JP3458012B2 - Magnetic field sensor - Google Patents

Magnetic field sensor

Info

Publication number
JP3458012B2
JP3458012B2 JP26448594A JP26448594A JP3458012B2 JP 3458012 B2 JP3458012 B2 JP 3458012B2 JP 26448594 A JP26448594 A JP 26448594A JP 26448594 A JP26448594 A JP 26448594A JP 3458012 B2 JP3458012 B2 JP 3458012B2
Authority
JP
Japan
Prior art keywords
magnetic field
film
magneto
optical element
field sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26448594A
Other languages
Japanese (ja)
Other versions
JPH08105949A (en
Inventor
浩光 梅澤
洋一 鈴木
智和 井村
次雄 徳増
弘 陸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP26448594A priority Critical patent/JP3458012B2/en
Publication of JPH08105949A publication Critical patent/JPH08105949A/en
Application granted granted Critical
Publication of JP3458012B2 publication Critical patent/JP3458012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気光学効果を利用し
た磁界センサに関し、更に詳しく述べると、磁気光学素
子としてLPE法(液相エピタキシャル法)により育成
した補償温度をもつビスマス置換鉄ガーネット単結晶膜
を用いる磁界センサに関するものである。この磁界セン
サは、特に数十Oe以下の微弱な磁界を測定する場合に
有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field sensor utilizing the magneto-optical effect. More specifically, it is a bismuth-substituted iron garnet unit having a compensation temperature grown by the LPE method (liquid phase epitaxial method) as a magneto-optical element. The present invention relates to a magnetic field sensor using a crystal film. This magnetic field sensor is particularly useful when measuring a weak magnetic field of several tens Oe or less.

【0002】[0002]

【従来の技術】磁気光学効果を利用した磁界センサは、
光を利用することから、電気絶縁性や無誘導性などの特
徴があり、既に電力分野などで実用化されている。この
種の磁界センサは、基本的には、第1の偏光子と、磁気
光学素子と、第2の偏光子を、この順序で配列し、光源
から測定光を入射し、透過光を光検出器で測定する構成
である。磁気光学素子としては、ファラデー回転係数が
大きいという点から、通常、磁性ガーネット膜が用いら
れている。
2. Description of the Related Art A magnetic field sensor utilizing the magneto-optical effect is
Since it uses light, it has characteristics such as electrical insulation and non-induction, and has already been put to practical use in the field of electric power and the like. In this type of magnetic field sensor, basically, a first polarizer, a magneto-optical element, and a second polarizer are arranged in this order, measurement light is incident from a light source, and transmitted light is detected by light. It is a configuration to measure with a container. As the magneto-optical element, a magnetic garnet film is usually used because it has a large Faraday rotation coefficient.

【0003】被測定磁界Hに対する光検出光量Iは、光
の波長を磁性ガーネット膜の吸収が無視できる近赤外領
域とした時、次式で表される。 I=I0 (1+H× sin(2θF ×d)/HS ) 但し、H :外部磁界 I0 :外部磁界Hが零のときの光量 θF :膜のファラデー回転係数 d :膜厚 HS :膜の飽和に要する磁界 である。従って、被測定磁界がΔHだけ変化した時の光
検出光量の変化をΔIとすると、センサの感度Aは、 A=ΔI/(ΔH・I0 )= sin(2θF ×d)/HS (/Oe) となる。電力用の磁界センサの場合は、一般に、被測定
磁界Hは数十〜数百Oeである。
The amount of light I detected for the magnetic field H to be measured is expressed by the following equation when the wavelength of light is in the near infrared region where the absorption of the magnetic garnet film can be ignored. I = I 0 (1 + H × sin (2θ F × d) / H S ), where H: external magnetic field I 0 : amount of light when external magnetic field H is zero θ F : Faraday rotation coefficient of film d: film thickness H S : The magnetic field required for film saturation. Therefore, if the change in the light detection light amount when the magnetic field to be measured changes by ΔH is ΔI, the sensitivity A of the sensor is A = ΔI / (ΔH · I 0 ) = sin (2θ F × d) / H S ( / Oe). In the case of a magnetic field sensor for electric power, the measured magnetic field H is generally several tens to several hundreds Oe.

【0004】これに対して数十Oe以下の微弱な磁界を
測定できる高感度の磁界センサが求められている。例え
ば、永久磁石の微小な磁界の不均一さの検出や、精密な
実験用として数十Vの電力線の無誘導な電流測定、ある
いは小型モータの回転速度の検出などである。このた
め、膜の飽和磁化を小さくして飽和に要する磁界HS
小さくすることにより感度Aを大きくすることを目指
し、(GdBi)3 (FeAlGa)5 12で表される
組成のビスマス置換鉄ガーネット単結晶膜を磁界センサ
に応用することが提案され、HS =200Oe、従って
感度Aとして0.12が得られている(特開平3−24
9565号公報)。
On the other hand, there is a demand for a highly sensitive magnetic field sensor capable of measuring a weak magnetic field of several tens Oe or less. For example, it is possible to detect the inhomogeneity of a minute magnetic field of a permanent magnet, to measure a non-inductive current of a power line of several tens of V for precise experiments, or to detect the rotation speed of a small motor. Therefore, with the aim of increasing the sensitivity A by reducing the saturation magnetization of the film to reduce the magnetic field H S required for saturation, the bismuth-substituted iron having the composition represented by (GdBi) 3 (FeAlGa) 5 O 12 is used. It has been proposed to apply a garnet single crystal film to a magnetic field sensor, and H S = 200 Oe, and therefore a sensitivity A of 0.12 has been obtained (JP-A-3-24).
9565).

【0005】ところが、この膜の−10〜+60℃の温
度範囲での変動率は、±30〜40%と大きい欠点があ
る。そこで、この欠点を改善するため、上記の磁性ガー
ネット膜に、波長の異なる2種類の測定光を透過させ、
これらの出力差から、被測定磁界強度を求める技術(特
開平4−143679号公報)、あるいは膜厚の異なる
2枚の磁性ガーネット膜を用い、各々を透過した光の光
量差から被測定磁界の強度を求める技術(特開平4−1
43680号公報)が提案されている。
However, the fluctuation rate of this film in the temperature range of -10 to + 60 ° C has a large defect of ± 30 to 40%. Therefore, in order to improve this drawback, the above-mentioned magnetic garnet film is made to pass two types of measurement light having different wavelengths,
A technique for determining the magnetic field strength to be measured from these output differences (Japanese Patent Laid-Open No. 4-143679) or two magnetic garnet films having different film thicknesses are used, and the magnetic field difference to be measured is calculated from the difference in the amount of light transmitted through each film. Technology for determining strength (Japanese Patent Laid-Open No. 4-1
Japanese Patent No. 43680) has been proposed.

【0006】[0006]

【発明が解決しようとする課題】前記のように磁界セン
サの感度を向上させるためには、膜の飽和磁化を小さく
して飽和に要する磁界HS を小さくすることが必要であ
る。飽和磁化の小さなLPE膜としては、前記の(Gd
Bi)3 (FeAlGa)5 12が代表例であるが、そ
れはこの組成の膜は補償温度TCOMPをもち、それが使用
温度(室温)に近いことに起因している。ところが、補
償温度をもつ膜組成の場合は、磁化やファラデー回転角
の磁場依存性にヒステリシスが生じる。
As described above, in order to improve the sensitivity of the magnetic field sensor, it is necessary to reduce the saturation magnetization of the film to reduce the magnetic field H S required for saturation. As the LPE film having a small saturation magnetization, the above (Gd
Bi) 3 (FeAlGa) 5 O 12 is a typical example because the film having this composition has a compensation temperature T COMP , which is close to the operating temperature (room temperature). However, in the case of a film composition having a compensation temperature, hysteresis occurs in the magnetic field dependence of magnetization and Faraday rotation angle.

【0007】このようなヒステリシスがあると、磁界セ
ンサによる測定に大きな誤差が生じる。静磁界、例えば
永久磁石のミクロな磁界の不均一さを検出するような場
合、ヒステリシスは測定誤差に決定的に影響する。また
交流磁界、例えば電力送電線の回りに生じる磁界を検出
することによって送電電流を測定する場合、ヒステリシ
スがあると、交流周波数の2倍波、3倍波の発生となっ
て現れる。つまり50Hzの基本波以外に100Hz、15
0Hzの倍波成分が混在し、出力の安定性が悪くなり高い
精度が得られない。基本周波数一定の条件であれば、素
子を選別することで、ある程度対応可能であるが、モー
タの回転速度を磁界の変化を検出することによって測定
するなど、周波数不定の磁界を測定するような場合に
は、ヒステリシスは倍波成分を誘起するため、大幅な精
度低下をもたらす。
Such hysteresis causes a large error in measurement by the magnetic field sensor. In the case of detecting static magnetic fields, for example inhomogeneities of the microscopic magnetic field of permanent magnets, the hysteresis has a decisive influence on the measurement error. When the transmission current is measured by detecting an AC magnetic field, for example, a magnetic field generated around an electric power transmission line, if there is a hysteresis, a second harmonic wave or a third harmonic wave of the AC frequency appears. That is, in addition to the fundamental wave of 50Hz, 100Hz, 15
High-accuracy cannot be obtained because the 0Hz harmonic component is mixed and the output stability deteriorates. If the basic frequency is constant, it is possible to deal with it to some extent by selecting the element, but when measuring the magnetic field of indefinite frequency such as measuring the motor rotation speed by detecting the change of the magnetic field. In addition, since hysteresis induces a harmonic component, it brings about a great decrease in accuracy.

【0008】そこで、膜にヒステリシスがある場合に
は、予めヒステリシス特性を記憶した電気回路を設け
て、その都度、検出値を補正するなどの対策を採ること
もある。しかし、ヒステリシス自体、必ずしも再現性が
高いとは言えないので、電気回路で補正したとしても高
精度の計測は期待できない。また、同じ膜から作製した
チップであってもヒステリシスはチップ毎に異なるの
で、比較的良好なものを選別する必要があるが、それは
コストアップの要因になっている。
Therefore, when the film has hysteresis, a countermeasure may be taken such as providing an electric circuit in which hysteresis characteristics are stored in advance and correcting the detected value each time. However, since the hysteresis itself is not necessarily highly reproducible, high-accuracy measurement cannot be expected even if it is corrected by an electric circuit. In addition, even chips made of the same film have different hysteresis, so it is necessary to select relatively good ones, which causes a cost increase.

【0009】また前記のように、波長の異なる2種類の
測定光を用いる構成や、膜厚の異なる2枚の磁性ガーネ
ット膜を用いる構成は、感度の改善に効果があるもの
の、いずれも装置が複雑化し、大型となるし、コストア
ップを招来する。
Further, as described above, the structure using two kinds of measuring light beams having different wavelengths and the structure using two magnetic garnet films having different film thicknesses are effective in improving the sensitivity, but both of them are provided by the apparatus. It becomes complicated, large-sized, and costly.

【0010】結局、ヒステリシスループが囲む面積がほ
ぼ零にならないと、基本的な問題解決とはならない。更
に、前記の膜の問題点は、未飽和磁界の消光比が非常に
低下することと、磁気ドメインの幅が光ビーム径に対し
て大きいことがあり、これらも測定誤差の要因となって
いる。
After all, unless the area surrounded by the hysteresis loop becomes almost zero, the basic problem cannot be solved. Further, the problems of the above-mentioned film are that the extinction ratio of the unsaturated magnetic field is extremely lowered and that the width of the magnetic domain is large with respect to the light beam diameter, which also cause the measurement error. .

【0011】本発明の目的は、補償温度をもつビスマス
置換鉄ガーネットLPE膜からなる磁気光学素子を用
い、磁化やファラデー回転角の磁場依存性にヒステリシ
スが殆ど無く、そのため電気的な補正回路が不要で、ま
た単純な構成でも検出感度が高く、測定誤差を小さくで
きる磁界センサを提供することである。
An object of the present invention is to use a magneto-optical element composed of a bismuth-substituted iron garnet LPE film having a compensation temperature, and there is almost no hysteresis in the magnetic field dependence of the magnetization and the Faraday rotation angle, so that an electrical correction circuit is unnecessary. It is also to provide a magnetic field sensor that has a high detection sensitivity even with a simple configuration and can reduce the measurement error.

【0012】[0012]

【課題を解決するための手段】本発明者らは、LPE法
により育成された補償温度をもつビスマス置換鉄ガーネ
ット単結晶膜を熱処理し、熱処理前後でのファラデー回
転角の磁界依存性に関するヒステリシス等の性質を研究
した。その結果、ある特定の条件で熱処理すると、ファ
ラデー回転角や飽和磁化、飽和に要する磁界は変わらず
に、ヒステリシスループの囲む面積Sが大きく減少し、
更に最適条件では該面積Sがほぼ零になることを見出し
た。また同時に、この熱処理によって磁気ドメインの幅
が非常に狭くなることを見出した。本発明は、かかる事
実の知得に基づき完成したものである。
The inventors of the present invention heat-treat a bismuth-substituted iron garnet single crystal film grown by the LPE method and having a compensating temperature to obtain hysteresis etc. concerning the magnetic field dependence of the Faraday rotation angle before and after the heat treatment. Studied the nature of. As a result, when the heat treatment is performed under a certain specific condition, the Faraday rotation angle, the saturation magnetization, and the magnetic field required for the saturation are not changed, and the area S surrounded by the hysteresis loop is greatly reduced.
Further, it has been found that the area S becomes almost zero under the optimum conditions. At the same time, they also found that this heat treatment significantly reduced the width of the magnetic domain. The present invention has been completed based on the knowledge of such facts.

【0013】本発明は、基本的には図1に示すように、
第1の偏光子10と、膜状の磁気光学素子12と、第2
の偏光子14を、この順序で配列し、光源16からの測
定光を第1の偏光子10を通して磁気光学素子12の膜
面に対して垂直に入射し、その透過光を第2の偏光子1
4を通して光検出器18で測定する構成の磁界センサで
ある。この磁界センサは、磁気光学素子の磁化が未飽和
な領域での磁界を測定するものである。ここで本発明の
特徴は、前記磁気光学素子12として、液相エピタキシ
ャル法により育成され、補償温度をもつビスマス置換鉄
ガーネット単結晶膜を、1110℃以上、1190℃以
下の温度で、且つ9時間以内のトップ条件で熱処理し
ヒステリシスの囲む面積Sを0.5Kdeg/Oe以下とし
膜を用いる点である。
Basically, the present invention is as shown in FIG.
The first polarizer 10, the film-shaped magneto-optical element 12, and the second
Are arranged in this order, and the measurement light from the light source 16 is incident perpendicularly to the film surface of the magneto-optical element 12 through the first polarizer 10 and the transmitted light is transmitted to the second polarizer. 1
4 is a magnetic field sensor configured to be measured by the photodetector 18 through 4. In this magnetic field sensor, the magnetization of the magneto-optical element is not saturated
It measures the magnetic field in various areas. Here, a feature of the present invention is that the magneto-optical element 12 is a bismuth-substituted iron garnet single crystal film grown by a liquid phase epitaxial method and having a compensation temperature at a temperature of 1110 ° C. or higher and 1190 ° C. or lower for 9 hours. was heat-treated at top conditions within,
The point is to use a film having an area S surrounded by hysteresis of 0.5 Kdeg / Oe or less .

【0014】磁気光学素子の膜組成としては、(GdB
i)3 (FeAlGa)5 12が好ましい。また、その
熱処理条件としては、1120℃以上、1180℃以下
の温度で、且つ7時間以内のトップ条件が好ましく、特
に1150℃で2時間〜7時間保持するというトップ条
件が最適である。
The film composition of the magneto-optical element is (GdB
i) 3 (FeAlGa) 5 O 12 is preferred. As the heat treatment condition, a top condition of a temperature of 1120 ° C. or more and 1180 ° C. or less and within 7 hours is preferable, and particularly, a top condition of holding at 1150 ° C. for 2 hours to 7 hours is optimal.

【0015】上記の熱処理条件は、実施例の項で述べる
種々の実験結果から導き出された。このような範囲とす
る理由は、以下の通りである。1110℃未満ではヒス
テリシス低減の効果が見られない。また1190℃を超
えると、ファラデー回転角が低下する。これはビスマス
が結晶中から飛散することによると考えられる。更に9
時間を超えると飽和に要する磁界HS が増加する。これ
は垂直磁気異方性が低下し、面内磁化膜に近づいたため
と考えられる。
The above heat treatment conditions were derived from the results of various experiments described in the section of Examples. The reason for setting such a range is as follows. If the temperature is lower than 1110 ° C, the effect of reducing the hysteresis cannot be seen. If it exceeds 1190 ° C, the Faraday rotation angle decreases. It is considered that this is because bismuth is scattered from the crystal. 9 more
When the time is exceeded, the magnetic field H S required for saturation increases. It is considered that this is because the perpendicular magnetic anisotropy was lowered and the film became closer to the in-plane magnetized film.

【0016】[0016]

【作用】LPE法により育成した補償温度をもつビスマ
ス置換鉄ガーネット単結晶膜に適切な熱処理を施すと、
ファラデー回転角や飽和磁化、飽和に要する磁界は変わ
らずに、ファラデー回転角の磁界依存性に関するヒステ
リシスの囲む面積Sが大きく減少し、更に最適条件では
該面積Sがほぼ零になる。それと同時に、未飽和磁界の
消光比が向上し、磁気ドメイン幅が減少する。
When the bismuth-substituted iron garnet single crystal film having the compensation temperature grown by the LPE method is appropriately heat-treated,
The Faraday rotation angle, the saturation magnetization, and the magnetic field required for saturation do not change, and the area S surrounded by the hysteresis related to the magnetic field dependence of the Faraday rotation angle is greatly reduced, and the area S becomes almost zero under the optimum conditions. At the same time, the extinction ratio of the unsaturated magnetic field is improved and the magnetic domain width is reduced.

【0017】[0017]

【実施例】LPE法により育成した(GdBi)3 (F
eAlGa)5 12の単結晶膜を2×7×0.36mmに
加工し、2×7mmの面を鏡面にした。なお基板は削り取
った。単結晶膜の具体的組成はGd2.02Bi0.98Fe
4.43Al0.44Ga0.1312であり、これは−5℃に補償
温度を有する。熱処理は、白金板上に素子を載せて電気
炉に入れ、大気雰囲気で行った。昇温速度及び降温速度
はそれぞれ120℃/時で一定とし、最高温度(トップ
温度)と保持時間を種々変えて行った。結晶の評価は、
ファラデー回転測定は波長1.31μmの光を用い、電
磁石で磁界を変えて測定した。飽和磁化の測定にはVS
Mを用い、磁気ドメインは赤外線カメラを取り付けた金
属顕微鏡で測定した。測定結果を、表1に示す。また、
これらの実験結果により決定した本発明の熱処理条件を
図2に示す。
[Example] (GdBi) 3 (F) grown by the LPE method
A single crystal film of eAlGa) 5 O 12 was processed into 2 × 7 × 0.36 mm, and the 2 × 7 mm surface was made a mirror surface. The substrate was scraped off. The specific composition of the single crystal film is Gd 2.02 Bi 0.98 Fe
4.43 Al 0.44 Ga 0.13 O 12 , which has a compensation temperature at -5 ° C. The heat treatment was performed by placing the element on a platinum plate and placing it in an electric furnace in an air atmosphere. The rate of temperature increase and the rate of temperature decrease were constant at 120 ° C./hour, and the maximum temperature (top temperature) and the holding time were variously changed. Crystal evaluation is
The Faraday rotation measurement was performed by using light having a wavelength of 1.31 μm and changing the magnetic field with an electromagnet. VS for measuring saturation magnetization
The magnetic domains were measured with a metallurgical microscope equipped with an infrared camera. The measurement results are shown in Table 1. Also,
The heat treatment conditions of the present invention determined by these experimental results are shown in FIG.

【0018】[0018]

【表1】 [Table 1]

【0019】表1において、ヒステリシスが非対称(熱
処理しない場合には非対称が甚だしい)の場合、保磁力
Hc は2Hc を2で割った値とし、Sはファラデー回転
角の磁界依存性に関するヒステリシスの囲む面積であり
単位をkdeg/Oeとした。未処理膜のファラデー回転と消
光比の磁場依存性の測定結果を図4のA,Bに示す。未
処理の場合は素子毎に特性のばらつきが大きく、代表的
なもの2種を示した。保磁力Hc が小さいものもある
が、ヒステリシスの面積Sはいずれも大きい。また消光
比は未飽和領域で15dB以下まで低下する。1150
℃で3時間、熱処理した磁気光学素子(本発明品)のフ
ァラデー回転の磁場依存性の測定結果を図3に示す。ヒ
ステリシスの囲む面積Sが0.1kdeg/Oeで、消光比は
30dB以上が得られている。
In Table 1, when the hysteresis is asymmetric (asymmetry is significant when not heat-treated), the coercive force Hc is a value obtained by dividing 2Hc by 2, and S is the area surrounded by the hysteresis related to the magnetic field dependence of the Faraday rotation angle. And the unit was kdeg / Oe. The Faraday rotation of the untreated film and the measurement results of the magnetic field dependence of the extinction ratio are shown in FIGS. When untreated, there was a large variation in the characteristics of each element, and two typical types were shown. Some have a small coercive force Hc, but the hysteresis area S is large. Further, the extinction ratio drops to 15 dB or less in the unsaturated region. 1150
FIG. 3 shows the measurement results of the magnetic field dependence of the Faraday rotation of the magneto-optical element (product of the present invention) heat-treated at 3 ° C. for 3 hours. The area S surrounded by the hysteresis is 0.1 kdeg / Oe, and the extinction ratio is 30 dB or more.

【0020】未処理のままの膜の磁気ドメインを図6に
示し、それに1150℃で3時間の熱処理を施した後の
膜の磁気ドメインを図5に示す。未処理膜では磁気ドメ
イン幅が約0.11mmであるのに対して、熱処理膜では
0.04mmと非常に狭くなっていることが分かる。
FIG. 6 shows the magnetic domains of the untreated film, and FIG. 5 shows the magnetic domains of the film after heat treatment at 1150 ° C. for 3 hours. It can be seen that the untreated film has a magnetic domain width of about 0.11 mm, whereas the heat-treated film has a very narrow width of 0.04 mm.

【0021】図2において、斜線を施した領域(境界線
も含む)が本発明における熱処理のトップ条件の範囲で
ある(表1で試料番号6〜11及び13)。なお熱処理
は炉内で昇温−トップ条件維持−降温というプロセスを
経るので、トップ条件は保持時間が零の場合(即ち、昇
温して所定温度に達した後、直ちに降温するという処
理)も含む。熱処理温度が1110℃未満の場合(試料
番号1〜5)は、保磁力Hc が大きくなり、ヒステリシ
スが囲む面積Sが低減しない。1190℃を超えると
(試料番号14及び15)、ファラデー回転角が減少す
るため膜厚を厚くしなければならなくなるし、表面が荒
れてくる。これはビスマスが結晶中から飛散するためと
考えられ組成もずれてくる。熱処理時間が9時間を超え
るほど長くなると(試料番号12)、飽和に要する磁界
S が増加する。これは垂直磁気異方性が低下し、面内
磁化膜に近づくためと考えられる。これら種々実験した
結果、特に、温度1150℃で、7時間の熱処理が最適
であった。また熱処理無しの場合は、素子毎に特性のば
らつきが大きかったが、熱処理を施すと、特性上でのば
らつきは殆ど生じなかった。
In FIG. 2, the shaded region (including the boundary line) is the range of the top conditions of the heat treatment in the present invention (Sample Nos. 6 to 11 and 13 in Table 1). Since the heat treatment goes through a process of raising the temperature, maintaining the top condition, and lowering the temperature in the furnace, the top condition is that the holding time is zero (that is, the process of raising the temperature to a predetermined temperature and then immediately lowering the temperature). Including. When the heat treatment temperature is lower than 1110 ° C. (Sample Nos. 1 to 5), the coercive force Hc becomes large and the area S surrounded by the hysteresis is not reduced. When the temperature exceeds 1190 ° C (Sample Nos. 14 and 15), the Faraday rotation angle decreases, so that the film thickness must be increased and the surface becomes rough. It is considered that this is because bismuth scatters from the inside of the crystal, and the composition also shifts. When the heat treatment time becomes longer than 9 hours (Sample No. 12), the magnetic field H S required for saturation increases. It is considered that this is because the perpendicular magnetic anisotropy decreases and approaches the in-plane magnetized film. As a result of these various experiments, a heat treatment at a temperature of 1150 ° C. for 7 hours was optimum. In the case where the heat treatment was not performed, there was a large variation in the characteristics among the elements, but when the heat treatment was performed, there was almost no variation in the characteristics.

【0022】最適熱処理条件において、波長1.31μ
m、膜厚191μmの場合、 ファラデー回転角θF =−1180deg/cm 飽和に要する磁界HS =84Oe sin(2θF ×d)=1 であり、感度定数Aとして、A=0.012が得られ
た。
A wavelength of 1.31 μm under optimum heat treatment conditions
When the film thickness is m and the film thickness is 191 μm, the Faraday rotation angle θ F = -1180 deg / cm, the magnetic field required for saturation H S = 84 Oe sin (2θ F × d) = 1, and A = 0.012 is obtained as the sensitivity constant A. Was given.

【0023】[0023]

【発明の効果】本発明は上記のように、補償温度をもつ
ビスマス置換鉄ガーネット単結晶のLPE膜に、適切な
条件で熱処理した磁気光学素子を用いる磁界センサなの
で、その基本的な特徴を保持しつつ、飽和に要する磁界
及び保磁力を小さくでき、同時にヒステリシスの囲む面
積Sを大幅に低減できる(ほぼ零近くにすることができ
る)。その結果、電気的な補正回路が不要となり、最も
単純な構成でも測定誤差が大きく減少するため、装置の
小形化を図ることができる。また、熱処理によってチッ
プ毎のばらつきが無くなり、コスト低減に大きく寄与し
うる。更に、未飽和磁界での消光比が向上し、磁気ドメ
イン幅が減少するため、それに起因する測定誤差も低減
する。
As described above, the present invention is a magnetic field sensor that uses a magneto-optical element heat-treated under appropriate conditions on an LPE film of bismuth-substituted iron garnet single crystal having a compensation temperature, and therefore retains its basic features. At the same time, the magnetic field and coercive force required for saturation can be reduced, and at the same time, the area S surrounded by hysteresis can be significantly reduced (can be made to be near zero). As a result, an electrical correction circuit is not required, and the measurement error is greatly reduced even with the simplest configuration, so that the device can be downsized. Further, the heat treatment eliminates variations among chips, which can greatly contribute to cost reduction. Further, the extinction ratio in the unsaturated magnetic field is improved and the magnetic domain width is reduced, so that the measurement error caused by it is also reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る磁界センサの基本構成を示す説明
図。
FIG. 1 is an explanatory diagram showing a basic configuration of a magnetic field sensor according to the present invention.

【図2】本発明で用いる磁気光学素子に適用する熱処理
条件の範囲を示す説明図。
FIG. 2 is an explanatory diagram showing a range of heat treatment conditions applied to the magneto-optical element used in the present invention.

【図3】本発明で用いる磁気光学素子のファラデー回転
角と消光比の磁場依存性を示す説明図。
FIG. 3 is an explanatory diagram showing the magnetic field dependence of the Faraday rotation angle and the extinction ratio of the magneto-optical element used in the present invention.

【図4】従来の磁気光学素子のファラデー回転角と消光
比の磁場依存性の例を示す説明図。
FIG. 4 is an explanatory diagram showing an example of magnetic field dependence of a Faraday rotation angle and an extinction ratio of a conventional magneto-optical element.

【図5】本発明で用いる磁気光学素子の磁気ドメインを
示す説明図。
FIG. 5 is an explanatory diagram showing magnetic domains of the magneto-optical element used in the present invention.

【図6】従来の磁気光学素子の磁気ドメインを示す説明
図。
FIG. 6 is an explanatory diagram showing a magnetic domain of a conventional magneto-optical element.

【符号の説明】[Explanation of symbols]

10 第1の偏光子 12 磁気光学素子 14 第2の偏光子 16 光源 18 光検出器 10 First polarizer 12 Magneto-optical element 14 Second polarizer 16 light sources 18 Photodetector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳増 次雄 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (72)発明者 陸川 弘 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (56)参考文献 特開 平3−249565(JP,A) 特開 平6−77081(JP,A) 特許2729464(JP,B2) (58)調査した分野(Int.Cl.7,DB名) G01R 15/24 G01R 33/032 G02F 1/09 505 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsuguo Tokumasu 5-36-11 Shimbashi, Minato-ku, Tokyo Within Fuji Denki Kagaku Co., Ltd. (72) Hiroshi Rikukawa 5-36-11 Shinbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. (56) Reference JP-A-3-249565 (JP, A) JP-A-6-77081 (JP, A) Patent 2729464 (JP, B2) (58) Fields investigated (Int .Cl. 7 , DB name) G01R 15/24 G01R 33/032 G02F 1/09 505

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1の偏光子と、膜状の磁気光学素子
と、第2の偏光子を、この順序で配列し、光源からの測
定光を第1の偏光子を通して磁気光学素子の膜面に対し
て垂直に入射し、その透過光を第2の偏光子を通して光
検出器で測定することにより、磁気光学素子の磁化が未
飽和な領域での磁界を測定する磁界センサにおいて、前
記磁気光学素子として、液相エピタキシャル法により育
成され、補償温度をもつビスマス置換鉄ガーネット単結
晶膜を、1110℃以上、1190℃以下の温度で、且
つ9時間以内のトップ条件で熱処理し、ヒステリシスの
囲む面積Sを0.5Kdeg/Oe以下とした膜を用いること
を特徴とする磁界センサ。
1. A film of a magneto-optical element, in which a first polarizer, a film-shaped magneto-optical element, and a second polarizer are arranged in this order, and measurement light from a light source is passed through the first polarizer. When the incident light is perpendicular to the plane and the transmitted light is measured by the photodetector through the second polarizer , the magnetization of the magneto-optical element is not
In a magnetic field sensor for measuring a magnetic field in a saturated region, a bismuth-substituted iron garnet single crystal film grown by a liquid phase epitaxial method and having a compensation temperature is used as the magneto-optical element at a temperature of 1110 ° C. or higher and 1190 ° C. or lower. , and it was heat-treated at top conditions within 6 hours, of the hysteresis
A magnetic field sensor using a film having an enclosing area S of 0.5 Kdeg / Oe or less .
【請求項2】 磁気光学素子の組成が、(GdBi)3
(FeAlGa)512である請求項1記載の磁界セン
サ。
2. The composition of the magneto-optical element is (GdBi) 3
The magnetic field sensor according to claim 1, which is (FeAlGa) 5 O 12 .
【請求項3】 熱処理のトップ条件が、1150℃で2
時間〜7時間である請求項2記載の磁界センサ。
3. The top condition of heat treatment is 1150 ° C. and 2
The magnetic field sensor according to claim 2, wherein the time is from 7 hours to 7 hours.
JP26448594A 1994-10-04 1994-10-04 Magnetic field sensor Expired - Fee Related JP3458012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26448594A JP3458012B2 (en) 1994-10-04 1994-10-04 Magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26448594A JP3458012B2 (en) 1994-10-04 1994-10-04 Magnetic field sensor

Publications (2)

Publication Number Publication Date
JPH08105949A JPH08105949A (en) 1996-04-23
JP3458012B2 true JP3458012B2 (en) 2003-10-20

Family

ID=17403900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26448594A Expired - Fee Related JP3458012B2 (en) 1994-10-04 1994-10-04 Magnetic field sensor

Country Status (1)

Country Link
JP (1) JP3458012B2 (en)

Also Published As

Publication number Publication date
JPH08105949A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
Gerrits et al. Direct detection of nonlinear ferromagnetic resonance in thin films by the magneto-optical Kerr effect
Arnold et al. Magnetic susceptibility measurements of ultrathin films using the surface magneto-optic Kerr effect: optimization of the signal-to-noise ratio
Didosyan et al. Magneto-optical current sensor by domain wall motion in orthoferrites
JP3458012B2 (en) Magnetic field sensor
Görnert et al. Liquid phase epitaxy (LPE) grown Bi, Ga, Al substituted iron garnets with huge Faraday rotation for magneto‐optic applications
Wagreich et al. Accurate magneto-optic sensitivity measurements of some diamagnetic glasses and ferrimagnetic bulk crystals using small applied AC magnetic fields
Okamoto et al. Galvanomagnetic effects in Gd‐Co sputtered films
Eisenstein et al. High precision de Haas-van Alphen measurements on a two-dimensional electron gas
Kamada et al. Magneto‐optical properties of (BiGdY) 3Fe5O12 for optical magnetic field sensors
Kamada et al. Magnetic field sensors using Ce: YIG single crystals as a Faraday element
JP2912003B2 (en) Method for measuring magnetic properties of superconductors
Harms et al. Automatic Recording of Faraday Rotation and Circular Dichroism
Ueda et al. Scattering anisotropy of conduction electrons due to vacancies in high-purity monocrystalline aluminium
Dillon Jr et al. Optical birefringence in Dy 3 Al 5 O 12 (DAG) in fields along [111]
JPS62150185A (en) Magnetic field measuring apparatus
JP3420217B2 (en) Liquid crystal anchoring strength measuring method and its measuring system
JP3538449B2 (en) Magneto-optical element
JP3269101B2 (en) Magneto-optical film
JPH0241592Y2 (en)
JP3008721B2 (en) Magneto-optical element and magnetic field measuring device
SU1580298A1 (en) Magnetometer
JP3248211B2 (en) Magneto-optical film
JP3269102B2 (en) Magneto-optical film
JPS582434B2 (en) How to measure anisotropic magnetic field
JP2729464B2 (en) Faraday rotator and optical switch using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees