JPS61115259A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS61115259A
JPS61115259A JP23664584A JP23664584A JPS61115259A JP S61115259 A JPS61115259 A JP S61115259A JP 23664584 A JP23664584 A JP 23664584A JP 23664584 A JP23664584 A JP 23664584A JP S61115259 A JPS61115259 A JP S61115259A
Authority
JP
Japan
Prior art keywords
film
garnet
substrate
thermal expansion
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23664584A
Other languages
Japanese (ja)
Inventor
Keiji Shono
敬二 庄野
Seiji Okada
誠二 岡田
Masahiro Miyazaki
宮崎 正裕
Seiya Ogawa
小川 清也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23664584A priority Critical patent/JPS61115259A/en
Publication of JPS61115259A publication Critical patent/JPS61115259A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To obtain a film having large coercive force at a low cost by forming a recording film of magnetic garnet having a significant magneto-optical effect and oxidation stability on a heat resistant substrate having a specified coefft. of thermal expansion. CONSTITUTION:A polycrystal film of bismuth substituted garnet represented by the formula is formed on a heat resistant hard substrate of optically isotropic glass, ceramics or the like having 4.0X10<-6>-1.3X10<-5>/ deg.C coefft. of thermal expansion and proof against 600 deg.C. When the coefft. (alpha) of thermal expansion of the substrate is within said range at ordinary temp., the film is hardly cracked or roughened, and a film having large coercive force is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラス等硬質基板上に多結晶相のガーネット
膜を作成し、これを記録層とした光磁気記録媒体に係る
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magneto-optical recording medium in which a polycrystalline garnet film is formed on a hard substrate such as glass, and this is used as a recording layer.

〔従来の技術〕[Conventional technology]

光磁気記録方式は書き換え可能、高密度記録が可能とい
う利点を有している。光磁気記録はレーザ光等を媒体に
照射すると、照射部分の温度は光線の熱作用により上昇
する。この結果、照射部分の保磁力Hcは低下し、この
際外部より媒体に上向きまたは下向きの磁界を印加する
と、この部分の磁化Msは外部磁界の方向に配向する。
The magneto-optical recording method has the advantage of being rewritable and capable of high-density recording. In magneto-optical recording, when a medium is irradiated with laser light or the like, the temperature of the irradiated area rises due to the thermal effect of the light beam. As a result, the coercive force Hc of the irradiated portion decreases, and when an upward or downward magnetic field is applied to the medium from the outside, the magnetization Ms of this portion is oriented in the direction of the external magnetic field.

ここで媒体に垂直磁気異方性を付与しておけば、磁化M
sは媒体面に垂直に配向したままとなる。上向きのMs
を“1″、下向きのMsを“0”とすれば外部磁界の方
向を上、下切り換えることによりディジタル記録が行え
る。
If the medium is given perpendicular magnetic anisotropy, the magnetization M
s remains oriented perpendicular to the medium plane. Ms upwards
By setting Ms to "1" and downward Ms to "0", digital recording can be performed by switching the direction of the external magnetic field upward and downward.

一方、再生に関しては磁気光学効果を利用する。On the other hand, for reproduction, magneto-optical effects are used.

すなわち、直線偏光を記録部分に照射すると、反射光の
偏光面は、入射光の偏光面に対し、θ0だけ回転する。
That is, when linearly polarized light is irradiated onto a recorded portion, the plane of polarization of the reflected light is rotated by θ0 with respect to the plane of polarization of the incident light.

金偏光面の回転方向を上向きのMsに対しては右回りと
すると、下向きに対しては左回りとなる。したがって偏
光面の回転角(θ0又は−00)を検出することによっ
て記録は再生される。このとき、再生信号のS/N比は
、偏光面の回転角が大きいほど高い値を取ることになり
、高速での再生を行うためには必然的に00の大きな材
料を用いることが必要となる。
If the rotation direction of the gold polarization plane is clockwise for upward Ms, it is counterclockwise for downward. Therefore, recording is reproduced by detecting the rotation angle (θ0 or −00) of the polarization plane. At this time, the S/N ratio of the reproduced signal takes a higher value as the rotation angle of the polarization plane becomes larger, and in order to perform high-speed reproduction, it is necessary to use a material with a large 00 value. Become.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

現在、このような記録方式に用いる媒体材料としては、
GdCo、 TbFe、 GdTbFe、 Tb(Fe
Co)等希土類元素と遷移金属からなるアモルファス合
金膜が主に考えられているが、これらの媒体は、酸化を
受けやすい希土類元素を含むため、酸化安定性に乏しい
、また、これらの材料の磁気光学効果による偏向面の回
転角は高々0.7度程度ζ小さく、高S/Nの信号を読
み出すためには、成膜方法、再生方法において困難を生
じる。
Currently, media materials used for this type of recording method include:
GdCo, TbFe, GdTbFe, Tb(Fe
Amorphous alloy films consisting of rare earth elements such as Co) and transition metals are mainly considered, but these media contain rare earth elements that are susceptible to oxidation, so they have poor oxidation stability, and the magnetic properties of these materials The rotation angle of the deflection surface due to the optical effect is small by about 0.7 degrees ζ at most, which causes difficulties in the film forming method and reproduction method in order to read out a signal with a high S/N.

磁性ガーネットは磁気光学効果の大きい材料として知ら
れているが、この材料の他の利点は、材料自身が酸化物
であることから酸化に対してすこぶる安定であることが
あげられる。
Magnetic garnet is known as a material with a large magneto-optical effect, but another advantage of this material is that it is extremely stable against oxidation because the material itself is an oxide.

従来、磁気光学的効果において優れた特性は、単結晶性
ガーネット膜において実現されてきた。
Conventionally, excellent magneto-optical effects have been achieved in single-crystalline garnet films.

しかしながら、このことはガーネット膜を光磁気記録媒
体として用いる上で障壁になる。すなわち、光磁気記録
媒体は少なくとも3インチ径以上のディスクとして用い
られるため、このディスク全面にわたって均一な単結晶
を形成させることは困難であり、また下地基板に用いる
G G G (’GdzGas01□)またはNGO(
NdsGasO+z)単結晶基板のためにコストの上昇
をのがれることはできない。
However, this becomes a barrier to using the garnet film as a magneto-optical recording medium. That is, since a magneto-optical recording medium is used as a disk with a diameter of at least 3 inches, it is difficult to form a uniform single crystal over the entire surface of the disk. NGO(
NdsGasO+z) single crystal substrates cannot avoid an increase in cost.

〔発明の構成〕[Structure of the invention]

本発明は、上記のような従来技術の問題点を解決するた
めに、磁気光学効果が大きくかつ酸化に対して安定な磁
性ガーネットからなる記録膜を、GGGまたはNGGな
どの単結晶基板に較べて安価な基板上に作成して成る光
磁気記録媒体を提供することを目的とする。
In order to solve the problems of the prior art as described above, the present invention provides a recording film made of magnetic garnet, which has a large magneto-optic effect and is stable against oxidation, compared to a single crystal substrate such as GGG or NGG. An object of the present invention is to provide a magneto-optical recording medium formed on an inexpensive substrate.

そして、本発明は、上記目的を達成するために、熱膨張
係数が4. OXl0−”/’c〜1.3 X 10−
’/ tの範囲内にあり、600℃の温度に対して耐熱
性であり、かつ光学的に等方的なガラス、セラミック等
の硬質基板上に、一般式(Bix R3−X)  (A
、 Fe5−y )O12〔式中、Rはインドリウムま
たは希土類元素、AはFeと置換し得る元素、Q<x<
3.好ましくはO<x≦2.そして0≦y<5である。
In order to achieve the above object, the present invention has a thermal expansion coefficient of 4. OXl0-"/'c~1.3 X 10-
The general formula (Bix R3-X) (A
, Fe5-y)O12 [wherein, R is indolium or a rare earth element, A is an element that can be replaced with Fe, Q<x<
3. Preferably O<x≦2. And 0≦y<5.

〕で表わされるビスマス置換ガーネットの多結晶膜を作
成して成る光磁記録媒体を提供する。
] A magneto-optical recording medium is provided, which is made of a polycrystalline film of bismuth-substituted garnet.

非磁性ガーネット以外のガラス、セラミック等の基板上
に垂直異方性を有するガーネットスパッタ膜を形成でき
ることは知られている。すなわち、磁性ガーネットの焼
結体ターゲットを用いてスパッタリングした後、熱処理
を行なって多結晶ガーネット膜とするものである。この
場合、膜には特別な結晶軸配向かなく、従ってその垂直
異方性の原因は膜と基板の熱膨張の違いによる応力と磁
化の相互作用、即ち逆磁歪効果によるものである。
It is known that a garnet sputtered film having perpendicular anisotropy can be formed on a substrate made of glass, ceramic, or the like other than nonmagnetic garnet. That is, after sputtering using a sintered target of magnetic garnet, heat treatment is performed to form a polycrystalline garnet film. In this case, the film has no particular crystallographic axis orientation, and therefore its perpendicular anisotropy is due to the interaction of stress and magnetization due to the difference in thermal expansion between the film and the substrate, ie, the inverse magnetostriction effect.

本発明者らは熱膨張係数が磁性ガーネ7)と適当に異な
る基板を用いれば、垂直異方性を有し、しかも従来のエ
ピタキシャル膜あるいは多結晶膜における場合よりも、
数倍大きな保磁力を示すビスマス置換ガーネットスパッ
タ膜が得られることを見い出した。
The present inventors have found that by using a substrate with a thermal expansion coefficient appropriately different from that of the magnetic Gurnet7), it has perpendicular anisotropy, and moreover, it has a better property than conventional epitaxial films or polycrystalline films.
It has been found that a bismuth-substituted garnet sputtered film exhibiting a coercive force several times larger can be obtained.

多結晶ガーネットスパッタ膜の場合、その垂直異方性は
膜と基板の熱膨張係数の差が原因であるから、大きな垂
直異方性を得るという観点からは熱膨張係数の差は大き
いほうが良い。しかし、熱膨張係数の差が大きすぎると
クランクや膜荒れが発生する。従ってクランクや膜荒れ
の発生しない範囲で熱膨張係数の差をできるだけ大きく
することが必要である。磁性ガーネットの熱膨張係数は
、例えばYIGでは常温で1.Oxio−S、”cであ
る。そして、スパッタ法によって成膜し、次に600℃
以上の熱処理をしてガーネット多結晶膜を得る場合、基
板の熱膨張係数αが常温で4.Oxio−’/’c<α
 ・<1.3 Xl0−’/℃の範囲内にあれば、クラ
ンクや膜荒れは少な(、しかも保磁力の大きな膜が得ら
れることが分った。
In the case of a polycrystalline garnet sputtered film, its perpendicular anisotropy is caused by the difference in thermal expansion coefficients between the film and the substrate, so from the viewpoint of obtaining a large perpendicular anisotropy, the larger the difference in the thermal expansion coefficients, the better. However, if the difference in thermal expansion coefficients is too large, cranking and film roughness will occur. Therefore, it is necessary to make the difference in thermal expansion coefficients as large as possible within a range that does not cause cranking or film roughness. The thermal expansion coefficient of magnetic garnet is, for example, YIG at room temperature 1. Oxio-S,"c. Then, a film was formed by sputtering, and then heated at 600°C.
When a garnet polycrystalline film is obtained by the above heat treatment, the thermal expansion coefficient α of the substrate is 4. Oxio-'/'c<α
- It was found that within the range of <1.3 Xl0-'/°C, there is little cranking and film roughness (and a film with high coercive force can be obtained).

ただし、この場合、ビスマス置換ガーネットを結晶化す
るには少なくとも600℃以上の温度が必要であるから
、基板は600℃以上の耐熱性を有することが必要であ
る。また、光磁気記録媒体の基板として用いるためには
、基本的に、光学的に等方的な硬!基板であることが必
要である。
However, in this case, since a temperature of at least 600° C. or higher is required to crystallize bismuth-substituted garnet, the substrate needs to have heat resistance of 600° C. or higher. In addition, in order to be used as a substrate for magneto-optical recording media, optically isotropic hard substrates are basically required. It needs to be a substrate.

熱膨張係数が4. OX 10−”/l〜1.3 X 
10−’/ ’Cの範囲内にあり、600℃の温度に耐
熱性があり、かつ光学的に等方的なガラス、セラミック
等の硬質基板自体は容易に、商業的に入手可能である。
The coefficient of thermal expansion is 4. OX 10-”/l~1.3X
10-'/'C, heat-resistant to a temperature of 600 DEG C., and optically isotropic hard substrates such as glass and ceramic are easily commercially available.

例えば、ガラスではバリウム硼珪酸ガラス、アルミノ珪
酸ガラス等、そしてセラミックではアルミナ、フォルス
テライト、ジルコニア、アルミナ。
For example, glasses include barium borosilicate glass and aluminosilicate glass, and ceramics include alumina, forsterite, zirconia, and alumina.

チタンカーバイト等には上記の条件を満足するものがあ
る。
Some titanium carbide and the like satisfy the above conditions.

多結晶磁性ガーネット膜の磁歪定数λSは希土類元素の
種類によって、その符号、大きさにおいて異なることが
知られている。λs <OのものについてはDy、Ho
、T+++、Er+Y+ Yb+Gdの各ガーネットが
、また、λs >OのものについてはEu+Tb、Ss
の各ガーネットがある。従って、逆磁歪効果によって垂
直異方性を得るためには、λs<0の場合には、ガーネ
ット膜よりも小さな熱膨張係数を有する基板を、またλ
S>0の場合にはガーネット膜よりも大きな熱膨張係数
を有する基板をそれぞれ用いることが必要である。
It is known that the magnetostriction constant λS of a polycrystalline magnetic garnet film differs in sign and magnitude depending on the type of rare earth element. For those with λs <O, Dy, Ho
, T+++, Er+Y+ Yb+Gd, and Eu+Tb, Ss for those with λs > O.
There are each garnet. Therefore, in order to obtain perpendicular anisotropy by the inverse magnetostriction effect, in the case of λs<0, a substrate with a thermal expansion coefficient smaller than that of the garnet film and λ
In the case of S>0, it is necessary to use a substrate having a larger coefficient of thermal expansion than the garnet film.

叉星且上 豊を20mm角のバリウム硼珪酸ガラス基板(コーニン
グガラス社の商品r#7059J )上に、Bi、、。
A 20 mm square barium borosilicate glass substrate (Corning Glass Co., Ltd. product r#7059J) was coated with Bi.

Y r 、 s G −F −40ltの焼結体ガーネ
ットをターゲットとしてRFスパッタリングで、厚さ1
μmの膜を作成し、これを空気中650℃で3時間熱処
理することによって基板上に多結晶ガーネット膜を得た
。このバリウム硼珪酸ガラスの熱膨張係数は常温におい
て4’、 6 x 10−”/ ”cである。
Y r , s G −F −40lt sintered garnet was used as a target by RF sputtering to a thickness of 1
A polycrystalline garnet film was obtained on the substrate by creating a μm film and heat-treating it in air at 650° C. for 3 hours. The thermal expansion coefficient of this barium borosilicate glass is 4', 6 x 10-''/''c at room temperature.

こうして得られた多結晶ガーネット膜にはクラックは殆
どなかった。
The polycrystalline garnet film thus obtained had almost no cracks.

第1図は、この多結晶ガーネット膜のファラデーヒステ
リシスループである。角形比が1であり、垂直磁化膜で
あることを示している。また、保磁力はIKOeである
。この値は、従来のGGGその他の単結晶基板上のエピ
タキシャルガーネット膜の場合、通常200〜3000
eであるから、それよりも3倍以上も大きい。
FIG. 1 shows the Faraday hysteresis loop of this polycrystalline garnet film. The squareness ratio is 1, indicating that it is a perpendicular magnetization film. Further, the coercive force is IKOe. This value is usually 200 to 3000 for conventional epitaxial garnet films on GGG and other single crystal substrates.
e, so it is more than three times larger than that.

叉隻五主 害径201角のアルミノ珪酸ガラス基板(コーニングガ
ラス社の商品r#0317J 、常温における熱膨張係
数8.8 Xl0−”/”C)上に、Bi、、2Eu+
、 a  Gao、 b  F e*、 a  O+z
  の焼結体ガーネットをターゲットとしてRFスパッ
タリングして、厚さ1μmの膜を作成し、これを空気中
650℃で3時間熱処理することによって基板上に多結
晶ガーネット膜を得た。
Bi, 2Eu
, a Gao, b Fe*, a O+z
A film with a thickness of 1 μm was created by RF sputtering using the sintered garnet as a target, and this was heat-treated in air at 650° C. for 3 hours to obtain a polycrystalline garnet film on the substrate.

こうして得られた多結晶ガーネット膜はクラックが殆ん
どなく良好であった。
The polycrystalline garnet film thus obtained was in good condition with almost no cracks.

第2図はこの多結晶ガーネット膜のファラデーヒステリ
シスループである。角形比が1であり、垂直磁化膜であ
ることを示している。また、保磁力は1.2 KOeで
従来のものより4倍も大きい。
FIG. 2 shows the Faraday hysteresis loop of this polycrystalline garnet film. The squareness ratio is 1, indicating that it is a perpendicular magnetization film. Furthermore, the coercive force is 1.2 KOe, which is four times larger than that of the conventional one.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、単結
晶ガーネット系基板よりも安価なガラス。
As is clear from the above description, according to the present invention, the glass is cheaper than the single crystal garnet-based substrate.

セラミック等の硬質基板上に、光磁気効果が大きくかつ
酸化されにくいビスマス置換ガーネットの多結晶膜を作
成した光磁気記録媒体が提供され、しかも、この光磁気
記録媒体は従来のエピタキシャルガーネ−/ ト膜の場
合よりも大面積に均質を膜を作成するのが容易であり、
かつ保磁力が大きい。
A magneto-optical recording medium is provided in which a polycrystalline film of bismuth-substituted garnet, which has a large magneto-optical effect and is resistant to oxidation, is formed on a hard substrate such as ceramic. It is easier to create a homogeneous film over a larger area than in the case of a film;
It also has a large coercive force.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の多結晶ガーネット膜のファラ
デーヒステリシスループを示すグラフ図であり、第2図
はもう1つの実施例の多結晶ガーネット膜のファラデー
ヒステリシスループを示すグラフ図である。
FIG. 1 is a graph diagram showing a Faraday hysteresis loop of a polycrystalline garnet film according to an example of the present invention, and FIG. 2 is a graph diagram showing a Faraday hysteresis loop of a polycrystalline garnet film according to another example.

Claims (1)

【特許請求の範囲】 1、熱膨張係数が常温で4.0×10^−^6/℃〜1
.3×10^−^5/℃の範囲内にあり、600℃の温
度に対して耐熱性であり、かつ光学的に等方的な硬質基
板上に、一般式(Bi_xR_3_−_x)(A_yF
e_5_−_y)O_1_2〔式中、Rはイットリウム
または希土類元素、AはFeと置換し得る元素、0<x
<3.0≦y<5である。〕で表わされるビスマス置換
ガーネットの多結晶膜を作成して成る光磁気記録媒体。 2、前記基板がガラスまたはセラミックからなる特許請
求の範囲第1項記載の光磁気記録媒体。 3、前記一般式(Bi_xR_3_−_x)(A_yF
e_5_−_y)O_1_2において0<x≦2.0、
0≦y<5である特許請求の範囲第1項または第2項記
載の光磁気記録媒体。
[Claims] 1. Thermal expansion coefficient is 4.0 x 10^-^6/°C ~ 1 at room temperature
.. The general formula (Bi_xR_3_-_x) (A_yF
e_5_-_y) O_1_2 [wherein, R is yttrium or a rare earth element, A is an element that can be replaced with Fe, 0<x
<3.0≦y<5. ] A magneto-optical recording medium made of a polycrystalline film of bismuth-substituted garnet. 2. The magneto-optical recording medium according to claim 1, wherein the substrate is made of glass or ceramic. 3. The general formula (Bi_xR_3_-_x) (A_yF
e_5_-_y) 0<x≦2.0 in O_1_2,
The magneto-optical recording medium according to claim 1 or 2, wherein 0≦y<5.
JP23664584A 1984-11-12 1984-11-12 Photomagnetic recording medium Pending JPS61115259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23664584A JPS61115259A (en) 1984-11-12 1984-11-12 Photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23664584A JPS61115259A (en) 1984-11-12 1984-11-12 Photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61115259A true JPS61115259A (en) 1986-06-02

Family

ID=17003686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23664584A Pending JPS61115259A (en) 1984-11-12 1984-11-12 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61115259A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398855A (en) * 1986-10-14 1988-04-30 Fujitsu Ltd Magneto-optical recording medium
JPS63230527A (en) * 1987-03-17 1988-09-27 Matsushita Electric Ind Co Ltd Magneto-optical element
US5186866A (en) * 1989-07-20 1993-02-16 Shin-Etsu Chemical Co., Ltd. Oxide garnet single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398855A (en) * 1986-10-14 1988-04-30 Fujitsu Ltd Magneto-optical recording medium
JPS63230527A (en) * 1987-03-17 1988-09-27 Matsushita Electric Ind Co Ltd Magneto-optical element
US5186866A (en) * 1989-07-20 1993-02-16 Shin-Etsu Chemical Co., Ltd. Oxide garnet single crystal

Similar Documents

Publication Publication Date Title
US4690861A (en) Magneto optical recording medium
US4544602A (en) Magneto-optical recording medium having a ferrimagnetic recording layer
US4367257A (en) Thin magnetic recording medium
JPS6227459B2 (en)
US4788095A (en) Metal oxide magnetic substance and a magnetic film consisting thereof and their uses
JPS61115259A (en) Photomagnetic recording medium
US5501913A (en) Garnet polycrystalline film for magneto-optical recording medium
JPS61246946A (en) Photomagnetic recording medium
JPS61258353A (en) Photomagnetic recording medium
JPH0343697B2 (en)
JPH0664761B2 (en) Magneto-optical recording medium
JP2680586B2 (en) Magneto-optical storage medium
JPS60187954A (en) Magnetic recording medium consisting of thin magnetic film
KR930004335B1 (en) Optical magnetic recording materials
JPH0782669B2 (en) Magneto-optical recording medium
JPH0646617B2 (en) Method for manufacturing magneto-optical recording material
Challeton et al. RF sputtering of Bi-substituted garnet films for magneto-optic memory
KR910006146B1 (en) 4-layered tb-fe magnetic recording medium
JPS62172547A (en) Photomagnetic recording medium
JPS62267949A (en) Magneto-optical recording medium
JPS6189604A (en) Metal oxide magnetic substance and magnetic film
JP2553145B2 (en) Magneto-optical recording medium
JPH0445898B2 (en)
JPS639048A (en) Magneto-optical recording medium
JPS6189605A (en) Metal oxide magnetic substance and magnetic film