JPS63230527A - Magneto-optical element - Google Patents

Magneto-optical element

Info

Publication number
JPS63230527A
JPS63230527A JP6154387A JP6154387A JPS63230527A JP S63230527 A JPS63230527 A JP S63230527A JP 6154387 A JP6154387 A JP 6154387A JP 6154387 A JP6154387 A JP 6154387A JP S63230527 A JPS63230527 A JP S63230527A
Authority
JP
Japan
Prior art keywords
magneto
optical element
rare earth
garnet
iron garnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6154387A
Other languages
Japanese (ja)
Inventor
Osamu Kamata
修 鎌田
Takashi Minemoto
尚 峯本
Satoshi Ishizuka
石塚 訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6154387A priority Critical patent/JPS63230527A/en
Publication of JPS63230527A publication Critical patent/JPS63230527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To obtain a magneto-optical element having excellent sensitivity, a slight temperature change and improved productivity, containing mixed crystal of rare earth iron garnet consisting of Bi, Y, Lu, Fe and O in a given component ratio, by especially prescribing sum of La, Y and Lu. CONSTITUTION:The magneto-optical element of this invention has mixed crystal of rare earth iron garnet shown by the formula. The formula has relationship of 0<=X<=0.4 or 0<=Y<=2.6 or 0<=Z<=2.6 and 0<=X+Y+Z<=2.6. For example, (Bi1.2La0.166Y1.634)Fe5O12 may be cited as the mixed crystal of rare earth iron garnet. The magneto-optical element is preferably obtained by epitaxial growth on a substrate consisting of rare earth garnet crystal. The magneto-optical element is useful in magnetic field sensor of light application or light modulation device using Faraday effect.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ファラデー効果を利用した光応用磁界センサ
光応用電流センナ、光変調器等に用いられる磁気光学素
子に関し、特にそれに用いるガーネット結晶に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a magneto-optical element used in optical magnetic field sensors, optical current sensors, optical modulators, etc. that utilize the Faraday effect, and particularly relates to garnet crystals used therein. be.

従来の技術 最近、磁界強度を光を用いて測定する方法として、磁気
光学効果を利用する方法が提案されている。例えば、入
間らによる文献アイイーイーイー(IEIEIりQK−
1s、1619 (1982)75(ある0 特に電流が流れている導体の周りの磁界強度を測定して
電流を検知する方法は、光を媒体とするために絶縁性が
良好である。電磁誘導ノイズを受けないなどの特徴を持
つ。第2図にファラデー効果を用いた磁界の測定方法の
原理図を示す。第2図において磁界H中に磁気光学素子
11が配置されている。この磁気光学素子の両端に、互
いに直線偏光の最大透過偏光方向が46度傾けられた偏
光子12と検光子13が配置されである。ファラデー効
果により偏光面は磁界強度Hに比例して回転を受ける。
BACKGROUND OF THE INVENTION Recently, a method using magneto-optic effect has been proposed as a method for measuring magnetic field strength using light. For example, Iruma et al.
1s, 1619 (1982) 75 (certain 0) In particular, the method of detecting current by measuring the magnetic field strength around a conductor through which current flows uses light as a medium and has good insulation. Electromagnetic induction noise Figure 2 shows a principle diagram of a magnetic field measurement method using the Faraday effect. In Figure 2, a magneto-optical element 11 is placed in a magnetic field H. This magneto-optical element A polarizer 12 and an analyzer 13 are arranged at both ends of the polarizer 12, in which the directions of maximum transmission polarization of linearly polarized light are tilted by 46 degrees.The plane of polarization is rotated in proportion to the magnetic field strength H due to the Faraday effect.

回転を受けた偏光は、検光子3を透過後回転角θは光量
変化に変換される。その時の光出力は次式で示される。
After the rotated polarized light passes through the analyzer 3, the rotation angle θ is converted into a change in light amount. The optical output at that time is expressed by the following equation.

Pout=K(1+5in2θ)・・・・・・・・・(
1)ここで、θ=VH1、Poutは光出力、には比例
定数、θはファラデー回転角〔度〕、vはヴエルデ定数
と呼ばれるもので単位は〔度/cII&・Oe ]であ
り、磁気光学素子の感度を示すものである。
Pout=K(1+5in2θ)・・・・・・・・・(
1) Here, θ=VH1, Pout is the optical output, is a proportionality constant, θ is the Faraday rotation angle [degrees], and v is the Weerde constant, whose unit is [degrees/cII&・Oe]. It shows the sensitivity of the element.

発明が解決しようとする問題点 従来、磁界センサ用の磁気光学素子には種々のものがあ
る。次表にその代表例を示す。表中にヴエルデ定数とそ
の温度変化を示す。
Problems to be Solved by the Invention Conventionally, there are various types of magneto-optical elements for magnetic field sensors. The following table shows typical examples. The table shows Weerde's constant and its temperature change.

なお、表の最下行には、特開昭55−121422号公
報に開示された希土類鉄ガーネット結晶の場合も示しで
ある。
In addition, the bottom row of the table also shows the case of rare earth iron garnet crystal disclosed in JP-A-55-121422.

この表を一見してわかる様に、1〜40反磁性体のヴエ
ルデ定数は小さく、高感度なセンサは望めない。
As can be seen at a glance from this table, the Weerde constants of 1-40 diamagnetic materials are small, and highly sensitive sensors cannot be expected.

又、6の(’rb0.15’ ”o、al)3 ”50
12のヴヱルデ定数の大きなものを用いた磁界センサで
も、最小検出感度は0.0206と従来のものに比較し
て一ケタ程度の改善にとどまるという結果が得られてい
る。またその温度変化は±1%と従来通りであシ、また
その製造方法はFlux法によるものであり、生産性が
悪いという閉頭がある。
Also, 6's ('rb0.15' ``o, al) 3'' 50
Even with a magnetic field sensor using a large Welde constant of 12, the minimum detection sensitivity is 0.0206, which is an improvement of only about one order of magnitude compared to the conventional sensor. Further, the temperature change is ±1%, which is the same as before, and the manufacturing method is the Flux method, which has the drawback of poor productivity.

本発明は、かかる問題点を鑑みてなされたもので、さら
に感度が大きく、温度変化がさらに少なく、生産性も向
上した磁気光学素子を提供する事を目的としている。
The present invention has been made in view of these problems, and an object of the present invention is to provide a magneto-optical element that has greater sensitivity, less temperature change, and improved productivity.

問題点を解決するための手段 本発明は上記問題点を解決するために、一般式%式% 類鉄ガーネット混晶において0≦X≦0.4又はQ≦Y
<−2,e又は0≦2≦2.6トし、がっ0≦X+Y+
Z≦2.6である磁気光学素子を与えるものであり、望
むらくは、希土類ガーネット結晶からなる基板上にエピ
タキシャル成長して得られる磁気光学素子を用いるもの
である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention solves the above problems by using the general formula % 0≦X≦0.4 or Q≦Y in iron-like garnet mixed crystals.
<-2, e or 0≦2≦2.6, and 0≦X+Y+
The present invention provides a magneto-optical element in which Z≦2.6, and preferably uses a magneto-optical element obtained by epitaxial growth on a substrate made of rare earth garnet crystal.

作用 本発明は感度が大きく、温度変化が少なく、生産性が良
く低コストな磁気光学素子を提供するものであり、その
理由を以下に説明する。
Function The present invention provides a magneto-optical element that has high sensitivity, little temperature change, good productivity, and low cost.The reason for this is explained below.

Biで置換された希土類鉄ガーネットのファラデー回転
能は、第3図に示す様に従来のBiを含まないものに比
較して一ケタ程度大きくなる事が報告されている。した
がって、磁界センサ用の磁気光学素子としてB1で置換
された希土類鉄ガーネットを用いる事で感度が大きくな
る。しかしながら、その感度の温度特性は明らかにされ
ていない。希土類鉄ガーネットは強磁性体であり、飽和
磁化Msに相当する外部磁界が印加されると、ファラデ
ー回転も飽和する。これを第4図に示す。磁界センサと
しては、飽和するまでのファラデー回転角が直線的に変
化する部分を用い、感度には、で表わされる。θ、ば、
ファラデー回転能である。
It has been reported that the Faraday rotation ability of rare earth iron garnet substituted with Bi is about one order of magnitude larger than that of conventional garnet containing no Bi, as shown in FIG. Therefore, sensitivity is increased by using rare earth iron garnet substituted with B1 as a magneto-optical element for a magnetic field sensor. However, the temperature characteristics of its sensitivity have not been clarified. Rare earth iron garnet is a ferromagnetic material, and when an external magnetic field corresponding to saturation magnetization Ms is applied, Faraday rotation is also saturated. This is shown in FIG. As a magnetic field sensor, a part in which the Faraday rotation angle changes linearly until saturation is used, and the sensitivity is expressed as. θ, b,
Faraday rotation ability.

さらにθ、ば、飽和磁化Msに依存している。希土類が
非磁性原子、例えば、Lu、Y、Luである場合、θr
及びMSの温度変化は、 θF(T)=−ムM、■+B Mb■    ・・・・
・・(3)Ms (T)=  l MA(T)  Mt
+(T)l      −−(4)で示される。MA(
1)、 MD(T)は、それぞれ、オクタヘドラルサイ
ト、テトラヘドラルサイトの副格子磁化の温度変化を示
す。
Furthermore, θ, B, depends on the saturation magnetization Ms. When the rare earth is a nonmagnetic atom, for example, Lu, Y, Lu, θr
And the temperature change of MS is θF(T)=-M,■+B Mb■...
...(3) Ms (T) = l MA (T) Mt
+(T)l --(4). MA(
1) and MD(T) indicate temperature changes in sublattice magnetization of octahedralsite and tetrahedralsite, respectively.

従って、(3) 、 @)式を(2)式に代入すると、
となり、ム=Bの条件のもとど、 となり、温度変化を示さない事になる。
Therefore, by substituting equation (3), @) into equation (2), we get
Therefore, under the condition of Mu=B, it becomes and shows no temperature change.

Bi置換鉄ガーネットの場合、希土類が非磁性原子、例
えば、Lu又はY又はLaであれば、Bi置換量が04
以上の時にA=]3の条件が満される。
In the case of Bi-substituted iron garnet, if the rare earth is a non-magnetic atom, for example, Lu or Y or La, the amount of Bi substitution is 0.4
In the above case, the condition A=]3 is satisfied.

従って、(B i3−< x+Y+2) L a x 
YY L u z ) F e s O12で、0≦X
≦OA、0≦Y≦2.6又は0≦Z≦2.60の組成を
持つ磁気光学素子は、ム=Bの条件を満たし、その感度
にの温度変化はない。さらに、XとYとZの値を適当に
選択して、例えばed3Ga50..1v様な希土類ガ
ーネット基板と格子定数を一致させる事によって、生産
性が良く、低コスト化がはかれる。エピタキシャル成長
法でこれらの磁気光学素子を得る事ができる。    
゛実施例 第1図に本発明による一実施例を示す。本発明による磁
気光学素子(B11.2 ”0..66Y+、654)
”50121を、格子定数12496ムを持つ市販のC
a、Mg。
Therefore, (B i3-< x+Y+2) L a x
YY L u z ) Fe s O12, 0≦X
A magneto-optical element having a composition of ≦OA, 0≦Y≦2.6, or 0≦Z≦2.60 satisfies the condition of Mu=B, and its sensitivity does not change with temperature. Furthermore, by appropriately selecting the values of X, Y, and Z, for example, ed3Ga50. .. By matching the lattice constant with that of a rare earth garnet substrate such as 1V, productivity can be improved and costs can be reduced. These magneto-optical elements can be obtained by epitaxial growth.
゛Embodiment Fig. 1 shows an embodiment according to the present invention. Magneto-optical element according to the present invention (B11.2"0..66Y+, 654)
``50121 is a commercially available C with a lattice constant of 12496 mm.
a, Mg.

Zr置換GGG基板2上に、pbo系Fluxを用いた
液相エピタキシャル成長法で、厚み300μmを成長さ
せたものである。
It is grown to a thickness of 300 μm on a Zr-substituted GGG substrate 2 by a liquid phase epitaxial growth method using pbo-based Flux.

この磁気光学素子の感度には、K:1.4度10e−c
sであり、従来の(Tbo、19Yo、8.)3Fe5
01□に比較して、4倍の感度向上を示しており、さら
に−100〜+120″Cの温度範囲において、Kの温
度変化は、±0.1%以内となっており、従来の±1%
に比較して一ケタの向上がはかられている。
The sensitivity of this magneto-optical element is K: 1.4 degrees 10e-c
s, and the conventional (Tbo, 19Yo, 8.)3Fe5
Compared to 01□, it shows a four-fold improvement in sensitivity, and in the temperature range of -100 to +120''C, the temperature change in K is within ±0.1%, compared to the conventional ±1 %
This is a one-digit improvement compared to .

なお本実施例においては、基板にC&、Mg、Zr置換
GGG基板を用いたが、本発明による磁気光学素子の格
子定数と一致するならば、Gd s Ga s 012
やSm5Sm5G、2の様に、どの様な基板を用いても
良い。
In this example, a C&, Mg, Zr substituted GGG substrate was used as the substrate, but if it matches the lattice constant of the magneto-optical element according to the present invention, Gd s Ga s 012
Any type of substrate may be used, such as Sm5Sm5G,2.

なお本発明を磁界センサ用磁気光学素子として説明して
来たが、この素子は、光電流センサ、光変調器用として
も用いられるものである。
Although the present invention has been described as a magneto-optical element for a magnetic field sensor, this element can also be used for a photocurrent sensor or an optical modulator.

発明の効果 以上述べてきた様に本発明によれば、磁気光学素子とし
て、感度が大きく、温度変化が無く、生産性に豊んだ素
子を与えるもので、その工業的価値は大きい。
Effects of the Invention As described above, the present invention provides a magneto-optical element with high sensitivity, no temperature change, and high productivity, which has great industrial value.

4、簡単な図面の説明 第1図は本発明の一実施例の磁気光学素子を示す断面図
、第2図は磁界センサの基本原理を説明するだめの原理
図、第3図はBi置換量に対するファラデー回転能θy
の増加を説明するための特性図、第4図は希土類鉄ガー
ネット結晶の外部磁界に対するファラデー効果を説明す
るだめの特性図である。
4. Brief explanation of the drawings Fig. 1 is a cross-sectional view showing a magneto-optical element according to an embodiment of the present invention, Fig. 2 is a principle diagram for explaining the basic principle of a magnetic field sensor, and Fig. 3 shows the amount of Bi substitution. Faraday rotational power θy for
FIG. 4 is a characteristic diagram for explaining the Faraday effect on the external magnetic field of rare earth iron garnet crystals.

1 ””” (B11.2 ”0.166 ”+、63
4 )Fe50+2.2”””GG(、基板。
1 ””” (B11.2 ”0.166 ”+, 63
4) Fe50+2.2"""GG (, substrate.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
(k+、z  La、oms  Yt、b34ンFe5
Otz/I−一皿気光隻素子 t?−一偏九子 第2図     13−務−5t、五 凪界h 第3図 BムI換1(X) 第4図 S → タト都λ運気71(°トA
Name of agent: Patent attorney Toshio Nakao and 1 other person1-
(k+, z La, oms Yt, b34n Fe5
Otz/I-One plate Qikosen element t? - One-pate multiplication table 2nd figure 13-mu-5t, Gonagikai h Figure 3 B Mu I exchange 1 (X)

Claims (2)

【特許請求の範囲】[Claims] (1)一般式(Bi_3_−_(_X_+_Y_+_Z
_)La_XY_YLu_Z)Fe_5O_1_2で示
される希土類鉄ガーネット混晶を含み、上記一般式にお
いて0≦X≦0.4又は0≦Y≦2.6又は0≦Z≦2
.6とし、かつ0≦X+Y+Z≦2.6としてなる磁気
光学素子。
(1) General formula (Bi_3_-_(_X_+_Y_+_Z
_) La_XY_YLu_Z) Fe_5O_1_2 Contains a rare earth iron garnet mixed crystal, and in the above general formula, 0≦X≦0.4 or 0≦Y≦2.6 or 0≦Z≦2
.. 6, and 0≦X+Y+Z≦2.6.
(2)希土類鉄ガーネット混晶は、希土類ガーネット結
晶からなる基板上にエピタキシャル成長して形成する特
許請求の範囲第1項記載の磁気光学素子。
(2) The magneto-optical element according to claim 1, wherein the rare earth iron garnet mixed crystal is formed by epitaxial growth on a substrate made of rare earth garnet crystal.
JP6154387A 1987-03-17 1987-03-17 Magneto-optical element Pending JPS63230527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6154387A JPS63230527A (en) 1987-03-17 1987-03-17 Magneto-optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6154387A JPS63230527A (en) 1987-03-17 1987-03-17 Magneto-optical element

Publications (1)

Publication Number Publication Date
JPS63230527A true JPS63230527A (en) 1988-09-27

Family

ID=13174136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6154387A Pending JPS63230527A (en) 1987-03-17 1987-03-17 Magneto-optical element

Country Status (1)

Country Link
JP (1) JPS63230527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291028A (en) * 1987-05-25 1988-11-28 Furukawa Electric Co Ltd:The Farady element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622699A (en) * 1979-07-18 1981-03-03 Sperry Rand Corp Magnetooptical bi1lu2fe5o12 crystal
JPS61115259A (en) * 1984-11-12 1986-06-02 Fujitsu Ltd Photomagnetic recording medium
JPS61179415A (en) * 1985-02-05 1986-08-12 Matsushita Electric Ind Co Ltd Magneto-optical element and its production
JPS61191598A (en) * 1985-02-18 1986-08-26 Seiko Epson Corp Preparation of single crystal
JPS6389495A (en) * 1986-09-30 1988-04-20 Toshiba Corp Production of garnet ferrite single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622699A (en) * 1979-07-18 1981-03-03 Sperry Rand Corp Magnetooptical bi1lu2fe5o12 crystal
JPS61115259A (en) * 1984-11-12 1986-06-02 Fujitsu Ltd Photomagnetic recording medium
JPS61179415A (en) * 1985-02-05 1986-08-12 Matsushita Electric Ind Co Ltd Magneto-optical element and its production
JPS61191598A (en) * 1985-02-18 1986-08-26 Seiko Epson Corp Preparation of single crystal
JPS6389495A (en) * 1986-09-30 1988-04-20 Toshiba Corp Production of garnet ferrite single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291028A (en) * 1987-05-25 1988-11-28 Furukawa Electric Co Ltd:The Farady element

Similar Documents

Publication Publication Date Title
Nishihara et al. Magnetic Phase Transitions in Itinerant Electron Magnets Hf1-x Ta x Fe2
US4896103A (en) Current measuring magnetic field sensor having magnetooptic element with its easy axis of magnetization at right angles to the magnetic field generated by the current
JPH04324817A (en) Magneto-optical element and magnetic field measuring device
KR960035055A (en) Magneto-optical elements and photo-magnetic sensors
Foner et al. Pulsed Critical Field Measurements in Magnetic Systems
EP0811851B1 (en) Faraday rotator having a rectangular shaped hysteresis
Deeter et al. Faraday-effect magnetic field sensors based on substituted iron garnets
JPS63230527A (en) Magneto-optical element
Kamada et al. Magneto‐optical properties of (BiGdY) 3Fe5O12 for optical magnetic field sensors
Okamoto et al. Galvanomagnetic effects in Gd‐Co sputtered films
Deeter High sensitivity fiber-optic magnetic field sensors based on iron garnets
Okubo et al. Magnetic field optical sensors using (TbY) IG crystals with stripe magnetic domain structure
JPS62150185A (en) Magnetic field measuring apparatus
Kamada Magneto‐optical properties of (BiGdY) iron garnets for optical magnetic field sensors
US6031654A (en) Low magnet-saturation bismuth-substituted rare-earth iron garnet single crystal film
Inoue et al. Chiral Molecule‐Based Magnets
Guillot et al. Contribution of the terbium ion to the Faraday Rotation of terbium-yttrium ferrite garnets
Umezawa et al. Temperature dependence of Faraday rotation in Bi‐substituted terbium iron garnet films
Kamada et al. Application of bismuth-substituted iron garnet films to magnetic field sensors
JPS61242997A (en) Magnetic field-measuring device
Fratello et al. Effect of diamagnetic substitution on growth‐induced anisotropy in (YBi) 3Fe5O12
Löffler et al. A neutron depolarization study on dysprosium and terbium
JP3269101B2 (en) Magneto-optical film
Caplin et al. A new approach to the magnetic measurement of critical currents in superconducting discs and films
JP3458012B2 (en) Magnetic field sensor