JP3538449B2 - Magneto-optical element - Google Patents

Magneto-optical element

Info

Publication number
JP3538449B2
JP3538449B2 JP08276494A JP8276494A JP3538449B2 JP 3538449 B2 JP3538449 B2 JP 3538449B2 JP 08276494 A JP08276494 A JP 08276494A JP 8276494 A JP8276494 A JP 8276494A JP 3538449 B2 JP3538449 B2 JP 3538449B2
Authority
JP
Japan
Prior art keywords
magnetic field
magneto
optical element
verdet constant
temperature change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08276494A
Other languages
Japanese (ja)
Other versions
JPH07270733A (en
Inventor
広樹 守越
和人 山沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP08276494A priority Critical patent/JP3538449B2/en
Publication of JPH07270733A publication Critical patent/JPH07270733A/en
Application granted granted Critical
Publication of JP3538449B2 publication Critical patent/JP3538449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は磁気光学素子に関し、特
に磁界測定に適した磁性ガーネット結晶より成る磁気光
学素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical device, and more particularly to a magneto-optical device made of a magnetic garnet crystal suitable for measuring a magnetic field.

【0002】[0002]

【従来の技術】磁気光学素子はその飽和磁界よりも小さ
い磁界中ではファラデー回転角が磁界に比例する。この
現象を利用して磁気光学素子から磁界測定を行うセンサ
ーを構成することは良く知られており、高電圧が発生す
る変圧器や遮断機、或いは絶縁性が要求される場所で光
ファイバと組み合わせて使用されている。磁界センサー
に使用される代表的な磁気光学素子(ファラデー素子)
には次のものが知られている。 特開昭58−139082によると、一般式 Bix3-x (Fe5-yy )O12 で表される組成を有する磁性ガーネット薄膜において、
RをYや、La等の希土類元素、MをGa、Al、Ge
等の元素で置換した材料は、ベルデ定数の温度変化が小
さく、磁界を測定する装置を構成した場合の温度安定性
に優れていると記載されている。 また、特開平2−196100号によると、特に組
成を(Y3-x-y HoxBiy )Fe512のように限定
した場合、100℃あたりのベルデ定数の温度変化率が
±2%以内という優れた特性を示す組成範囲が示されて
いる。 さらに、松下電器:日本応用磁気学会講演概要集第
7pA−16頁,1992によると、特に組成を(Y
3-x-y-z Gdx Biy Laz )Fe5-u Gau12のよ
うに限定した場合、100℃あたりのベルデ定数の温度
変化率が1%以内である組成が示されている。また飽和
磁界を下げ、低磁界で感度を高くすることが示されてい
る。
2. Description of the Related Art In a magneto-optical element, the Faraday rotation angle is proportional to the magnetic field in a magnetic field smaller than its saturation magnetic field. It is well known that this phenomenon is used to construct a sensor that measures a magnetic field from a magneto-optical element, and is combined with an optical fiber in a transformer or circuit breaker where high voltage is generated, or where insulation is required. Used. Typical magneto-optical element (Faraday element) used for magnetic field sensors
The following are known: According to JP 58-139082, in the magnetic garnet films having the composition represented by the general formula Bi x R 3-x (Fe 5-y M y) O 12,
R is a rare earth element such as Y or La, and M is Ga, Al, Ge
It is described that a material substituted with an element such as has a small change in the temperature of the Verdet constant and is excellent in temperature stability when a device for measuring a magnetic field is configured. Further, according to JP-A-2-196100, especially when limiting the composition as (Y 3-xy Ho x Bi y) Fe 5 O 12, the temperature change rate of the Verdet constant per 100 ° C. is within 2% ± The composition range showing the excellent characteristics is shown. Furthermore, according to Matsushita Electric Industrial: Abstracts of the Lectures of the Japan Society of Applied Magnetics, p.
3-xyz Gd x Bi y La z) when limited as Fe 5-u Ga u O 12 , the temperature change rate of the Verdet constant per 100 ° C. is illustrated in composition within 1%. It also shows that the saturation magnetic field is lowered and the sensitivity is increased at a low magnetic field.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のの文
献については例示されたBi、R、Mの元素比率によっ
ては、ベルデ定数の温度変化率が10℃あたり数%と大
きく、実用に供しない。この文献には使用できる元素と
して二十数種に及ぶ元素から数種を選択して磁性ガーネ
ット構造を構成するように組み合わせることが記載さ
れ、その中にはRとしてY、La、Ho等を選択でき、
MとしてGaを選択できることが記載されてはいるが、
この文献の実施例にはHoもGaも使用されておらず、
ましてやこれらを共存させた際の相乗効果による顕著な
熱安定性と高感度性を示唆していない。実際、例示され
た組成は本発明のものとは全然違い、また熱安定性も後
で説明するように本発明に比べて5倍以上も悪い。
However, the temperature change rate of the Verdet constant is as large as several percents per 10 ° C. depending on the Bi, R, and M element ratios exemplified in the above-mentioned documents, and is not practical. . In this document, it is described that several kinds of elements that can be used are selected from twenty or more kinds and combined so as to constitute a magnetic garnet structure, and among them, Y, La, Ho, etc. are selected as R. Can,
Although it is described that Ga can be selected as M,
Neither Ho nor Ga is used in the examples of this document,
Furthermore, it does not suggest remarkable thermal stability and high sensitivity due to a synergistic effect when these are coexisted. In fact, the exemplified compositions are quite different from those of the present invention, and the thermal stability is more than 5 times worse than the present invention, as will be explained later.

【0004】また上記の文献については、ファラデー
回転の飽和に要する磁界が大きく、特にこの磁気光学素
子(ファラデー素子)を用いて、数百 Oe 以下の低い磁
界を測定するセンサーを構成した場合、感度が低いとい
う欠点があった。
In the above-mentioned literature, the magnetic field required for the saturation of the Faraday rotation is large. In particular, when a sensor for measuring a low magnetic field of several hundred Oe or less using this magneto-optical element (Faraday element) is used, the sensitivity is high. However, there was a drawback that it was low.

【0005】さらに上記の文献では、Gdのイオン半
径が比較的大きいため、Biの置換量に限度があり、フ
ァラデー回転角を大きくすることができないため、薄い
膜厚にすることが困難である。800nmの波長帯では
磁性ガーネット結晶膜の光吸収が大きいため、その吸収
損失ができるだけ小さいほうが望ましいが、Gdを含有
すると膜厚が厚く、吸収損失が大きくなる。
Further, in the above-mentioned literature, the ionic radius of Gd is relatively large, so that the amount of substitution of Bi is limited, and the Faraday rotation angle cannot be increased. Therefore, it is difficult to reduce the film thickness. In the 800 nm wavelength band, the light absorption of the magnetic garnet crystal film is large. Therefore, it is desirable that the absorption loss be as small as possible. However, when Gd is contained, the film thickness is large and the absorption loss is large.

【0006】また、従来の磁界センサー用のカーネット
結晶膜は設計の自由度が小さく、高飽和磁界の磁性ガー
ネットの組成を調整しても低飽和磁界の磁性ガーネット
は得ることが困難であり、またその逆も真である。更
に、他の問題は磁界センサーの出力を光ファイバーで監
視場所まで導く場合に従来のように800nm程度の波
長を使用すると、磁気光学素子や光ファイバの減衰が大
きいため、損失が大きくなり検出が困難になる。したが
って、1300nm以上の波長で検出する時に高感度を
示す磁気光学素子が望まれる。
Further, the conventional carnet crystal film for a magnetic field sensor has a small degree of freedom in design, and it is difficult to obtain a magnetic garnet having a low saturation magnetic field even if the composition of the magnetic garnet having a high saturation magnetic field is adjusted. The converse is also true. Another problem is that when the output of the magnetic field sensor is guided to the monitoring place by an optical fiber, if a wavelength of about 800 nm is used as in the past, the loss becomes large because the attenuation of the magneto-optical element and the optical fiber is large, and the detection is difficult. become. Therefore, a magneto-optical element which exhibits high sensitivity when detecting at a wavelength of 1300 nm or more is desired.

【0007】したがって、本発明の目的はベルデ定数の
温度変化率が10℃あたり0.2%%以下と小さい磁気
光学素子を提供することにある。本発明の他の目的は、
飽和磁界が低く、磁界に対する検出感度の高く、しかも
ベルデ定数の温度変化率が10℃あたり±0.2%以内
と小さい磁気光学素子を提供することにある。本発明の
更に他の目的は、1300nm以上の光波長で使用した
時に、損失が小さく、しかもベルデ定数の温度変化率が
10℃あたり±0.2%以内と小さい磁気光学素子を提
供することにある。
Accordingly, it is an object of the present invention to provide a magneto-optical element in which the temperature change rate of the Verdet constant is as small as 0.2% or less per 10 ° C. Another object of the present invention is to
An object of the present invention is to provide a magneto-optical element having a low saturation magnetic field, high detection sensitivity to a magnetic field, and a temperature change rate of the Verdet constant as small as ± 0.2% per 10 ° C. Still another object of the present invention is to provide a magneto-optical element which has a small loss when used at an optical wavelength of 1300 nm or more and a temperature change rate of a Verdet constant of ± 0.2% or less per 10 ° C. is there.

【0008】[0008]

【課題を解決するための手段】本発明は、一般式 (Y3-x-y-z Bix Hoy Laz )(Fe5-u Gau
12 で表される組成(但し、1.2≦x≦1.6、0≦y≦
1.8、0≦z≦0.1、0.01≦u≦1.4、かつ
4.0≦8y+5u、かつ1.3y+1.75u≦2.
28)を持つ磁性ガーネット結晶よりなる磁界センサー
用磁気光学素子により上記の課題を解決する。この磁気
光学素子は優れた温度安定性を有し、ベルデ定数の温度
変化率が10℃あたり±0.2%以内と小さい。
SUMMARY OF THE INVENTION The present invention relates to compounds of the general formula (Y 3-xyz Bi x Ho y La z) (Fe 5-u Ga u)
Composition represented by O 12 (provided that 1.2 ≦ x ≦ 1.6, 0 ≦ y ≦
1.8, 0 ≦ z ≦ 0.1, 0.01 ≦ u ≦ 1.4, and 4.0 ≦ 8y + 5u, and 1.3y + 1.75u ≦ 2.
The above-mentioned problem is solved by a magneto-optical element for a magnetic field sensor comprising a magnetic garnet crystal having (28). This magneto-optical element has excellent temperature stability, and the temperature change rate of the Verdet constant is as small as ± 0.2% per 10 ° C.

【0009】本発明はまた、上記一般式において、さら
に3.4≦y+17uを満たすことを特徴とする、磁性
ガーネット結晶よりなる高感度磁界センサー用磁気光学
素子により上記の課題を解決する。この磁気光学素子
は、ベルデ定数の温度変化率が10℃あたり±0.2%
以内と熱安定性が良いだけでなく、更に飽和磁界が12
00 Oe 以下であり、磁界センサーとして使用した時に
感度が高い。
The present invention also solves the above-mentioned problems by a magneto-optical element for a high-sensitivity magnetic field sensor made of a magnetic garnet crystal, wherein the above general formula further satisfies 3.4 ≦ y + 17u. In this magneto-optical element, the temperature change rate of the Verdet constant is ± 0.2% per 10 ° C.
Not only good thermal stability but also a saturation magnetic field of 12
Less than 00 Oe, high sensitivity when used as a magnetic field sensor.

【0010】さらに、上記一般式において、さらに3.
4≦y+17uを満たし、同時に7.2≦9y+8uを
満たすことを特徴とする、高波長1300nm以上の波
長帯の光源を用いて磁界を測定する装置に適した磁性ガ
ーネット結晶よりなる磁界センサー用磁気光学素子によ
り、上記の課題を解決する。この磁気光学素子はベルデ
定数の温度変化率が10℃あたり0.2%以下と熱安定
性が良いだけでなく、飽和磁界が1200 Oe 以下であ
り、磁界センサーとして使用した時に感度が高く、さら
に1300nm以上の光源を使用でき、それにより光損
失が少なくなる。
Further, in the above general formula, 3.
Magneto-optical device for a magnetic field sensor comprising a magnetic garnet crystal suitable for an apparatus for measuring a magnetic field using a light source having a high wavelength of 1300 nm or more, satisfying 4 ≦ y + 17u and simultaneously satisfying 7.2 ≦ 9y + 8u. The above problem is solved by an element. This magneto-optical element has not only good thermal stability with a temperature change rate of Verdet constant of 0.2% or less per 10 ° C., but also a saturation magnetic field of 1200 Oe or less, and high sensitivity when used as a magnetic field sensor. Light sources of 1300 nm and above can be used, thereby reducing light loss.

【0011】本発明では、Biの一部をHoで置換する
ことにより、温度安定性を向上させベルデ定数の温度変
化率が10℃あたり±0.2%以内と小さくできる。そ
の際にHoはイオン半径が前述の従来例のGdより小さ
く、その分イオン半径の大きなBiの量をできるだけ多
くすることができる。Biはファラデー回転能を高める
効果があり、同じファラデー回転角を得るのに、膜厚を
薄くできる利点がある。800nmの波長帯ではガーネ
ット結晶膜の光吸収が大きいため、その吸収損失ができ
るだけ小さいほうが望ましい。従って、Ho置換によ
り、Gd置換よりも膜厚を薄くすることで、吸収損失を
低く押えられる。Hoよりイオン半径の小さい希土類イ
オンを置換した場合は、Hoと違って負のベルデ定数の
温度係数を持つので、温度係数を小さくすることが困難
である。また、Hoを使用すればGdの場合より膜厚が
薄くてよいので、厚膜を形成する際に生じる欠陥やワレ
などが少ないという製造上の利点がある。また、ランニ
ングコストも少なくてすむ。
In the present invention, by replacing a part of Bi with Ho, the temperature stability is improved and the temperature change rate of the Verdet constant can be reduced to within ± 0.2% per 10 ° C. At this time, Ho has an ion radius smaller than that of Gd of the above-described conventional example, and the amount of Bi having a large ion radius can be increased as much as possible. Bi has the effect of increasing the Faraday rotation ability, and has the advantage that the film thickness can be reduced in order to obtain the same Faraday rotation angle. Since light absorption of the garnet crystal film is large in the wavelength band of 800 nm, it is desirable that the absorption loss be as small as possible. Therefore, the absorption loss can be suppressed low by making the film thickness smaller by Ho substitution than by Gd substitution. When a rare earth ion having an ion radius smaller than that of Ho is substituted, unlike Ho, it has a negative Verdet constant temperature coefficient, so that it is difficult to reduce the temperature coefficient. In addition, when Ho is used, the film thickness may be smaller than in the case of Gd, so that there is an advantage in manufacturing that defects and cracks generated when forming a thick film are small. Also, the running cost is low.

【0012】Ho置換の場合の一軸磁気異方性はGd置
換の場合よりも小さく、そのため結晶膜の垂直磁化成分
はGdより少ない。一般には、垂直磁化成分が少ないと
ヒステリシスを生じにくくなる。ヒステリシスはGa置
換により、飽和磁界を小さくしていくと起こりやすい。
Ho置換により、Gdよりもヒステリシスの発生する飽
和磁界を低くできる。このため低磁界の使用に有利な、
安定性の良い磁界測定装置を構成できる。
The uniaxial magnetic anisotropy in the case of Ho substitution is smaller than that in the case of Gd substitution, so that the perpendicular magnetization component of the crystal film is smaller than that of Gd. Generally, when the perpendicular magnetization component is small, hysteresis is less likely to occur. Hysteresis tends to occur when the saturation magnetic field is reduced by Ga substitution.
By the Ho substitution, the saturation magnetic field at which hysteresis occurs can be made lower than that of Gd. This is advantageous for using low magnetic fields,
A stable magnetic field measuring device can be configured.

【0013】次に、本発明ではFeの一部をGaで置換
する。Gaは磁性ガーネットの飽和磁界を低下し、磁気
センサーとして使用する時に磁性ガーネット結晶よりな
る磁気光学素子を高感度にすることができる。Gaの置
換量が適当なら、Hoの置換により得られる磁性ガーネ
ットの温度安定性は影響されない。
Next, in the present invention, part of Fe is replaced by Ga. Ga lowers the saturation magnetic field of the magnetic garnet, and when used as a magnetic sensor, can increase the sensitivity of a magneto-optical element made of a magnetic garnet crystal. If the substitution amount of Ga is appropriate, the temperature stability of the magnetic garnet obtained by the substitution of Ho is not affected.

【0014】こうして、本発明はHoとGaを組み合わ
せることにより、温度特性を安定に維持しながら測定磁
界に応じて磁界センサーとして使用される磁性ガーネッ
ト磁気光学素子の飽和磁界を比較的自由に設計できる。
後で実施例に関連して説明するが、図1は、実施例の組
成点を示すグラフ(横軸:Gaの式量、縦軸:Hoの式
量)で、試料番号を点上に示す。黒枠内は、λ=80
0、または1300nmの光源を使用して測定したベル
デ定数の温度変化率が±0.2%/10℃以内の組成範
囲を表す。この範囲は上記一般式においてx,y,z,
uが所定範囲にあるとき、4.0≦8y+5uで且つ
1.3y+1.75u≦2.28の範囲にある。図2
は、波長800nmの光源を用いて測定されたベルデ定
数の温度変化率と飽和磁界の関係を示す。これから、±
0.2%/10℃以内の温度変化率において飽和磁界を
380 Oe 〜1670 Oe の範囲で任意に設定できるこ
とが分かる。図3は、実施例の組成点を示すグラフで試
料番号を点上に示す。点枠内は波長800、または13
00nmの光源を用いて測定したベルデ定数の温度変化
率が±0.2%/10℃以内で且つ飽和磁界が1.2 k
Oe以内の範囲にある組成範囲を表す。この条件は上記一
般式においてx,y,z,uが所定範囲にあるとき、
4.0≦8y+5u、1.3y+1.75u≦2.28
で、且つ3.4≦y+17uで満足される。こうして高
感度磁界センサーとして好適な磁気光学素子が得られ
る。高感度センサーはほとんどの場合1200 Oe 以下
の磁界を測定する。図3の黒枠内は波長1300nmの
光源を用いて測定したとき、ベルデ定数の温度変化率が
±0.2%/10℃以内で且つ飽和磁界が1.2 kOe以
内の範囲にある組成範囲を表す。この範囲は上記一般式
においてx,y,z,uが所定範囲にあるとき、7.2
≦9y+8u、1.3y+1.75u≦2.28で、且
つ3.4≦y+17uで満足される。こうして低損失磁
界センサーとして好適な磁気光学素子が得られる。
Thus, according to the present invention, by combining Ho and Ga, the saturation magnetic field of the magnetic garnet magneto-optical element used as a magnetic field sensor can be relatively freely designed according to the measured magnetic field while maintaining stable temperature characteristics. .
FIG. 1 is a graph showing the composition points of the examples (horizontal axis: formula amount of Ga, vertical axis: formula amount of Ho). . In the black frame, λ = 80
It represents a composition range in which the temperature change rate of the Verdet constant measured using a light source of 0 or 1300 nm is within ± 0.2% / 10 ° C. This range is defined as x, y, z,
When u is in the predetermined range, it is in the range of 4.0 ≦ 8y + 5u and 1.3y + 1.75u ≦ 2.28. FIG.
Shows the relationship between the temperature change rate of the Verdet constant measured using a light source having a wavelength of 800 nm and the saturation magnetic field. From now on, ±
It can be seen that the saturation magnetic field can be arbitrarily set in the range of 380 Oe to 1670 Oe at a temperature change rate within 0.2% / 10 ° C. FIG. 3 is a graph showing the composition points of the examples, and the sample numbers are indicated above the points. The wavelength within the dotted frame is 800 or 13
The temperature change rate of the Verdet constant measured using a light source of 00 nm is within ± 0.2% / 10 ° C. and the saturation magnetic field is 1.2 k
The composition range is within Oe. This condition is satisfied when x, y, z, and u in the above general formula are within a predetermined range.
4.0 ≦ 8y + 5u, 1.3y + 1.75u ≦ 2.28
And 3.4 ≦ y + 17u is satisfied. Thus, a magneto-optical element suitable as a high-sensitivity magnetic field sensor is obtained. Highly sensitive sensors measure magnetic fields of 1200 Oe or less in most cases. The black frame in FIG. 3 indicates a composition range in which the temperature change rate of the Verdet constant is within ± 0.2% / 10 ° C. and the saturation magnetic field is within 1.2 kOe when measured using a light source having a wavelength of 1300 nm. Represent. This range is 7.2 when x, y, z, u are within a predetermined range in the above general formula.
≦ 9y + 8u, 1.3y + 1.75u ≦ 2.28, and 3.4 ≦ y + 17u. Thus, a magneto-optical element suitable as a low-loss magnetic field sensor is obtained.

【0015】[0015]

【実施例】以下に、本発明の実施例を説明するが、その
前にベルデ定数の温度変化率測定方法と、その10℃あ
たりの温度変化率を定義する。試料を−20℃〜80℃
の範囲でベルデ定数を測定する。測定は−20℃、25
℃、及び80℃で行う。25℃におけるベルデ定数を基
準とし、これをV25とおく。−20℃、80℃における
ベルデ定数をV-20 、V80とすれば、V26に対する平均
的なベルデ定数の偏差は (V80−V-20 )/V25 (%/℃) となり、これは1℃あたりの偏差であるが、これを10
倍して10℃あたりの変化率と定義する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing embodiments of the present invention, a method for measuring the temperature change rate of the Verdet constant and the temperature change rate per 10 ° C. will be defined. Samples at -20 ° C to 80 ° C
The Verdet constant is measured in the range. Measurements are -20 ° C, 25
C. and 80.degree. Based on the Verdet constant at 25 ° C., this is set as V 25 . Assuming that the Verdet constants at −20 ° C. and 80 ° C. are V −20 and V 80 , the average deviation of the Verdet constant from V 26 is (V 80 −V −20 ) / V 25 (% / ° C.). Is the deviation per 1 ° C.
Multiply and define the rate of change per 10 ° C.

【0016】実施例1 Bi23 、PbO、B23 を主成分とするフラック
スにY23 、Bi23 、Ho23 、La23
Fe23 、Ga23 を融解し、カルシウム、マグネ
シウム、ジルコニウム置換GGG基板にLPE法を用い
て約100μmのガーネット単結晶膜を育成した。この
膜を約90μmの厚さに鏡面研磨し、蛍光X線分析をお
こなったところ、(Y0.82、Bi1.31、Ho0.83、La
0.04)(Fe4.83、Ga0.17)O12で表される組成であ
った。この膜面に垂直な方向にピーク波長1300nm
の光を入射し、膜面に垂直な磁界を印加し、光学測定を
おこなった。この結果、ファラデー回転角の飽和磁界は
1175 Oe であった。さらに−20〜80℃の温度範
囲でベルデ定数の値を測定したところ、10℃あたりの
変化率は0.14%と、極めて安定であった。次にこの
膜を約25μmの厚みに鏡面研磨し、ピーク波長800
nmの光源を用いて同様な測定をおこなった。その結
果、飽和磁界はほぼ1300nmの場合と同様な値を示
したが、ベルデ定数の温度変化率は10℃あたり−0.
10%と負側にシフトしていた。
[0016] Example 1 Bi 2 O 3, PbO, Y 2 O 3 and B 2 O 3 in the flux mainly, Bi 2 O 3, Ho 2 O 3, La 2 O 3,
Fe 2 O 3 and Ga 2 O 3 were melted, and a garnet single crystal film of about 100 μm was grown on a calcium, magnesium, and zirconium substituted GGG substrate by LPE. When this film was mirror-polished to a thickness of about 90 μm and subjected to fluorescent X-ray analysis, (Y 0.82 , Bi 1.31 , Ho 0.83 , La
0.04) (Fe 4.83, was composition represented by Ga 0.17) O 12. A peak wavelength of 1300 nm in a direction perpendicular to the film surface
And a perpendicular magnetic field was applied to the film surface, and an optical measurement was performed. As a result, the saturation magnetic field at the Faraday rotation angle was 1175 Oe. Furthermore, when the value of the Verdet constant was measured in the temperature range of -20 to 80 ° C., the rate of change per 10 ° C. was 0.14%, which was extremely stable. Next, this film is mirror-polished to a thickness of about 25 μm, and a peak wavelength of 800
Similar measurements were made using a nm light source. As a result, the saturation magnetic field showed almost the same value as that of the case of 1300 nm, but the temperature change rate of the Verdet constant was −0.1 / ° C.
10% had shifted to the negative side.

【0017】実施例2 Bi23 、PbO、B23 を主成分とするフラック
スにY23 、Bi23 、Ho23 、La23
Fe23 、Ga23 を融解し、カルシウム、マグネ
シウム、ジルコニウム置換GGG基板にLPE法を用い
て約200μmのガーネット単結晶膜を育成した。この
膜を約90μmの厚さに鏡面研磨し、蛍光X線分析をお
こなったところ、(Y1.43、Bi1.43、Ho0.10、La
0.04)(Fe4.18、Ga0.82)O12で表される組成であ
った。この膜面に垂直な方向にピーク波長1300nm
の光を入射し、膜面に垂直な磁界を印加し、光学測定を
おこなった。この結果、ファラデー回転角の飽和磁界は
500 Oe であった。さらに−20〜80℃の温度範囲
でベルデ定数の値を測定したところ、10℃あたりの変
化率は0.18%と、極めて安定であった。次にこの膜
を約25μmの厚みに鏡面研磨し、ピーク波長800n
mの光源を用いて同様な測定をおこなった。その結果、
飽和磁界はほぼ1300nmの場合と同様な値を示した
が、ベルデ定数の温度変化率は10℃あたり0.02%
と負側にシフトしていた。
[0017] Example 2 Bi 2 O 3, PbO, Y 2 O 3 and B 2 O 3 in the flux mainly, Bi 2 O 3, Ho 2 O 3, La 2 O 3,
Fe 2 O 3 and Ga 2 O 3 were melted, and a garnet single crystal film having a thickness of about 200 μm was grown on a calcium, magnesium, and zirconium substituted GGG substrate by using the LPE method. This film was mirror-polished to a thickness of about 90 μm, and subjected to fluorescent X-ray analysis. (Y 1.43 , Bi 1.43 , Ho 0.10 , La
0.04 ) (Fe 4.18 , Ga 0.82 ) O 12 . A peak wavelength of 1300 nm in a direction perpendicular to the film surface
And a perpendicular magnetic field was applied to the film surface, and an optical measurement was performed. As a result, the saturation magnetic field at the Faraday rotation angle was 500 Oe. Furthermore, when the value of the Verdet constant was measured in a temperature range of -20 to 80 ° C, the rate of change per 10 ° C was 0.18%, which was extremely stable. Next, this film is mirror-polished to a thickness of about 25 μm, and the peak wavelength is 800 n.
The same measurement was performed using m light sources. as a result,
The saturation magnetic field showed almost the same value as that at 1300 nm, but the temperature change rate of the Verdet constant was 0.02% per 10 ° C.
And had shifted to the negative side.

【0018】実施例3 実施例2と同様な配合比で育成時間を延長し、厚さ約5
00μmのガーネット単結晶を得た。この膜を1300
nmの光源を用いて光学測定したところ、ファラデー回
転能1900deg/cmであった。飽和磁界は500 Oe
で、ベルデ定数の温度特性は実施例2と同様であった。
この膜を420μmの厚さに鏡面研磨したところ、ファ
ラデー回転角は約80°であった。この膜を用いて直流
磁界を印加しながら、光量の変化を測定した(偏光子、
検光子は45°配置)。その結果、測定磁界が±150
Oe 内では光量変化の直線性が±2%以内であった。ま
た、30 Oe の磁界下での光量の温度変化は−20℃〜
80℃の範囲で10℃あたり0.2%と安定であった。
また感度も優れていた。さらにこれを210μmの厚さ
に鏡面研磨したところ、ファラデー回転角は約40°で
あった。同様な光量変化特性を測定したところ、測定磁
界が±300 Oe 内では光量変化の直線性が±1.8%
以内であった。この様に結晶膜を厚くし、ファラデー回
転角を大きくして、ファラデー回転角が約25°になる
様最大測定磁界を決めれば、光量の直線性誤差が2%以
内で、かつ低磁界で感度の良い磁界測定装置を構成でき
た。このように、市場の要求磁界に対し膜厚の制御のみ
で迅速に低コストで対応できた。
Example 3 The growth time was extended at the same compounding ratio as in Example 2 to a thickness of about 5
A garnet single crystal of 00 μm was obtained. 1300
Optical measurement using a light source of nm gave a Faraday rotation capability of 1900 deg / cm. Saturation field is 500 Oe
The temperature characteristics of the Verdet constant were the same as in Example 2.
When this film was mirror-polished to a thickness of 420 μm, the Faraday rotation angle was about 80 °. Using this film, a change in the amount of light was measured while applying a DC magnetic field (polarizer,
The analyzer is arranged at 45 °). As a result, the measured magnetic field is ± 150
Within Oe, the linearity of the light quantity change was within ± 2%. Further, the temperature change of the light amount under a magnetic field of 30 Oe is -20 ° C.
It was stable at 0.2% per 10 ° C. in the range of 80 ° C.
The sensitivity was also excellent. When this was mirror-polished to a thickness of 210 μm, the Faraday rotation angle was about 40 °. When the similar light quantity change characteristics were measured, the linearity of the light quantity change was ± 1.8% when the measured magnetic field was within ± 300 Oe.
Was within. If the crystal film is thickened, the Faraday rotation angle is increased, and the maximum measurement magnetic field is determined so that the Faraday rotation angle is about 25 °, the linearity error of the light amount is within 2% and the sensitivity is low and the magnetic field is low. A good magnetic field measuring device was constructed. As described above, it was possible to quickly and inexpensively respond to the market required magnetic field only by controlling the film thickness.

【0019】実施例4 酸化物のモル比で表して表1に示す組成(ただしFe2
3 とGa23 の合計で5.00)の磁性ガーネット
を製造した。得られた試料のベルデ定数の温度変化率
(λ=800nm及びλ=1300nm)及び飽和磁化
を測定した結果を表1に示す。
Example 4 The composition shown in Table 1 (in terms of Fe 2
A magnetic garnet of 5.00 in total of O 3 and Ga 2 O 3 was produced. Table 1 shows the measurement results of the temperature change rate (λ = 800 nm and λ = 1300 nm) of the Verdet constant and the saturation magnetization of the obtained sample.

【0020】[0020]

【表1】 [Table 1]

【0021】表1の結果を図1、2、3に示す。図1
は、実施例の組成点を示すグラフ(横軸:Gaの式量、
縦軸:Hoの式量)で、試料番号を点上に示す。黒枠内
は、λ=800、または1300nmの光源を使用して
測定したベルデ定数の温度変化率が±0.2%/10℃
以内の組成範囲を表す。この範囲は上記一般式におい
て、4.0≦8y+5u、かつ1.3y+1.75u≦
2.28の範囲である。図2は、波長800nmの光源
を用いて測定されたベルデ定数の温度変化率と飽和磁界
の関係を示す。図3は、実施例の組成点を示すグラフで
試料番号を点上に示す。点枠内は飽和磁界が1.2 kOe
以内の範囲で、波長800、または1300nmの光源
を用いて測定したベルデ定数の温度変化率が±0.2%
/10℃以内の組成範囲を表す。この範囲は上記一般式
において、4.0≦8y+5u、かつ1.3y+1.7
5u≦2.28の範囲のほか、さらに3.4≦y+17
uを満足する。図3の黒枠内は飽和磁界が1.2 kOe以
内の範囲で、波長1300nmの光源を用いて測定し
た、ベルデ定数の温度変化率が±0.2%/10℃以内
の組成範囲を表す。この範囲は上記一般式において、
7.2≦9y+8u、1.3y+1.75u≦2.2
8、且つ3.4≦y+17uを満足する。
The results in Table 1 are shown in FIGS. FIG.
Is a graph showing the composition point of the example (horizontal axis: formula weight of Ga,
The vertical axis is the formula weight of Ho), and the sample numbers are shown on the dots. In the black frame, the temperature change rate of the Verdet constant measured using a light source of λ = 800 or 1300 nm is ± 0.2% / 10 ° C.
Represents the composition range within. This range is 4.0 ≦ 8y + 5u and 1.3y + 1.75u ≦ in the above general formula.
It is in the range of 2.28. FIG. 2 shows the relationship between the temperature change rate of the Verdet constant measured using a light source having a wavelength of 800 nm and the saturation magnetic field. FIG. 3 is a graph showing the composition points of the examples, and the sample numbers are indicated above the points. The saturation magnetic field is 1.2 kOe in the dotted frame.
Within the range, the temperature change rate of the Verdet constant measured using a light source having a wavelength of 800 or 1300 nm is ± 0.2%.
/ 10 ° C. This range is 4.0 ≦ 8y + 5u and 1.3y + 1.7 in the above general formula.
In addition to the range of 5u ≦ 2.28, 3.4 ≦ y + 17
satisfies u. The black frame in FIG. 3 indicates a composition range in which the saturation magnetic field is within 1.2 kOe and the temperature change rate of the Verdet constant is within ± 0.2% / 10 ° C. measured using a light source having a wavelength of 1300 nm. This range in the above general formula,
7.2 ≦ 9y + 8u, 1.3y + 1.75u ≦ 2.2
8, and 3.4 ≦ y + 17u.

【0022】[0022]

【発明の効果】本発明による磁気光学素子(ファラデー
素子)を用いて、磁界を計測するセンサー装置を構成し
た場合、周囲の温度変化に対し極めて安定した計測値が
得られる。特に図1枠内の組成領域では、広い範囲の計
測波長において温度変化に対し安定である。さらに、図
2のように飽和磁化を任意に選択できるため、高磁界の
測定に用いたり、図3のように低磁界で感度の高い測定
をおこなうといった市場の要求を十分満たすものであ
る。さらに図3の黒枠のように高感度且つ低損失の測定
を行うことができる。
When a sensor device for measuring a magnetic field is constructed using the magneto-optical element (Faraday element) according to the present invention, an extremely stable measured value can be obtained with respect to a change in ambient temperature. In particular, the composition region in the frame of FIG. 1 is stable against a temperature change over a wide range of measurement wavelengths. Further, since the saturation magnetization can be arbitrarily selected as shown in FIG. 2, it satisfies the market requirements such as being used for measurement of a high magnetic field and performing high-sensitivity measurement at a low magnetic field as shown in FIG. Furthermore, high sensitivity and low loss measurement can be performed as shown by the black frame in FIG.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の組成点を示すグラフ(横軸:Gaの式
量、縦軸:Hoの式量)で、試料番号を点上に示す。黒
枠内は、ベルデ定数の温度変化率が±0.2%/10℃
以内の組成範囲を表す。
FIG. 1 is a graph showing composition points of Examples (horizontal axis: Ga formula amount, vertical axis: Ho formula amount), sample numbers are shown on the dots. In the black frame, the temperature change rate of the Verdet constant is ± 0.2% / 10 ° C.
Represents the composition range within.

【図2】波長800nmの光源を用いて測定されたベル
デ定数の温度変化率と飽和磁界の関係を示す。
FIG. 2 shows the relationship between the temperature change rate of the Verdet constant measured using a light source with a wavelength of 800 nm and the saturation magnetic field.

【図3】実施例の組成点を示すグラフで試料番号を点上
に示す。点枠内は飽和磁界が1.2 kOe以内の範囲で請
求項2の範囲を表す。黒枠内は波長1300nmの光源
を用いて測定した、ベルデ定数の温度変化率が±0.2
%/10℃以内の組成範囲を表す。
FIG. 3 is a graph showing the composition points of the examples, and the sample numbers are indicated above the points. The area within the dotted frame indicates the range of claim 2 when the saturation magnetic field is within 1.2 kOe. In the black frame, the temperature change rate of the Verdet constant is ± 0.2 measured using a light source having a wavelength of 1300 nm.
% / 10%.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−69797(JP,A) 特開 平3−223199(JP,A) 特開 平5−27207(JP,A) 特開 平3−282414(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/09 501 C30B 29/28 G01R 33/032 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-69797 (JP, A) JP-A-3-223199 (JP, A) JP-A-5-27207 (JP, A) JP-A-3-27207 282414 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1/09 501 C30B 29/28 G01R 33/032

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式 (Y3-x-y-z Bix Hoy Laz )(Fe5-u Gau
12 で表される組成(但し、1.2≦x≦1.6、0≦y≦
1.8、0≦z≦0.1、0.01≦u≦1.4、かつ
4.0≦8y+5u、かつ1.3y+1.75u≦2.
28)を持つ磁性ガーネット結晶よりなる磁界センサー
用磁気光学素子。
1. A general formula (Y 3-xyz Bi x Ho y La z) (Fe 5-u Ga u)
Composition represented by O 12 (provided that 1.2 ≦ x ≦ 1.6, 0 ≦ y ≦
1.8, 0 ≦ z ≦ 0.1, 0.01 ≦ u ≦ 1.4, and 4.0 ≦ 8y + 5u, and 1.3y + 1.75u ≦ 2.
28) A magneto-optical element for a magnetic field sensor comprising a magnetic garnet crystal having the above (28).
【請求項2】 請求項1において、さらに3.4≦y+
17uを満たすことを特徴とする、磁性ガーネット結晶
よりなる高感度の磁界センサー用磁気光学素子。
2. The method according to claim 1, further comprising: 3.4 ≦ y +
A highly sensitive magneto-optical element for a magnetic field sensor comprising a magnetic garnet crystal, which satisfies 17u.
【請求項3】 請求項2において、さらに7.2≦9y
+8uを満たすことを特徴とする、高波長1300nm
以上の波長帯の光源を用いて磁界を測定する装置に適し
た磁性ガーネット結晶よりなる磁界センサー用磁気光学
素子。
3. The method according to claim 2, further comprising: 7.2 ≦ 9y.
+ 8u, high wavelength 1300nm
A magneto-optical element for a magnetic field sensor comprising a magnetic garnet crystal suitable for an apparatus for measuring a magnetic field using a light source in the above wavelength band.
JP08276494A 1994-03-30 1994-03-30 Magneto-optical element Expired - Fee Related JP3538449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08276494A JP3538449B2 (en) 1994-03-30 1994-03-30 Magneto-optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08276494A JP3538449B2 (en) 1994-03-30 1994-03-30 Magneto-optical element

Publications (2)

Publication Number Publication Date
JPH07270733A JPH07270733A (en) 1995-10-20
JP3538449B2 true JP3538449B2 (en) 2004-06-14

Family

ID=13783515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08276494A Expired - Fee Related JP3538449B2 (en) 1994-03-30 1994-03-30 Magneto-optical element

Country Status (1)

Country Link
JP (1) JP3538449B2 (en)

Also Published As

Publication number Publication date
JPH07270733A (en) 1995-10-20

Similar Documents

Publication Publication Date Title
EP0510621B1 (en) Magneto-optical element and magnetic field measurement apparatus
EP0208476B1 (en) Magnetic field sensor having magneto-optic element
US4581579A (en) Optical magnetic-field measuring apparatus having improved temperature characteristics
JP3193945B2 (en) Magneto-optical element and optical magnetic field sensor
JPS58139082A (en) Magnetic field measuring apparatus
JP3538449B2 (en) Magneto-optical element
Tanaka et al. The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing
RU2138069C1 (en) Magnetooptical thin-film structure
Kamada et al. Magneto‐optical properties of (BiGdY) 3Fe5O12 for optical magnetic field sensors
US6031654A (en) Low magnet-saturation bismuth-substituted rare-earth iron garnet single crystal film
JPH06281902A (en) Magneto-optical element material
JPS63163815A (en) Magnetic field sensor
JP3458012B2 (en) Magnetic field sensor
JP2002534685A (en) Glass fiber, current sensor and method
JP2679157B2 (en) Terbium iron garnet and magneto-optical element using the same
JPH0384483A (en) High-sensitivity magnetooptical sensor
US6194091B1 (en) Magnetostatic wave device
Caplin et al. A new approach to the magnetic measurement of critical currents in superconducting discs and films
Heilner et al. Cubic Anisotropies in Some Mixed and Substituted Rare‐Earth Garnets at 77° K
JP3269101B2 (en) Magneto-optical film
JPS61242997A (en) Magnetic field-measuring device
JPH03282414A (en) Faraday rotor for magnetic field sensor
Moriceau et al. Refractive index of Bi-substituted magnetic garnet films
JP2000338208A (en) Optical magnetic field sensor
JPH0527207A (en) Faraday rotator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees