) * 2021-05-28 2022-12-08 信越化学工業株式会社 Q switch structure and manufacturing method for q switch structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147320A (en) * 1983-02-10 1984-08-23 Matsushita Electric Ind Co Ltd Optical non-reciprocal element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147320A (en) * 1983-02-10 1984-08-23 Matsushita Electric Ind Co Ltd Optical non-reciprocal element

Also Published As

Publication number Publication date
JPS61179415A (en) 1986-08-12

Similar Documents

Publication Publication Date Title
EP0330500B1 (en) Magneto-optic garnet
JPH0533769B2 (en)
JPS62143893A (en) Growth of magneto-optical crystal
JP2001044026A (en) Magnetic garnet single crystal and faraday rotator using the same
JPH0576611B2 (en)
JP2924282B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP2874319B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP2001044027A (en) Magnetic garnet single crystal and faraday rotator using the same
JPS60134404A (en) Magnetooptical material
JP2867736B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
WO1994017437A1 (en) Magneto-optical element
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
EP0368483A2 (en) Magneto-optical material
JPH11100300A (en) Bismuth-substituted garnet material and its production
JPS62138397A (en) Magnetic garnet material for magneto-optical element
JP2841260B2 (en) Magneto-optical element
JPH0774118B2 (en) Method for manufacturing magneto-optical element
JP2843433B2 (en) Bi-substituted magnetic garnet and magneto-optical element
JPH0642026B2 (en) Magneto-optical element material
JPH101398A (en) Faraday element and its production
JP2831279B2 (en) Magneto-optical element material
Roland Isothermal growth of epitaxial garnets: liquidus relations in a portion of a garnet-flux system
JP2011256073A (en) Method for manufacturing bismuth-substituted type rare earth iron garnet crystal film
JPH0688876B2 (en) Magneto-optical crystal
JPH0375516B2 (en)